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This report was written using the package knowledge: by clicking on a notion
(ex: powerset), one is sent to its definition.

The general context

The key idea behind algebraic language theory is to study regular languages via
algebraic notions (e.g. semigroups) instead of computational objects (e.g. finite
automata). One particularly interesting family of results in this field consists of
equivalences between logics (e.g. first-order logic) and algebra (e.g. aperiodic semi-
groups). More precisely, given a logic, two questions naturally arise: (i) give an al-
gebraic characterisation of the definability in this logic, and of (ii) the separability
by this logic. The former problem is simplier than the latter.

We have many definability results for languages of words: e.g. (i) for finite
words (Schützenberger’s theorem: fo = aperiodic [Sch65, MP71]), (ii) for 𝜔-words
(Perrin’s theorem: fo = aperiodic [Per84]), These two results on scattered

words both rely on Carton &
Rispal’s scattered semigroups
[Ris04, RC05], which is the
suitable algebraic structure to talk
about scattered regular languages.

Bedon & Rispal proved in [BR12]
the equivalence between
languages recognised by finite
aperiodic scattered semigroups
and star-free scattered languages.
Colcombet & Sreejith introduced
the logic fo[cut] — consisting of
first-order logic enriched with
monadic quantification over
Dedekind cuts — latter, in [CS15].

While we focus, in this report, on
definability and separability
results for fragments of mso for
different monads (finite words,
transfinite words, etc.), note that
the work of Henckell and Rhodes
[Hen88] gave rise to a prolific
field, studying pointlikes with
respect to some variety of
semigroups — most of which do
not correspond to fragments of
mso. See, e.g. [GS19], which
studies varieties of semigroups
determined by their subgroups.

(iii) for transfinite words (Bedon’s theo-
rem: fo = aperiodic [Bed98]), (iv) for scattered words (Bès-Carton’s theorem: fo
= gap-insensitive [BC11] & Bedon-Rispal’s theorem: fo[cut] = aperiodic [BR12,
CS15]) and (v) for countable words (Colcombet-Sreejith’s theorem: many results,
see [CS15]).

The research problem

Among those five results, only two of them have a separability counterpart: for
finite words, Henckell’s theorem states that fo-separability is characterised by
group saturation, and for𝜔-words, Place-Zeitoun’s theorem gives a similar charac-
terisation. For transfinite words and beyond, no such result is known.

Your contribution

We prove that the first-order separability problem for transfinite regular langua-
ges — which asks, given two languages of words indexed by countable ordinals
and defined by monadic second-order formulæ, if there exists a first-order formula
satisfied by every word of one of the two languages and by none of the other — is
decidable (coro. 2.38). To do this, we first give an elementary proof of Henckell’s
theorem [Hen88] on pointlike sets (thm. 1.14), that we obtained by refining Place
& Zeitoun’s proof for finite words [PZ16] (§1). We then generalise this result to
transfinite languages (§2 and thm. 2.37): we show that pointlike sets for the first-
order logic over transfinite words corresponds to the (ordinal) group saturation.

Arguments supporting its validity

No mistakes were found in our proofs. Should you find one, please send an email
to (𝜆𝑥. 𝑥@ens-paris-saclay.fr) (remi.morvan).
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Summary and future work

We plan on continuing this work by giving algebraic characterisations of separabi-
lity by fo and by fo[cut] on scattered regular languages, to generalise Bès-Carton’s
and Bedon-Rispal’s theorems. We conjecture the following result: for scattered
regular languages, fo-pointlikes (resp. fo[cut]-pointlikes) coincides to the down-
ward closure of the gap saturation (resp. group saturation). We could then study
the general case of all countable words — for which we have many definability
results by Colcombet & Sreejith [CS15], which all rely on Carton, Colcombet &
Puppis’ algebraic structure for countable words [CCP18].

Notations and conventions

We denote by ℕ, ℕ>0 and ℤ the set of natural numbers, the set of strictly positive
natural numbers and the set of integers, respectively. If∼ is an equivalence relation
over some set and 𝑥 is an element of that set (resp. 𝑋 is a subset of this set), then
we denote by [𝑥]∼ (resp. [𝑋]∼) the equivalence class of 𝑥 under ∼ (resp. the union
of equivalence classes of elements of 𝑋 under ∼). In a poset 𝑋, for every subset
𝑌 ⊆ 𝑋, we denote by ↓𝑌 the downward closure of 𝑌. In a finite semigroup, we
denote by 𝑥𝜋 the unique idempotent power of an element 𝑥.

If 𝑋 is a set, we denote by 𝒫(𝑋) the powerset of 𝑋. Observe that if (𝑆, ⋅) is a
semigroup, equipping 𝒫(𝑆) with the internal law defined by

𝑋 ⋅ 𝑌 ∶= {𝑥 ⋅ 𝑦 ∣ 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌}

for all 𝑋,𝑌 ∈ 𝒫(𝑆) yields a semigroup, called the power semigroup of (𝑆, ⋅). The
map −sgl from 𝑆 to 𝒫(𝑆) that sends 𝑠 ∈ 𝑆 to {𝑠} defines an injective morphism: its
image, which is isomorphic to 𝑆, is called the subsemigroup of singletons of 𝒫(𝑆).

