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h i g h l i g h t s

• It is possible to set prices with fully deterministic agents.
• With such agents the stylized facts of the domain are respected.
• Despite their determinism, randomness is observed at all levels of the market.
• This work illustrates that markets constitute a complex system.
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a b s t r a c t

In recent years, many studies on financial markets have relied on artificial agents,
whether for the evaluation of strategies, the study of price dynamics or the efficient ex-
ecution of orders. The behaviours used in those studies, often Zero-Intelligence Traders,
fundamentalists or chartists, are stochastic and therefore non-deterministic, mainly
because such agents easily yield a market that continuously fixes prices. We argue
here that a rational and fully deterministic behaviour is sufficient both to reproduce
the classic stylized facts of the field, but also to ensure that agents with different initial
parameters have different opportunities to enrich themselves. To illustrate this purpose,
we introduce Deterministic Artificial Traders, or DAT, and we show their performances
in several situations. This result illustrates the fact that financial markets are a complex
system, as some deterministic behaviours lead to some randomness in the market, both
at the macroscopic and microscopic levels.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Since 1987 and the first agent-based model proposed in [1], a lot of works in economics and business are based on
microscopic simulations in which the artificial entities called ‘‘agents’’ have their own behaviour and take their decisions
in complete autonomy. This current of thought is called ‘‘Agent-based Computational Economics’’ (ACE). The advantages
of this simulation approach are undeniable, since it is the only one allowing to individualize the actors of the system,
to offer a behavioural differentiation adapted to the study carried out and, above all, to allow an impact of the various
previous actions on the agents themselves. It thus offers the opportunity of evaluating different behaviours both at the
macroscopic level and at the microscopic level: it is then possible to obtain more explanatory models than predictive
macroscopic models. Even in the simplest cases, the agent has its own cash and investments, and the various market
orders have an impact on both the market and the agents themselves, thus forming the basis for the feedback loops
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specific to a complex system [2–4]. Several recent articles in the literature present the history of those works. One may
find in [5,6] or even [7] many details about this history.

It is recalled that in a multi-agent system, agents are autonomous. They make their decisions alone, possibly perceiving
their environment (market, congeners). Therefore, each agent has a single decision method to send an order. In the
following work, a behaviour denotes a function that maps a set of parameters to a decision method. The general system
calls this decision method fairly for each agent, either in real time (processes, threads) or in simulated time (speaking
turns). Of course, the agent can, when its decision method is called, decide to not send any order. Thus lies its autonomy.
For this work, we rely on the ATOM simulator1 [8,9] who respects those different principles.

However, not all of those agent-based approaches use ‘‘real’’ financial orders sent to a realistic market. For example,
the famous Sante-Fe Artificial Stock Market uses agents with a simple intention of buying or selling and therefore uses an
equilibrium-based market [10,11]. The first study to use agents sending orders with prices and quantities and a double
order book pricing mechanism, in line with the reality of stock markets, is the Genoa Artificial Stock Market [12]. As [13,14]
or [15,16] did, we will also use agents sending limit orders, that are defined by an asset, a price and a direction, to a double
auction order book.

Nevertheless, the literature remains rather weak on agents behaviours that are capable of sending limit orders. The
overwhelming majority of the works in the literature is based on the famous Zero Intelligent Trader (or ZIT) proposed
by [13,17]. Those agents have a simple but efficient behaviour and provide entropy to the market, in the sense that prices
are always fixed. Another interesting point is that they are also sufficient to obtain some stylized facts well-known in the
field. However, this behaviour is purely stochastic and, to the best of our knowledge, there do not exist a deterministic
behaviour that, when run on a double-auction order book, yields a market that continuously fixes prices, let along respects
stylized facts.

Having deterministic behaviours is desirable, both for the sake of realism and practicality, especially when one does
not only want to study the market as a whole, but also to study the agents that are part of it, which can lead to interesting
questions: for example, such behaviours might help us to understand why the tails of the distribution of returns are so
heavy, or may even be used to know if one can discriminate between agents according to their decision method, using
statistical learning tools. Those two points are more thoroughly discussed in Section 6. Moreover, by using a unique
stochastic decision method for every agents, one tries to aggregate the set of every decision method followed by some
trader on a (real) market. Such aggregation is unjustified and might lead to false conclusions, as explained in [18]. Though,
building deterministic behaviours is far from being easy, as on a market with only deterministic and rational agents, they
will tend to send the same kind of order, and no price will be set since setting a price needs both an Ask and a Bid order,
on a double-auction market. Note that this problem is not present on an equilibrium-based market: if all agents send Ask
orders or if all agents send Bid orders then the pricing mechanism of such a market, based on the differential between
buyers and sellers, will decrease or increase the price [19], respectively.

Thus, we consider that it should be expected from an artificial market that: (i) it reproduces stylized facts, (ii) its
microstructure should be identical – or at least similar – to the one of a real market and (iii) assumptions made about
traders’ behaviour are realistic. Hence, we propose a fully deterministic behaviour of a Deterministic Artificial Trader, or
DAT, that is gradually refined to answer the following questions:

1. Can a deterministic behaviour lead to a market that continuously fixes prices?
2. If so, how complex should this behaviour be in order to reproduce stylized facts?
3. Does luck exist on such a market?