Observe that⋃𝑥sgl = 𝑥 for all
𝑥 ∈ 𝑆: i.e. ⋃ ∶ 𝒫(𝑆) → 𝑆 is a
left-inverse of −sgl ∶ 𝑆 → 𝒫(𝑆).

Moreover, if 𝑋 ∈ 𝒫(𝑆),⋃𝑋 denotes the union of the elements of 𝑋, which we call
called support of 𝑋. This defines a semigroup morphism⋃ ∶ 𝒫(𝑆) → 𝑆.

Given an alphabet𝐴, we denote by𝐴+ (resp. 𝐴∗) the semigroup (resp. monoid)
of non-empty finite words (resp. all finite words) over the alphabet𝐴. The set of all
first-order (resp. monadic second-order) formulæ over the alphabet 𝐴 is denoted
by fo(𝐴) (resp mso(𝐴)). Given a logic 𝔏 ⊆ mso(𝐴), we say that a language is
definable in 𝔏 — or 𝔏-definable — when there exists a formula in 𝔏 that is exactly
satisfied by the words of the language.

Given a logic 𝔏 ⊆ mso(𝐴) closed under negation, we say that two regular
languages 𝐿1 and 𝐿2 over some alphabet 𝐴 are 𝔏-separable when there exists a
formula of 𝔏 satisfied by every word of 𝐿1 but by no word of 𝐿2. There are two
classical problems associated to any logic: the 𝔏-definability problem, which asks
whether a regular language is 𝔏-definable, and 𝔏-separability problem, which asks
whether two regular languages are 𝔏-separable. The 𝔏-definability problem can
be reduced to the 𝔏-separability problem: indeed, 𝐾 and 𝐴+ ∖ 𝐾 are 𝔏-separable
if, and only if, 𝐾 is 𝔏-definable.
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1. Finite words

For a proof, see, e.g., [Pin20,
§IV.3.3] for the equivalence
between automata and semigroups
and [Pin20, §IX.3] for the
equivalence between automata
and mso.

We say that a language 𝐿 ⊆ 𝐴+ is regular when it is accepted by a finite automa-
ton. A semigroup 𝑆 recognises a language 𝐿 whenever, by definition, there exists
a semigroup morphism 𝜑 ∶ 𝐴+ → 𝑆 and a set 𝑋 ⊆ 𝑆 such that 𝐿 = 𝜑−1[𝑋]. It is
well-known that the following conditions are equivalent: (i) 𝐿 is regular, (ii) 𝐿 is
recognised by a finite semigroup ; (iii) the syntactic semigroup of 𝐿 is finite ; (iv)
𝐿 is mso-definable. The question then arises as to what happens to this equiva-
lence between algebra, automata and logic For a proof of the equivalence

between fo and aperiodic
semigroups, see [Pin20, §VI.3 &
§IX.4.1].

when one restricts one of the classes,
for instance, if we consider a fragment of mso. Schützenberger’s theorem provides
an answer for fo, and establishes an equivalence between being accepted by a
counter-free automaton [MP71], being fo-definable, and being recognised by a fi-
nite aperiodic semigroup [Sch65] — aperiodicmeans that every group in it is trivial.
As a corollary, fo-definability is decidable.

The goal of this section is to state and proveHenckell’s theorem, which, similar-
ly to Schützenberger’s theorem, states an equality between an object defined using
logic (fo-pointlike sets, which are informally the subsets of a semigroup that can-
not be distinguished using first-order logic), defined in §1.1, and an algebraic object
(the group saturation of a semigroup, which is informally a semigroup inwhich one
can merge a group into a single point), defined in §1.2. We then prove Henckell’s
theorem in §1.3, from which one can deduce that fo-separability is decidable

If one is interested in complexity
results, Cho & Huynh [CH91]
showed that fo-definability is
PSpace-complete when the input
is specified as a finite automaton.
The problem is much simplier if
the regular language given as
input is specified by its syntactic
monoid: in this case, the problem
is NL — one only has to check that
the syntactic monoid is aperiodic.
For fo-separability, Place &
Zeitoun proved [PZ18, ex. 7] that
the complexity of the problem
does not depend on whether the
input is specified by automata, or
by semigroup morphisms, and that
the problem is between
PSpace-hard and ExpTime. [PZ16]

for
languages of finite words.

1.1. First-order logic on finite words

We start be giving basic properties of first-order logic over finite words and define
the ≡𝑘-congruence, which allows us to characterise fo-separability (fact 1.5), and
then define pointlike sets.

The rank — also called “quantifier depth” in the literature — of a first-order
formula 𝜑, denoted by rk(𝜑), is the maximal number of nested quantifiers: for
example, the formula

∃𝑦. (∃𝑥. 𝑥 < 𝑦) ∧ (∃𝑧. 𝑦 < 𝑧),

which recognises words whose length is greater or equal to 3, has rank 2. The set
of all first-order formulæ of rank at most 𝑘 ∈ ℕ over the alphabet 𝐴 is denoted by
fo𝑘(𝐴).

Fact 1.1. There are finitely many fo𝑘(𝐴) formulæ, up to logical equivalence For a proof, see [Ros82, lem.
13.10].

.

Given two words𝑤,𝑤′ ∈ 𝐴+, we say that𝑤 and𝑤′ are fo𝑘-equivalent, denoted
by 𝑤 ≡𝑘 𝑤′, whenever 𝑤 and 𝑤′ satisfy exactly the same formulæ of fo𝑘. Observe that given two distinct

finite words 𝑤 and 𝑤′, there
always exists a first-order formula
satisfied by 𝑤 but not by 𝑤′: i.e.
there exists 𝑘0 ∈ ℕ such that for
all 𝑘 ≥ 𝑘0, 𝑤 ≢𝑘 𝑤′.

These
equivalence relations are semigroup congruences: they are consistent with concate-
nation, in the sense that for all 𝑢, 𝑢′, 𝑣, 𝑣′ ∈ 𝐴+, if 𝑢 ≡𝑘 𝑢′ and 𝑣 ≡𝑘 𝑣′ then 𝑢𝑣 ≡𝑘
𝑢′𝑣′. This can be proven either by using Ehrenfeucht-Fraïssé games — see [Ros82,
lem. 6.5] — or can be seen as a corollary of Beth-Fraïssé theorem [Mak04, thm.
1.1]. Ehrenfeucht-Fraïssé games can also be used to prove the following property.

Fact 1.2. For every word 𝑢 ∈ 𝐴+, for 𝑝, 𝑞 ≥ 2𝑘 − 1, we have 𝑢𝑝 ≡𝑘 𝑢𝑞.

Observe that every equivalence class 𝐿 of𝐴+/≡𝑘 is fo𝑘-definable: simply consi-
der the conjunction of all fo𝑘 formulæ satisfied by a word of 𝐿, or, equivalently,

3



every word of 𝐿— this makes sense since there are finitely many such formulæ, by
fact 1.1.

The concatenation of two
languages corresponds to their
product in the power semigroup of
𝐴+. The notation 𝜑<𝑥 refers to the
relativisation of 𝜑 with respect to
2 < 𝑥. For a formal definition, see
[Ros82, def. 13.27].

Note that for 𝑘 ∈ ℕ>0 and 𝐿, 𝐾 ⊆ 𝐴+, if 𝐿 and 𝐾 are fo𝑘-definable, then their
concatenation 𝐿⋅𝐾 is fo𝑘+1-definable. Indeed: let𝜑 (resp. 𝜓) a fo𝑘 formula defining
𝐿 (resp. 𝐾). Then the first-order formula ∃𝑥. (∃𝑦. 𝑦 < 𝑥)∧𝜑<𝑥∧𝜓≥𝑥 has rank 𝑘+1
(since 𝑘 ≠ 0) and defines 𝐿 ⋅ 𝐾.

The equivalences classes of𝐴+ under fo𝑘-equivalence 𝑎+ ≅ ℕ>0 are extremely
easy to describe on single-letter alphabets — of course, if𝐴 contains a single letter,
then 𝐴+ is isomorphic, as a semigroup, to ℕ>0: we are simply talking about first-
order logic on strictly positive integers.

Lemma 1.3. Let 𝑎 be a letter and 𝑘 ∈ ℕ. By letting 𝑛 ∶= 2𝑘 − 1, we have:

𝑎+/≡𝑘 = �{𝑎}, {𝑎2}, … , {𝑎𝑛−1}, {𝑎𝑝 ∣ 𝑝 ≥ 𝑛}� .

Sketch of proof. By fact 1.2, [𝑎𝑛]≡𝑘 = {𝑎
𝑝 ∣ 𝑝 ≥ 𝑛}. Moreover, by an easy induction

on 𝑟 ∈ ℕ using relativisation, one can show that for all 𝑚 ≤ 2𝑟 − 1, there exists an
fo𝑟-formula 𝜑𝑚 satisfied exactly by {𝑎𝑝 ∣ 𝑝 ≥ 𝑚}. Then for every 𝑚 < 2𝑘 − 1, the
formula 𝜑𝑚 ∧ (¬𝜑𝑚+1) has rank at most 𝑘 and is satisfied exactly by {𝑎𝑚}. Hence,
[𝑎𝑚]≡𝑘 = {𝑎

𝑚}.

0∗

𝑏𝑎𝑎𝑏𝑎

𝑏∗
𝑎,
𝑎𝑎∗

the
group
ℤ/2ℤ

Figure 1: Egg-box diagram of the
syntactic semigroup 𝑆𝐿 of 𝐿 =
𝑏+(𝑎𝑎)∗.
We follow the same conventions as
[Pin20] for egg-box diagrams.