In other words, can randomness emerge at the macroscopic level frommicroscopic determinism on a double-auction order
book, and can it, through the feedback loops that define complex systems, lead to some randomness at the microscopic
level?

Section 2 describes the stylized facts that we study in order to see if our agents are realistic. Then 3 describes the
behaviour of DAT-F, our deterministic and fundamentalist agent, that allows us to get a market on which prices are
continuously fixed, and that respects some stylized facts. Then this behaviour is refined in Section 4 by giving some
information to the agent, which defines our informed fundamentalist DAT-IF. This agent allows us to respect the stylized
facts. In order to allow the randomness that emerged at the market level to lead to some randomness at the agent level,
in Section 5, we allow our agents to take part of their decision using trends. The obtained agent is called DAT-IFC as
it is part informed fundamentalist and part chartist. Finally, in Section 6, we discuss about the choices we made for the
simulations, and then we highlight interesting perspectives.

2. Stylized facts

As stylized facts are properties common across markets, any artificial market should reproduce them in order to be a
good model.

1 Downloadable at https://github.com/cristal-smac/atom.

https://github.com/cristal-smac/atom
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Fig. 1. Sequence of prices at the end of each tick, obtained on a market using 50 ZITs that can neither have negative cash, nor negative quantity
of assets.

Fig. 2. Signature plot of a real price series.

Continuously fixing prices The first and rather obvious stylized fact is that a market never freezes, or, in other words,
prices are continuously fixed: there is no point in time such that there will be no transaction between traders later on. If
this property is easily reproduced using agents as simple as ZITs, it is interesting to notice that when strong constraints
are applies to agents, satisfying it becomes less easy. For example, if one runs a double-auction market whose agents are
ZITs that choose uniformly the direction, price, and quantity of the orders they send – for the price and the quantity, two
fixed bounds are defined at the beginning of the simulation –, and if those ZITs can never have negative cash nor negative
assets,2 then the price series will look like what is pictured in Fig. 1: since agents cannot cancel their orders, after a certain
number of steps, the system freezes.3 When a small constraint is applied to ZITs, they no longer continuously fix prices.
Henceforth, one can only imagine how hard it is to build agents that yield a market on which prices are continuously
fixed when the constraint is to have deterministic agents. Note that, those agents have to be heterogeneous in order to
fix a price [20].

Random walk Given a price series (Pt )0≤t≤T , where each Pt is a random variable, one can define its signature plot as

S(∆t) =
E[(Pt+∆t − Pt )2]

∆t
If (Pt )0≤t≤T follows a random walk – for example if Pt+1 is equal to Pt + 1 with probability one half, and Pt − 1 otherwise
– , then S(∆t) will not depend on ∆t – in this case, it will always be equal to 1. This means that the mean quadratic
difference between two prices is proportional to the time length between those two prices. The signature plot obtained
using price series of Microsoft shares is shown on Fig. 2 – for each ∆t , the empirical mean was computed on 5000 prices.

Properties of logarithmic returns Most stylized facts focuses on logarithmic returns: a rather exhaustive list can be
found in [21]. Given a price series (pt )t , logarithmic returns are defined as (log(pt+1) − log(pt ))t . As many articles in the
literature, we decided to focus on the following properties:

• Heavy tails The distribution of returns have fat tails compared to a normal distribution. In particular, its kurtosis is
higher than 3.

• Aggregational Gaussianity The distribution of (log(pt+∆t ) − log(pt ))t converges in probability towards a normal
distribution as ∆t tends to +∞.

• Absence of autocorrelations The autocorrelation of returns is insignificant for large values of ∆t
• Slow decay of autocorrelation in absolute returns The autocorrelation of absolute returns ((|log(pt+1) − log(pt )|)t )

decays as a power law with an exponent between −0.3 and −0.2. Fig. 3 shows the plot of the autocorrelation function
of the absolute returns on a log–log scale, using the data of Microsoft shares. Note that the exponent found for this
data is −0.20.

2 I.e. if the order randomly chosen by the agent could lead him to have negative cash or negative asset, it will not send the order.
3 Let us note that ‘‘tick’’ refers to allowing each agent to talk once, in a fair random order.
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Fig. 3. Autocorrelation of absolute returns on log–log scale, for a real market.

3. A minimalist fundamentalist and deterministic agent: DAT-F

Notations: A limit order o is a triplet (od, op, oq) whose elements designate the direction of the order (Ask or Bid),
its price and its quantity, respectively. When it is not necessary to specify one of the three parameters, it will be replaced
by the _ character. If the agent does not wish to send an order, the convention o = ∅ is used. In addition, we will note
[[a, b]] the set of integers between a ∈ Z and b ∈ Z.

This section focuses on constructing a minimalist agent, i.e. the simplest possible behaviour, that is deterministic and
that makes it possible to reproduce classic stylized facts. This agent, DAT-F, is fundamentalist: it has an estimation of the
fundamental value of the asset, and relies on this estimation to send its orders. Its behaviour is as follows: if the bestAsk
has a lower price than the agent’s estimation, then the agent will send an order Bid at the price of bestAsk. Likewise,
if the bestBid has a higher price than the estimation of the agent’s estimation, then the agent will send an order Ask,
whose price will be equal to the price of the bestBid. In other words, the agent only agrees to buy at a price below its
estimation of the fundamental value, and only to sell at a higher price. If not, the agent will try to reduce the bid-ask
spread, while centring it around its estimation of the fundamental value.

3.1. Formal behaviour

For the sake of simplicity, the market that is taken here consists of a single asset, and therefore of only one order book.
However, the behaviour of DAT-F can be immediately generalized to a market with several assets/order books.

An agent i has several intrinsic parameters, which will determine which order it will send, when the market allows it
to talk:

• αi ∈ [0, 1]: its aggressiveness
• κi ∈ N∗: its self-confidence
• πi ∈ N∗: its estimation of the fundamental value

At time t , the order sent by this agent, which depends on the three previous parameters, is noted o(f)i,t . In addition, p(ask)t

and p(bid)t represent the bestAsk and bestBid price in the order book, if there is at least an Ask and Bid in this order
book, respectively; Otherwise, this quantity is equal to the last fixed price,4 pt . Then:

o(f)i,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Bid, p(ask)t , κi)
if there is a least an Ask in the order book

and if p(ask)t ≤ πi

(Ask, p(bid)t , κi)
if there is a least a Bid in the order book

and if p(bid)t ≥ πi

(Bid, p(bid)t + αi(πi − p(bid)t ), κi) otherwise, if πi − p(bid)t > p(ask)t − πi

(Ask, p(ask)t + αi(πi − p(ask)t ), κi) otherwise, if πi − p(bid)t < p(ask)t − πi

∅ otherwise

This order can be explained in the following way: the agent never buys at a price higher than πi, nor sells at a lower
price. If there already is an order in the order book that can be matched while respecting this constraint, it does so.
Otherwise, it reduces the bid-ask spread by moving either the bestAsk or bestBid towards πi while respecting the
previous constraint, as shown in Fig. 4. The higher its aggressiveness αi is, the more the agent tends to buy at a high price
and sell at a low price.

Note that when the second situation arises, if its estimation of the fundamental value πi is at equal distance from p(ask)t
and p(bid)t , then the agent does not send any order. It would be possible to introduce a bias to the agent, constant over

4 There is always an opening price set in all our experiences. Thus, there is always a last fixed price.
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Fig. 4. Price pi of the order sent by the fundamentalist as a function of p(bid)t , πi, p(ask)t and αi . The 4a and 4b situations represent the case where
the estimation of the fundamental value is greater than the bestBid and smaller than the bestAsk. Figs. 4c and 4d represent what happens
when πi is smaller than pbidt or greater than paskt , respectively. Note that four other situations can occur from time to time, when at least one of
the Bids or Asks order book is empty, in which case pbidt = pt or paskt = pt . Under this assumption, one can have πi − p(bid)t < p(ask)t − πi ≤ 0,
0 ≥ πi − p(bid)t > p(ask)t − πi or either case 4c or 4d with p(bid)t ≥ p(ask)t .

time, which would indicate whether it should buy or sell in this situation. However, this would only complicate the agent
while not being useful to obtain a behaviour with which prices are continuously fixed.

Finally, let us note that, given an agent, the quantity oq of its orders o is constant, equal to κi. Despite being unrealistic,
this way of determining the quantity makes it possible to have variable quantities, and thus, as discussed in Section 6.2,
to be closer to the stylized facts.

3.2. Stylized facts

The following plots are obtained on a market on which 2200 agents are trading: there is one agent for each value
of (α, κ, π ) ∈ {0, 0.1, . . . , 1} × [[1, 10]] × {20 500, 20 550, . . . , 21 400, 21 450} – which has a cardinality of
11 · 10 · 20 = 2 200. The simulation runs over 5000 ticks, where a tick consists in allowing each agent to talk once, in a
fair random order. At the end of the simulation, 9 989 760 prices were fixed.

Fig. 5a represents the sequence of prices at the end of each tick, alongside with, on Fig. 5b, its signature plot. As
expected, prices are continuously fixed. However, the behaviour of DAT-F being (too) simple, both plots are unrealistic:
prices do not appear to be following a random walk, and the signature plot confirms this observation, as it converges
towards 0.

On the other end, Figs. 5c to 5f show that the unpretentious behaviour of DAT-F is enough to observe the stylized
facts that focus on returns: Fig. 5c represents the distribution of logarithmic returns, whose kurtosis is equal to 7.89,
compared to the distribution of the normal distribution that has the same mean and standard deviation: fat tails are
observed and the distribution obtained is leptokurtic, since its kurtosis is higher than 3. Fig. 5d illustrates what is called
in [21] ‘‘aggregational gaussianity’’, as it represents the distribution of logarithmic returns for a large timespan, i.e. the
distribution of (log(pt+∆t ) − log(pt ))t for ∆t = 105. This distribution is much closer to that of the normal distribution
having the same mean and standard deviation, and has a kurtosis equal to 2.82, while the normal distribution has a
kurtosis of 3. Note that this value of ∆t roughly corresponds to 50 ticks, as, in average, 1998 prices are fixed during each
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Fig. 5. Results of a simulation using 2200 fundamentalist agents DAT-F during 5000 ticks.
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tick. Finally, Figs. 5e and 5f show the autocorrelation function (acf) of returns and absolute returns: as expected, the acf
of absolute returns decays as a power law. However, the exponent of the law is −0.81 and does not fall in the interval
of values observed on real markets (between −0.30 and −0.20).