Example 1.4. We will illustrate the different notions on the following semigroup:
consider the language 𝐿 ∶= 𝑏+(𝑎𝑎)∗ ; Then one can check that its syntactic semi-
group 𝑆𝐿 contains six elements, and that its egg-box diagram is the one given in
figure 1. Let 𝐿1 ∶= 𝐿 = 𝑏+(𝑎𝑎)∗, 𝐿2 ∶= (𝑎𝑎)+ and 𝐿3 ∶= 𝑎(𝑎𝑎)∗. All three languages
are recognised by the syntatic morphism of 𝐿: 𝐿1 is the preimage of {𝑏𝑎𝑎}, 𝐿2 is
the preimage of {𝑎𝑎} and 𝐿3 is the preimage of {𝑎}. None of these languages are
fo-definable by Schützenberger’s theorem: their syntactic semigroup contains the
group ℤ/2ℤ — in fact, ℤ/2ℤ is precisely the syntactic semigroup of 𝐿2 and 𝐿3.
Then, observe that 𝐿1 and 𝐿2 can be separated in first-order logic by the formula

𝜑 ∶= ∃𝑥. first(𝑥) ∧ 𝑏(𝑥),

where first(𝑥) ∶= ∀𝑦. 𝑥 ≤ 𝑦. On the other hand, 𝐿2 and 𝐿3 are not fo-separable
— otherwise they would be fo-separable over the alphabet {𝑎}, but since 𝐿3 is the
complement of 𝐿2 in 𝑎+, 𝐿2 and 𝐿3 would be fo-definable: que nenni!.

Fact 1.5. Proof: each implication in (i)⇒
(ii)⇒ (iii)⇒ (iv)⇒ (i) is easy.

For 𝐿1, 𝐿2 ⊆ 𝐴+, the following propositions are equivalent:
i. 𝐿1 and 𝐿2 are fo-separable ;
ii. there exists an fo-definable language 𝐾 such that 𝐿1 ⊆ 𝐾 and 𝐿2 ∩ 𝐾 = ∅ ;
iii. [𝐿1]≡𝑘 ∩ 𝐿2 = ∅ for some 𝑘 ∈ ℕ ;
iv. [𝐿1]≡𝑘 ∩ [𝐿2]≡𝑘 = ∅ for some 𝑘 ∈ ℕ.

Likewise, 𝐿1 and 𝐿2 are fo𝑘-separable iff [𝐿1]≡𝑘 ∩ [𝐿2]≡𝑘 = ∅, or equivalently,
for every 𝑤1 ∈ 𝐿1 and 𝑤2 ∈ 𝐿2, 𝑤1 ≢𝑘 𝑤2.

Definition 1.6. Our notion of fo-pointlike for
𝜑 ∶ 𝐴+ → 𝑈 is very closely related
to Henckell’s notion of pointlikes
for a collection of relations
[Hen88, def. 2.2]. More precisely,
define for every 𝑘 ∈ ℕ, (continuing
on the next page…)

Let 𝜑 ∶ 𝐴+ → 𝑈 be a semigroup morphism where 𝑈 is a finite
semigroup. We define the collection of fo-pointlike sets for 𝜑 by

Plfo(𝜑) ∶= �𝑋 ⊆ 𝑈 ∣ ∀𝑘 ∈ ℕ, ∃𝐿 ∈ 𝐴+/≡𝑘, 𝑋 ⊆ 𝜑[𝐿]� .
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(…) the relation (in the sense of
[Hen88, def. 1.3])

𝑈
𝑅𝑘(𝜑) 𝐴+/≡𝑘

by (𝑢, 𝐿) ∈ 𝑅𝑘(𝜑) iff 𝑢 ∈ 𝜑[𝐿].
Then pointlike sets for 𝜑 (under
our terminology) corresponds
precisely to pointlike sets for
(𝑅𝑘(𝜑))𝑘∈ℕ (under Henckell’s
terminology). Those sets are also
called “imprints of 𝜑” ([PZ16]) or
“aperiodic pointlikes of 𝑈” (e.g.
[vGS19]).

Our main motivation to introduce pointlike sets for 𝜑 is that being able to
compute them allows us to decide if two languages recognised by 𝜑 are fo-separa-
ble, as explained in the following proposition — this was noticed in [Alm99] by
Almeida, who was the first to notice the link between pointlike pairs with respect
to a given variety of finite semigroups, and separability.

Proposition 1.7. Two languages 𝐿1 and 𝐿2 recognised by a surjective morphism
𝜑, are fo-separable if, and only if, no pointlike set for 𝜑 intersects both 𝜑[𝐿1] and
𝜑[𝐿2].

Proof. If no pointlike intersect both 𝜑[𝐿1] and 𝜑[𝐿2], then observe that since 𝑈 is
finite, we have

Plfo(𝜑) ∶= �𝑋 ⊆ 𝑈 ∣ ∃𝐿 ∈ 𝐴+/≡𝑘, 𝑋 ⊆ 𝜑[𝐿]� .

for some 𝑘 ∈ ℕ. Thus, for 𝑤1 ∈ 𝐿1 and 𝑤2 ∈ 𝐿2, if we had 𝑤1 ≡𝑘 𝑤2, then
{𝜑(𝑤1), 𝜑(𝑤2)} would be pointlike and would intersect both 𝐿1 and 𝐿2. Hence 𝐿1
and 𝐿2 are fo𝑘-separable.