Thus, this agent allows us to simulate a market that respects some stylized facts that were previously described; While
being simple, in the sense that it has few parameters, the behaviour of DAT-F illustrates that deterministic behaviours
can lead to a market that does not freeze, while respecting some stylized facts. Thus, the following section aims at slightly
refining our agent in order to get a market that reproduces stylized facts.

4. An informed and deterministic fundamentalist agent: DAT-IF

The informed fundamentalist behaviour proposed in this section extends the previous behaviour to constitute what
we call a DAT-IF. These agents have an additional parameter, ιi ∈ [[0, 9]], which represents their level of information, and
their estimation of the fundamental value now depends on time, and is therefore now noted πi,t . This fundamental value
is calculated in the same way as what is proposed in [22]: agent i has an estimation of the dividends paid by the company
at the end of the future ιi periods, that are subsequently called ‘‘days’’. From this estimation of future dividends comes
the estimation of the fundamental value by the agent, which, within a given period, does not change. Within a given day,
the behaviour of such DAT-IF is thus perfectly identical to the DAT-F behaviour described in the previous section.

4.1. Formalization of the extra-day behaviour

Let us note nd the number of days in the simulation, (dj)1≤j≤nd the dividends paid at the end of the various days,
I = maxi ιi+1 and Tj the set of moments making up the day j. One could note that a distinction is made between a
moment and a tick: within the same tick, each agent talks, so several prices are set at different moments.

At the beginning of day j, agent i is given estimations d̂(j,i)j , . . . , d̂(j,i)j+ιi−1 of the future ιi dividends. Each d̂(j,i)j+k – the
estimation of agent i at day j of the dividend dj+k paid at end of day j + k – , for k ∈ [[0, ιi − 1]] is uniformly chosen
between (1 − εi,k)dj+k and (1 + εi,k)dj+k, where εi,k =

√
k + 1 I−ιi

300 : if a DAT-IF has a higher information level, then its
estimation of the dividend will be, in average, closer to the real value. Likewise, the further the day for which an agent
is given an estimation of the dividend is to today, the further the estimation will be to the real value of the dividend.

Now that the estimations of future dividends are defined, one can define the estimation of the fundamental value for
DAT-IF agents who have a non-zero level of information, so for whom ιi ≥ 1. This is done by using a generalization of
Gordon’s formula5 [23]:

∀j ∈ [[1, nd]], ∀t ∈ Tj, πi,t =

ιi−2∑
k=0

d̂(j,i)j+k

(1 + re)k
+

d̂(j,i)j+ιi−1

re(1 + re)ιi−2

where re = 0.05 is the risk adjusted interest rate.
For DAT-IF that have an information level ιi equal to 0, we chose to take ∀j ∈ [[1, nd]], ∀t ∈ Tj, πi,t = pt , where pt

denotes the last fixed price at moment t . Unlike the informed fundamentalist agents in [22], the DAT-IF agents that have
no information are not ZITs, but deterministic agents similar in every respect to the other informed agents. They just use
the last price as their fundamental value, and therefore assume that the market is efficient. The second notable difference
is that our DAT-IF agents do not have the exact value of future dividends but only an approximation of it.

Finally, let us note that the intra-day behaviour of the agents of Toth et al. is entirely stochastic, in contrast to the
behaviour proposed in 3.1. In the following simulations, d1 = 1000 and dk+1 follows a normal law centred in dk with a
standard deviation of 10.

4.2. Stylized facts

The following curves are obtained with a market where 2200 agents are trading: there are two agents for every
(α, ι, κ) ∈ {0, 0.1, . . . , 1} × [[0, 9]] × [[1, 10]] – set of cardinality 11 · 10 · 10 = 1100. The opening price is set at 21 000,
and each agent is initialized with the same amount of cash and the same amount of asset. The simulation runs during
100 days of 50 ticks, where, as a reminder, a tick consists of each agent having the possibility to send an order in a fair
random order. At the end of the simulation, 9 996 531 prices were fixed.

Fig. 6 shows the series of prices at the end of each tick, and its signature plot. The price series looks like a random
walk, unlike the one that was obtained using DAT-F agents: there are some small variation of prices on a short time
interval, but there are also larger variations on longer intervals. The signature plot confirms it, as it does not converge

5 The original formula gives that the share price at time 0 is equal to
∑

∞

t=0
Dt

(1+re)t
where Dt is the dividend that is expected at time t . The

formula we use comes from taking Dt = d̂(j,i)j+k for t ≤ ιi − 2 and Dt = d̂(j,i)j+ιi−1 for t ≥ ιi − 1 (for t ≥ ιi , by definition of ιi , agent i does not have any

estimation of Dt , so it takes the last known estimation, which is d̂(j,i)j+ιi−1).
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Fig. 6. Results of a simulation using 2200 informed fundamentalist agents DAT-IF during 100 days of 50 ticks: stylized facts using prices at the
end of each tick.

towards 0 and is quite similar to the signature plot obtained using Microsoft shares – Fig. 2. Values for ∆t < 50 are not
represented as they are slightly – about five times – higher than those obtained for ∆t ≥ 50. This does not, in any way,
change the fact that the signature plot has a strictly positive lower bound and a finite upper bound, like the signature
plot of MS data.