Conversely, if 𝐿1 and 𝐿2 are fo-separable, say fo𝑙-separable for some 𝑙 ∈ ℕ,
then let 𝑌 ∈ Plfo(𝜑), and assume, by contradiction, that 𝑌 intersects both 𝜑[𝐿1]
and𝜑[𝐿2]. Then we would have 𝑦𝑖 ∈ 𝑌∩𝜑[𝐿𝑖], and thus, since 𝑌 is pointlike — and
since 𝐿1 and 𝐿2 are recognised by 𝜑 — we would have 𝑤1 ≡𝑙 𝑤2 for some 𝑤1 ∈ 𝐿1
and 𝑤2 ∈ 𝐿2 such that 𝑦𝑖 = 𝜑(𝑤𝑖). Contradiction.

1.2. Merging groups

Now that we have a correct grasp on first-order logic for finite words, we focus on
the algebraic notions associated with finite words. More precisely, we define what
the group saturation is. Informally, it is an algebraic process taking a semigroup
and merging groups into a single point — this process is relevant to study first-
order logic since this logic is not able to grasp group-like phenomena. Fix a finite
semigroup 𝑈.

Definition 1.8. Beware: contrary to Place &
Zeitoun [PZ16, §4.2 ] and Henckell
[Hen88, def. 3.4], we do not
require the group saturation to be
downward closed, so with our
definition, the downward closure
appears in the statement of
Henckell’s theorem (thm. 1.14).

Given a subset 𝒜 of 𝒫(𝑈), its group saturation Sat+grp(𝒜) is the
least subsemigroup 𝒮 of 𝒫(𝑈) containing 𝒜 and stable under cyclic group merging:
if 𝒢 ⊆ 𝒮 is a cyclic group, then⋃𝒢 ∈ 𝒮, or, equivalently, for every 𝑋 ∈ 𝒮, we have
𝑋𝜋 ∪ 𝑋𝜋+1 ∪ … ∪ 𝑋2𝜋−1 ∈ 𝒮. We denote by Sat∗grp(𝒜) the monoid obtained from
the semigroup Sat+grp(𝒜) by always adding an identity, denoted by 𝜀.

Note that if 𝑆 is an aperiodic semigroup, then Sat+grp(𝑆sgl) = 𝑆sgl. Often — in the
next example, for instance —, if𝑋 is a subset of𝑈, we will abusively write Sat+grp(𝑋)
instead of Sat+grp(𝑋sgl).

Example 1.9: continuing ex. 1.4. We want to compute Sat+grp(𝑆𝐿). First, the
group saturation of 𝑆𝐿 contains every singleton {0}, {𝑏𝑎}, {𝑏𝑎𝑎}, {𝑏}, {𝑎} and {𝑎𝑎}.
Then, since {{𝑎}, {𝑎𝑎}} is a cyclic group, its support {𝑎, 𝑎𝑎} is also an element of
Sat+grp(𝑆𝐿), which is closed under product, so it must also contain {𝑏} ⋅ {𝑎, 𝑎𝑎} =
{𝑏𝑎, 𝑏𝑎𝑎}. One can check that there are no more elements: for example {𝑏𝑎, 𝑏𝑎𝑎} ⋅
{𝑎, 𝑎𝑎} = {𝑏𝑎, 𝑏𝑎𝑎} and {𝑎, 𝑎𝑎} ⋅ {𝑏𝑎, 𝑏𝑎𝑎} = {0}. The egg-box diagram of Sat+grp(𝑆𝐿)
is represented in figure 2.
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Moreover, note that the group saturation is not called

{0}∗

{𝒃𝒂,
𝒃𝒂𝒂}∗

{𝑏𝑎𝑎} {𝑏𝑎} {𝒂,
𝒂𝒂}∗

{𝑏}∗
{𝑎},
{𝑎𝑎}∗

new ele-
ments!

Figure 2: Egg-box diagram of the
group saturation Sat+grp(𝑆𝐿) of the
syntactic semigroup 𝑆𝐿 of 𝐿 =
𝑏+(𝑎𝑎)∗.

“cyclic group saturation”:
this is because being stable under cyclic group merging or by group merging —
meaning that for every group 𝒢 ⊆ 𝒮, we have ⋃𝒢 ∈ 𝒮 — is equivalent, as stated
in proposition 1.10. In practice, it is often much easier to check that a semigroup
is stable under cyclic group merging rather than under group merging.

Proposition 1.10. A subsemigroup 𝒮 of 𝒫(𝑈) is stable under cyclic group mer-
ging if, and only if, is it stable under group merging.

Proof. The implication from right to left is trivial since every cyclic group is is a
group. Conversely assume that a semigroup𝒮 is stable under cyclic groupmerging,
let 𝒢 be a group in 𝒮 and let us show that ⋃𝒢 ∈ 𝒮. Let {𝑋1, … , 𝑋𝑛} denote the
elements of 𝒢 and let 𝒢𝑖 ∶= {𝑋𝜋𝑖 , 𝑋

𝜋+1
𝑖 , … , 𝑋2𝜋−1𝑖 } = ⟨𝑋𝑖⟩⋅ be the group generated

by 𝑋𝑖. Then ⋃𝒢𝑖 ∈ 𝒮 for every 𝑖, and consider 𝑀 ∶= (⋃𝒢1)⋯ (⋃𝒢𝑛) ∈ 𝒮: for
every 𝑖,

𝑋𝑖 = 1𝒢⋯1𝒢 ⋅ 𝑋𝑖 ⋅ 1𝒢⋯1𝒢 ∈ 𝒢1⋯𝒢𝑛

and thus 𝑋𝑖 ⊆ 𝑀. Hence⋃𝒢 ⊆ 𝑀, and since the converse inclusion is trivial, we
can deduce⋃𝒢 = 𝑀 ∈ 𝒮.

Exercise 1.11: Another example. Let𝐴 = {𝑎, 𝑏} and 𝐿 be the language of words
containing an even number of ‘𝑎’ and ‘𝑏’.

1. Show that 𝐿 is regular and compute its syntactic semigroup 𝑆𝐿.
2. Compute the group saturation of 𝑆𝐿, and draw its egg-box diagram.

Solution in §C.1

Proposition 1.12. This is a generalisation of the
tautology 𝐴+ = 𝐴 ⋅ 𝐴∗ = 𝐴∗ ⋅ 𝐴.

For every 𝒜 ⊆ 𝒫(𝑈), we have:

Sat+grp(𝒜) = 𝒜 ⋅ Sat∗grp(𝒜) = Sat∗grp(𝒜) ⋅𝒜.

Proof. The inclusion 𝒜 ⋅ Sat∗grp(𝒜) ⊆ Sat+grp(𝒜) is trivial, since group saturation is
always a semigroup. Then, we prove the converse inclusion by structural induction
on Sat+grp(𝒜): first, 𝒜 = 𝒜⋅𝜀 ⊆ 𝒜⋅Sat∗grp(𝒜) ; moreover, if𝑌,𝑌′ are in 𝒜⋅Sat∗grp(𝒜),
say 𝑌 = 𝑋 ⋅ 𝑍 and 𝑌′ = 𝑋′ ⋅ 𝑍′ then 𝑌 ⋅ 𝑌′ = 𝑋 ⋅ (𝑍 ⋅ 𝑋′ ⋅ 𝑍′) ∈ 𝒜 ⋅ Sat∗grp(𝒜) ; and
finally, if 𝒢 is a group whose elements are in 𝒜 ⋅ Sat∗grp(𝒜), then for any 𝑌 ∈ 𝒢 we
have⋃𝒢 = ⋃𝑌 ⋅ 𝒢 = 𝑌 ⋅ ⋃𝒢 ∈ 𝒜 ⋅ Sat∗grp(𝒜).

Place & Zeitoun do the following
case disjunction: either (i) there
exists 𝑎 ∈ 𝒜 such that
𝑎 ⋅ (⋃ Sat+grp(𝒜)) ⊊ ⋃ Sat+grp(𝒜),
(ii) there exists 𝑎 ∈ 𝒜 such that
(⋃ Sat+grp(𝒜)) ⋅ 𝑎 ⊊ ⋃ Sat+grp(𝒜) or
(iii) Sat+grp(𝒜) is a pseudogroup —
where, by definition, a
pseudogroup is a subsemigroup of
the power semigroup that does not
satisfy (i) and (ii). Unfortunately,
this case disjunction is hardly
generalisable to ordinal
semigroups — or at least not in
any way that is usefull to prove a
result on separability — while ours
can: see thm. 2.36.

We insist on the following lemma — however, note that we only use it in the
appendix, and more precisely in §B.1, to prove theorem 1.18 — because this is were
our proof differs from the proof of Place & Zeitoun [PZ16, §6] of the completeness
of Henckell’s theorem.

Lemma 1.13: Induction principle. Let 𝒜 ⊆ 𝒫(𝑈). Then either:
i. there exists 𝑎 ∈ 𝒜 such that 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜), or
ii. there exists 𝑎 ∈ 𝒜 such that Sat+grp(𝒜) ⋅ 𝑎 ⊊ Sat+grp(𝒜), or
iii. Sat+grp(𝒜) has a maximum.

Proof. If (i) and (ii) do not hold, then every translation (both left and right) of
Sat+grp(𝒜) by 𝑎 ∈ 𝒜 is a permutation of a finite set. By restricting those transla-
tions to the semigroup ⟨𝒜⟩⋅ generated by 𝒜, it follows that ⟨𝒜⟩⋅ =∶ 𝐺 is a group.
Hence⋃𝐺 ∈ Sat+grp(𝒜). It is then routine to check that⋃𝐺 is indeed maximal in
Sat+grp(𝒜).
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1.3. Henckell’s theorem

We are now ready to state this equivalence between the algebraic structure that
merges groups (group saturation) and the sets of points that first-order logic cannot
distinguish (fo-pointlike sets).