The other stylized facts can be seen on Fig. 7: like in the market obtained using DAT-F agents, stylized facts focusing
on returns can be observed. The only major difference is the value of the kurtosis, that can be found on Fig. 7c, alongside
with the mean, standard deviation and skewness of the returns for our simulation, but also for the original simulation
of [22] and the data they compared it to, which comes from General Electric stock. Reasons why the kurtosis is higher
when DAT-IF are used rather than DAT-F, are briefly discussed in Section 6.2.

4.3. Evolution of agents’ wealth

Agent-based simulations allow both a macroscopic study of general phenomena and a microscopic study of the
evolution of each agent. In the same simulation as before, we no longer look at the market as a whole, but rather at
individual agents. More specifically, by letting winit

i and wfinal
i be the initial wealth and final wealth of agent i, we are

interested in the evolution of the agent’s wealth,
wfinal

i − winit
i

winit
i

, which is called return of agent i and noted ri.

Fig. 8 presents the average of the returns of the agents according to their level of information, on a given simulation. By
noting Rι = {ri | ιi = ι} the set of returns of the agents having a level of information ι ∈ [[0, 9]], each point corresponds
to (ι, µ(Rι)), where µ denotes the empirical average. Lower and upper bounds of this mean are also shown using the
standard deviation σ (Rι) of Rι.

The data obtained for average returns are similar to those obtained by [22]: on the one hand, it is better not to have
any information at all than having little information and, on the other hand, highly informed agents get richer at the
expense of less informed agents.

Thus, on a market with only DAT-IF agents, all stylized facts that were described in Section 2 can be observed, even
the non-convergence of the signature plot. Moreover, by changing their information level ι, one can influence the direction
towards which their wealth will evolve. However, in order to get an agent that may be lucky, we add a new parameter
to our agent: according to the value of this parameter, randomness will highly or lightly influence the return of our
Deterministic Artificial Trader.

5. A deterministic fundamentalist and chartist agent: DAT-IFC

The agent of Section 4 makes it possible to obtain a market respecting the stylized facts, while making it possible
to control the probability that this agent gets richer through its level of information. However, it does not allow one to
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Fig. 7. Results of a simulation using 2200 informed fundamentalist agents DAT-IF during 100 days of 50 ticks: stylized facts using all prices.
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Fig. 8. Values obtained, on a single simulation, of the average returns of agents according to their level of information (ι, µ(Rι))ι∈[[0, 9]] , alongside
with a lower bound (ι, µ(Rι) − σ (Rι))ι∈[[0, 9]] and an upper bound (ι, µ(Rι) + σ (Rι))ι∈[[0, 9]] of this mean value.

observe the desired result, which is to have rich agents either because they are either well-informed, or because they are
lucky. To obtain a market verifying this constraint, it is thus necessary to add another behaviour: here, a chartist with
sliding average will be used. There are two ways to proceed: either adding agents with this second behaviour, or modifying
our agents so that their behaviour is a weighted average of the fundamentalist behaviour described in Section 4 and the
new behaviour. We chose the second method, in a concern for realism: a trader is not destined to be only fundamentalist
or chartist: it can take both its estimation of the fundamental value and the price trend into account to decide which
order it will send. The resulting agent relying on both an informed fundamentalist behaviour and a chartist behaviour is
called DAT-IFC.

The difficulty of this task lies in defining a weighted average of behaviours, without losing the deterministic character of
the behaviour. Note that if no importance were given to determinism, it would be sufficient to define this mean behaviour
by sending the order determined by the first behaviour with a certain probability, and to send the order determined by
the second behaviour otherwise.

5.1. Weighted average of deterministic behaviours

A behaviour is a function that takes as input the market state and the agent state, and that returns an order o that is
either a limit order or the null order ∅. Thus, in order to construct a behaviour that implements a weighted average of
the informed fundamentalist strategy DAT-IF and of the chartist strategy that is defined in Section 5.2, we propose to
define a weighted average of behaviours as the function that takes the same input as those behaviours and returns the
weighted average of the orders returned by those behaviours.

Then, we define the average of the orders (ok)1≤k≤n weighted by6 (λk)1≤k≤n, denoted (ok, λk)1≤k≤n, in the following
way: if ok is a limit order, then let dk be its direction and pk its price ; otherwise, if ok is the null order ∅, let dk = pk = ∅.
A value, called numerical direction, is assigned to each direction : g(Ask) = +1, g(Bid) = −1 and g(∅) = 0. It is used to
compute the weighted average of the numerical directions d =

∑n
k=1 λkg(dk) and the averaged direction, denoted d̃ and

defined by:

d̃ =

⎧⎨⎩
Ask if d > 0
∅ if d = 0
Bid if d < 0

This direction will be the direction of the averaged order. Then let K be the set of indexes indexing an order whose
direction is equal to the averaged direction, i.e.: K = {k ∈ [[1, n]] | dk = d̃}, and let Λ =

∑
k=K λk be the total weight of

the orders indexed by K .
Finally, let the resulting order be defined by:

(ok, λk)1≤k≤n =

⎧⎪⎨⎪⎩
∅ if d̃ = ∅(
d̃,

∑
k∈K

λk

Λ
pk, ⌈|d|q0⌉

)
otherwise

6 By definition,
∑n

k=1 λk = 1.
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where ⌈·⌉ is the ceiling function and q0 is the maximal quantity of an order that an agent can send – in the following
simulations, q0 = 10.

The formalization of this definition does not reveal the elementary simplicity of the idea it formalizes, which can be
summarized by:

• The averaged direction d̃ is the predominant direction (with weights being taken into account). If there is no
predominant direction, the order returned is the null order ∅.

• The price of the averaged order is the weighted average of the prices of the different orders whose direction is equal
to the averaged direction.

• The averaged quantity is ⌈|d|q0⌉, and is chosen so that it reaches its maximum value when every order ok, with
1 ≤ k ≤ n, have the same direction.

Note that the quantities of orders ok have no influence on the resulting order. We made this choice because it allows
us not to have to take into account the quantity of the order returned by the fundamentalist behaviour, which was set
by a parameter κi of self-confidence, which was arbitrary and intrinsic to the DAT-F and DAT-IF agents. By doing so, it
is therefore possible to do without this parameter, which minimizes the number of parameters characterizing the agents.
Let us also note that many behaviours that were proposed in the literature settle for sending orders whose quantity is
equal to 1, because it is often difficult to define a quantity that makes sense. The method proposed here makes it possible
to circumvent this difficulty: it is enough to define so-called elementary behaviours, without defining the quantity of
the orders sent by those behaviours. Then, by applying this weighted average, a quantity, which is neither arbitrary nor
always equal to 1, is defined.7 In the following example, the quantities of the o1, o2 and o3 orders have therefore not been
specified, and in accordance with the notation stated in the introduction, have been replaced by the _ character.

Finally, note that this weighted average of orders have the properties that one can expect from an average:

• If each ok, for k ∈ [[1, n]], has the same direction d0 and price p0, then the averaged direction and price will be d0
and p0, respectively.

• The averaged price is greater or equal to mink pk and smaller or equal to maxk pk
• If for some k, pk is non-decreasing, then the averaged price is also non-decreasing.

Example. Let q0 = 10, and consider three orders:

1. o1 = (Ask, 1000, _) of weight 1
2

2. o2 = (Ask, 1100, _) of weight 1
6

3. o3 = (Bid, 950, _) of weight 1
3

Then d =
1
2 +

1
6 −

1
3 =

1
3 and thus d̃ = Ask. As

1
2

1
2 +

1
6
·1000+

1
6

1
2 +

1
6
·1100 = 1025, there comes (ok, λk)1≤k≤3 = (Ask, 1025, 4)

as ⌈
10
3 ⌉ = 4.

5.2. Formalization of the behaviour

The average of several behaviours being defined, it only remains to specify the chartist behaviour for our DAT-IFC
agent to be totally defined. The intrinsic parameters of agent i are:

• αi ∈ [0, 1]: its aggressiveness
• ιi ∈ N: its information level
• πi,t ∈ N∗: its estimation of the fundamental value
• τi ∈ [0, 1]: the importance it gives to price trends in its decision-making
• ρi ∈ {−1, 1}: what it thinks about price trends: if ρi = 1, it thinks that trends tend to persist (if the price has

previously increased, then it will probably continue to increase), and if ρi = −1, it thinks trends tend to reverse.

On the one hand, with the parameters αi and πi,t – πi,t being defined thanks to ιi – 8, the agent determines which
order o(f)i,t it would have sent if it was purely fundamentalist, given by the behaviour described in Section 4. On the other
hand, it determines what is the order it would have sent if it was purely chartist, noted o(c)i,t and defined in the following
paragraphs. This order depends on αi, on ρi and on the market at time t . The order that the agent will ultimately send is
the resulting order oi,t = (o(f)i,t , 1 − τi), (o(c)i,t , τi): it is a mean between the two previous orders, such that the weight of
the ‘‘chartist order’’ o(c)i,t is τi – and thus the weight of the ‘‘fundamentalist order’’ o(f)i,t is 1− τi. The extra-day behaviour is
identical to what it described in the previous section.

7 However, if we want the quantities qk of the orders ok to have an influence on the resulting order, it is possible to define the resulting quantity
in a similar way to the price, by defining it as

∑
k∈K

λk
Λ
qk .

8 Unlike other parameters, πi,t is not a parameter given to an agent when it is created, but a parameter that is calculated at the beginning of
each day.
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Fig. 9. Price pi of the order sent by the chartist agent as a function of pt,M , pt,m, αi and ρi . Only the extremes values of pi – for αi = 0 and αi = 1
– are represented.