If 𝜑 ∶ 𝐴+ → 𝑈 is a semigroup morphism and 𝑈 is a finite semigroup, then
we denote by Sat+grp(𝜑) the group saturation of the image of 𝜑, i.e. Sat+grp(𝜑) ∶=
Sat+grp(𝜑[𝐴+]sgl).

Theorem 1.14: Henckell’s theorem [Hen88]. Let 𝜑 ∶ 𝐴+ → 𝑈 be a semigroup
morphism where 𝑈 is a finite semigroup. Then Plfo(𝜑) = ↓ Sat+grp(𝜑).

Example 1.15: continuing ex. 1.9. By theorem 1.14 and proposition 1.7, two
regular languages recognised by the same morphism are fo-separable if, and only
if, no element of the group saturation of the morphism intersects both images.
Recall that 𝐿2 and 𝐿3 are recognised by {𝑎𝑎} and {𝑎}, respectively: their non-fo-se-
parability is witnessed by the element {𝑎, 𝑎𝑎}, which belongs to the group saturation
Sat+grp(𝑆𝐿) and hence is pointlike. On the other hand, the fo-separability of 𝐿1 and
𝐿2 — recognised by {𝑏𝑎𝑎} and {𝑎𝑎}, respectively —, is witnessed by the absence of
a pointlike set in Sat+grp(𝑆𝐿) containing both 𝑏𝑎𝑎 and 𝑎𝑎.

Corollary 1.16. The fo-separability problem is decidable for regular languages of
finite words.

Proof. By theorem 1.14 and proposition 1.7, since ↓ Sat+grp(𝜑) is computable.

One can think of sets in ↓ Sat+grp(𝜑)
as “constructible pointlike sets” —
this is in fact the terminology used
by Henckell in [Hen88] — so the
double inclusion can be thought as
“every constructible pointlike is
pointlike” (hence the name
“correctness”) and “every pointlike
is constructible” (hence the name
“completeness”).

Points are pointlike!

WeproveHenckell’s theorem by double inclusion: see lemma 1.17 (correctness)
and lemma 1.21 (completeness).

Lemma 1.17: Correctness of Henckell’s theorem. ↓ Sat+grp(𝜑) ⊆ Plfo(𝜑).

Proof. By definition of pointlike sets, Plfo(𝜑) is downward closed, so, by definition
of group saturation, we only have to show that Plfo(𝜑) contains every singleton of
the form {𝜑(𝑤)}, for 𝑤 ∈ 𝐴+, and that it is a semigroup stable under cyclic group
merging.

If 𝑤 ∈ 𝐴+, the singleton {𝜑(𝑤)} is included in 𝜑[[𝑤]≡𝑘] for every 𝑘 ∈ ℕ, and
hence is pointlike. Moreover, if𝑋,𝑋′ are pointlike, say for every 𝑘 ∈ ℕ,𝑋 ⊆ 𝜑[𝐿𝑘]
and 𝑋′ ⊆ 𝜑[𝐿′𝑘], then 𝑋 ⋅ 𝑋

′ ⊆ 𝜑[𝐿𝑘 ⋅ 𝐿′𝑘]. But since ≡𝑘 is a semigroup congruence,
𝐿𝑘 ⋅ 𝐿′𝑘 is included in an ≡𝑘-equivalence class and hence 𝑋 ⋅ 𝑋′ is pointlike.

Finally, let us show that pointlike sets are stable under cyclic group merging:
let 𝑋 be a pointlike set. Let 𝑘 ∈ ℕ. There exists 𝐿 ∈ 𝐴+/≡𝑘 such that 𝑋 ⊆ 𝜑[𝐿].
Let 𝑝 ∈ ℕ>0 be such that 𝜑[𝑋]𝑝 = 𝜑[𝑋]𝜋 and 𝑝 ≥ 2𝑘 − 1. By fact 1.2, for all
𝑢, 𝑣 ∈ 𝐴+, 𝑢𝑝 ≡𝑘 𝑢𝑝+𝑞 for 𝑞 ∈ ℕ: it follows that 𝐿𝑝 ∪ 𝐿𝑝+1 ∪ …𝐿2𝑝−1 is included in
an ≡𝑘-class, say 𝐿′, so that 𝑋𝜋 ∪ … ∪ 𝑋2𝜋−1 ⊆ 𝜑[𝐿′]. Therefore, 𝑋𝜋 ∪ … ∪ 𝑋2𝜋−1
is also pointlike.

We denote by 𝜋 ∶ 𝒫(𝑈)+ → 𝒫(𝑈) the generalised product of 𝒫(𝑈). We say
that a map from a free semigroup𝐴+ to a set is fo-definablewhenever every preim-
age by this map is an fo-definable language. The key technical result used to prove
the completeness (lemma 1.21) of Henckell’s theorem is the following theorem.
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Theorem 1.18: fo-approximation. This theorem states that every
morphism can be
upper-approximated by an
fo-definable function.