The chartist behaviour with moving average used by the DAT-IFC is defined as follows: For T > 0, if pj now denotes
the last price fixed at tick j, let pt,T =

1
T

∑t
j=t−T+1 pj be the average of the prices at the end of the last T ticks, if it can be

defined, and ∅ otherwise, i.e. if the price history does not include enough prices (t < T − 1).
Let m and M two integers such that m < M . In the following simulations, we took m = 20 and M = 50. Then:

o(c)i,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(Bid, pt,m + αi|pt,m − pt,M |, _) if pt,M ̸= ∅ and [(ρi = 1 and pt,m > pt,M )

or (ρi = −1 and pt,m < pt,M )]

(Ask, pt,m − αi|pt,m − pt,M |, _) if pt,M ̸= ∅ and [(ρi = 1 and pt,m < pt,M )

or (ρi = −1 and pt,m > pt,M )]

∅ otherwise, i.e. if pt,M = ∅ or pt,m = pt,M

Less formally, the agent does not send any order if the price history contains less than M price, or if the average of
the last m prices is equal to the average of the last M prices. Otherwise, if the agent thinks that trends are persistent and
if prices have increased (pt,m > pt,M ), then by noting δ the difference between those prices, the agent will send an order
Bid at a price set between pt,m and pt,m + δ. In the same situation, if the agent thinks that trends tends to reverse, then
it will send an order between pt,m and pt,m − δ. Cases when prices have decreased are symmetrical. This is summarized
in Fig. 9.

5.3. Stylized facts

The following curves are obtained with a market on which 2200 agents interact: there is one agent for each value of
(α, ι, τ , ρ) ∈ {0, 0.1, . . . , 1} × [[0, 9]] × {0, 1

9 , . . . , 1} × {−1, 1} – of cardinality 11 · 10 · 10 · 2 = 2 200. The opening
price is set at 21 000. The simulation lasts 100 days of 50 ticks.

At the end of the simulation, 9 142 968 prices were fixed. As before, Fig. 10 shows the price series and its signature
plots, while Fig. 11 presents the data related to logarithmic returns. There is no significant difference with the data that
was obtained using DAT-IF agents, apart from the kurtosis of returns which is significantly higher than the ones from
Sections 3 and 4, and the exponent of the power law followed by the acf of absolute returns that falls within the range
given in [21].
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Fig. 10. Results of a simulation using 2200 DAT-IFC agents, that are both informed fundamentalists and chartists, during 100 days of 50 ticks:
stylized facts using prices at the end of each tick.

5.4. Evolution of agents’ wealth

Keeping the same definition of an agent’s return as previously, Fig. 12 presents the average returns of agents according
to their level of information and their proportion of chartist behaviour. Let us note Rι, τ = {ri | ιi = ι ∧ τi = τ } the set of
returns of agents having an information level equal to ι and a proportion of chartist behaviour equal to τ .

For all the points such as τ = 0, the curve that is found is similar to the curve of the returns for the informed
fundamentalist agents DAT-IF – Fig. 8 – , which is at first hardly surprising: agents such that τ = 0 are identical to
the agents of the previous section. However, this means that their behaviour is ‘‘stable’’: despite the presence of agents
with a different τ , very well-informed purely fundamentalist agents continue to have higher returns than poorly informed
purely fundamentalist agents.

Moreover, the phenomenon that we wanted is emerging from this market: on the one hand, in average, purely
fundamentalist agents with a high level of information are among the agents who have the highest returns; on the other
hand, there are agents who are not well-informed but who are lucky and have returns as high as the agents who are very
well informed. This is reflected in the fact that there exists ι ≤ 4 and τ such that µ(Rι, τ )+ σ (Rι, τ ) > µ(R9, 0)− σ (R9, 0).
For example, µ(R0, 1) + σ (R0, 1) = 39.82 and µ(R9, 0) − σ (R9, 0) = 38.11. Hence, there is a non-negligible proportion
of uninformed and purely chartist agents who have similar returns to those obtained by highly informed and purely
fundamentalist agents.

This observation was made on every simulation that we made: we ran 100 simulations lasting 50 days of 50 ticks,
and 66 of those were such that µ(R0, 1)+ σ (R0, 1) ≥ µ(R9, 0)− σ (R9, 0), and among the 34 other simulations, the relative
difference between those two quantities was smaller than one tenth on 27 simulations. In the 7 other cases, this difference
was always smaller than one fourth.

It is thus possible to conclude that the lucky and uninformed chartists among DAT-IFC have returns of the same order
of magnitude as the highly informed agents, thus making it possible to arrive at a market respecting all the fundamental
characteristics of an artificial market set out in the introduction: prices are continuously fixed, the obtained market
respects the most commonly studied stylized facts – fat tails, aggregational gaussianity, absence of autocorrelation of
returns, and decay of the acf of absolute returns as a power law – and there is a behavioural differentiation depending
on the parameters of the agents. This differentiation leads to the fact that the most fundamentalist and well-informed
agents are among the richest agents ; Nevertheless, there are also agents with little information who, being chartists and
lucky, are also in the latter category. It means that the randomness that emerged at the market level gave rise to some
randomness at the agents level.
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Fig. 11. Results of a simulation using 2200 DAT-IFC agents that are both informed fundamentalists and chartists, during 100 days of 50 ticks:
stylized facts using all prices.
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Fig. 12. Average returns – Fig. 12a – of the agents according to their parameters, and a lower and upper bound of average returns, using the
standard deviation – Fig. 12b.

6. Discussion

6.1. Influence of parameters

This subsection aims at briefly explaining what would have happened if different parameters were chosen, for example
if the estimations of the fundamental value (πi)i were different for the DAT-F agents.

DAT-F A larger standard deviation of the (πi)i results in a larger standard deviation of the fixed prices (pt )t , and a
decrease or increase in the average value of the (πi)i results in an equal decrease or increase in the average value of the
fixed prices, respectively. In addition, if the set of possible values for the fundamental value is small, the distribution
of returns is no longer continuous, but only piecewise continuous.9 This phenomenon, although unusual, does not
however call into question the four stylized facts described above: they remain present, even with a piecewise continuous
distribution. For a set of fundamental values greater than ten, this phenomenon disappears. Moreover, increasing the
number of values that can be taken by the aggressiveness αi, parameter necessary to deterministically determine order
prices, does not seem to have a significant influence on the results obtained. Finally, the influence of the values taken by
self-confidence κi, i.e. the quantity of orders sent by agents, is discussed in Section 6.2.

DAT-IF The curve of average returns of agents as a function of their information level, depicted on Fig. 8, is conditioned
by the number of days during which the simulation runs. If the latter is too small, statistical fluctuations in the sequence
of dividends may cause the resulting curve not to conform to Fig. 8, but becomes decreasing on ι ∈ [[1, 9]], when the
dividend series is decreasing almost everywhere. If this deviant case seems to call into question this behaviour, choosing
a large number of days in front of the maximum level of information makes it possible to avoid it, since the probability
that the sequence of dividends is decreasing or almost decreasing is then negligible. Moreover, our behaviour is based on
a generalization of Gordon’s formula, derived from a model considering that the sequence of dividends is increasing and
whose growth rate is constant. Thus, the fact that a deviant case appears when our behaviour is faced with a decreasing
dividend stream is hardly surprising.

DAT-IFC Finally, let us note that in order to obtain a simulation such that µ(R0, 1)+σ (R0, 1) and µ(R9, 0)−σ (R9, 0) are
close , it seems necessary to have a value of M – defined in 5.2 – close to the number of ticks in a day. In other words,
lucky agents among purely chartist agents (τ = 1) can do as well as highly informed fundamentalist agents (τ = 0 and
ι = 9) only when they compare the average of the latest prices to the average of prices over a time interval equal to one
day.

6.2. Perspectives

Origins of kurtosis On real financial markets, the kurtosis of the logarithmic returns has high values for small
timespans: 36.3 for General Electric in [22], 15.95 for S&P 500 futures and 60 for the exchange rate dollar/Swiss franc

9 Obviously, if this set is reduced to a singleton {π}, then as all agents buy only at a price strictly below π and all agents sell only at a price
strictly above π , no price is ever fixed.
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in [21] with a timespan of 5 min. It also displays high values from larger timespans for some markets, such as the Bitcoin
market, for which the kurtosis is between 27 and 108 with a timespan between 5 and 12 h [24]. Using DAT-IFC agents,
and by running 100 simulations, we found values of the kurtosis whose average was 31.6. Those values are much closer
to the values observed on a real market than those obtained with DAT-F and DAT-IF, but also than values found in [22]
or [25] using double-auction markets: their kurtosis was approximately equal to 7. Why do DAT-IFC allows us to get
price series whose returns have a kurtosis much closer to the one observed on real markets? We made the following
observations:

• The maximum quantity send by the agents – which can be controlled by modifying the values of κi for DAT-F and
DAT-IF agents, or by changing the value of q0, defined in Section 5.1 for DAT-IFC – seems to greatly influence the
value of the kurtosis: the higher the quantities, the higher the kurtosis. For example, a market with DAT-IF agents
and q0 = 30 yields an average kurtosis of 37.9 – recall that we got 31.6 when q0 = 10.

• The more heterogeneous the behaviours are, the higher the kurtosis is: DAT-IFC agents give a higher kurtosis than
DAT-IF traders, who also give a higher kurtosis than DAT-F.

The origins of the high values of the kurtosis on financial markets are complex and caused by numerous factors. For
example, [26] shows that herd-like behaviours in financial markets lead to higher values for the kurtosis of the returns,
reflecting the presence of particularly heavy tails. We think that a natural perspective of this paper would be a quantitative
study of the influence of both the quantity that are part of the orders sent by agents and the heterogeneity of the
behaviours of the agents on the value of the kurtosis. Of course, in order to do so, one would need a quantitative definition
of the heterogeneity of agents, which, to our knowledge, has not yet been proposed in the literature.

Statistical learning Recall that our focus was the following question: ‘‘Can randomness emerge at the macroscopic level
from microscopic determinism on a double-auction order book, and can it, through the feedback loops that define complex
systems, lead to some randomness at the microscopic level?’’ Our DAT-IFC agent provides a positive answer to this question,
and has the following interesting property: while agents that have a small value of τi and a high information level ιi always
get rich, agents that have a high value of τi can experience luck: some of them will get rich and some of them will get poor.
This mean that while their behaviour is deterministic, the final wealth of those agents is random.10 Thus, one interesting
question would be if, using statistical learning tools, one can discriminate between agents that got rich because they had
a lot of information, and those that got rich simply because they were lucky, just by looking at the orders sent by the
agents. If this can be done on our model, it would be worth investigating applications to real markets, for example to
detect fraudulent behaviours.
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