For every alphabet 𝐴, for every finite semi-
group𝑈, for every semigroup morphism 𝜑 ∶ 𝐴+ → 𝑈, there exists an fo-definable
function �̂� ∶ 𝐴+ → Sat+grp(𝑈) such that 𝜑(𝑤) ∈ �̂�(𝑤) for all 𝑤 ∈ 𝐴+.

Example 1.19: continuing ex. 1.15. Consider the syntactic morphism𝜑 ∶ 𝐴+ →
𝑆𝐿 of the language 𝐿 defined in ex. 1.4. It is not fo-definable: for example, the
preimages of {𝑎𝑎} and {𝑎} are not fo-definable. Informally, the non-fo-definability
can be explained because𝜑— or, more precisely, the restriction of𝜑 to 𝑎+ — counts
modulo 2, which is a group-like phenomenon. To make it fo-definable, we must
forbid it to count modulo 2. One way of doing this is by sending 𝐿2 = (𝑎𝑎)+ and
𝐿3 = 𝑎(𝑎𝑎)∗ on the same element, {𝑎, 𝑎𝑎} ∈ Sat+grp(𝑆𝐿). More generally, one can
check that the map �̂� ∶ 𝐴+ → Sat+grp(𝑆𝐿) defined as

𝐴+
𝜑
−→ 𝑆𝐿

𝜇
−→ Sat+grp(𝑆𝐿)

satisfies the desired property, where 𝜇 is defined by 𝜇(𝑎) ∶= 𝜇(𝑎𝑎) ∶= {𝑎, 𝑎𝑎},
𝜇(𝑏𝑎) ∶= 𝜇(𝑏𝑎𝑎) ∶= {𝑏𝑎, 𝑏𝑎𝑎} and 𝜇(𝑏) ∶= {𝑏}, 𝜇(0) ∶= {0}. Then one can check that,
for example, the preimages of {𝑎} and {𝑎𝑎} by �̂� = 𝜇 ∘ 𝜑 are both empty — which
is fo-definable —, while the preimage of {𝑎, 𝑎𝑎} is 𝑎+ — which is also fo-definable.

Proof of 1.18. The full proof can be found in §B.1. The main technical difficulty
lies in proving that the generalised product has an fo-approximation (lem. B.1).
We prove this for every product 𝜋 ∶ 𝒜+ → ⟨𝒜⟩⋅ where 𝒜 ⊆  𝒫(𝑈), by induction
on |𝒜| and Sat+grp(𝒜). The base case |𝒜| = 1 is easy, and follows from what we
known about 𝑎+/≡𝑘 (lem. 1.3). The inductive case |𝒜| ≥ 2 is more tricky. We do a
case disjunction on Sat+grp(𝒜) using the induction principle (lem. 1.13). Case (iii)
(when Sat+grp(𝒜) has a maximum) is trivial. The other two cases, namely (i) and
(ii), — when one letter, say 𝑎, makes us fall into a smaller structure — is much more
technical. This idea of “decomposing” a word

into blocks and then “merging”
the result, already present in Place
& Zeitoun’s proof [PZ16], was in
fact described algebraically by van
Gool & Steinberg as the “merge
decomposition” [vGS19], which
allowed them to obtain a purely
algebraic, and succinct, proof of
Henckell’s theorem.

The main idea is to decompose a word 𝑤 into blocks of ‘𝑎’ and non-‘𝑎’,
use the induction hypothesis on the size of the alphabet to treat the blocks of non-
‘𝑎’, and use the induction hypothesis on the size of the group saturation to “glue”
the blocks together.

Exercise 1.20. Let 𝜑 be the syntactic morphism of 𝐿 ∶= 𝑎(𝑎𝑎)+ = 𝑎(𝑎𝑎)∗ ∖ {𝑎}.
Show that there is no fo-definable function �̂� ∶ 𝑎+ → Sat+grp(𝑆𝐿) such that (i)
𝜑(𝑤) ∈ �̂�(𝑤) for all 𝑤, and (ii) �̂� is a semigroup morphism. A solution can be
found in §C.2.

We can finally prove the completeness of Henckell’s theorem.

Lemma 1.21: Completeness of Henckell’s theorem. Plfo(𝜑) ⊆ ↓ Sat+grp(𝜑).

Proof. By theorem 1.18, the semigroup morphism 𝜑 ∶ 𝐴+ → 𝑈 can be approxima-
ted by an fo-definable �̂� ∶ 𝐴+ → Sat+grp(𝜑). Let 𝑘 ∈ ℕ Such a 𝑘 exists since 𝑈 is finite,

and hence there are finitely many
preimages.

be an upperbound on the
rank of a fixed family of first-order formulæ defining the preimages of �̂�.

Consider a pointlike set 𝑋 ∈ Plfo(𝜑). Then there exists 𝐿 ∈ 𝐴+/≡𝑘 such that
𝑋 ⊆ 𝜑[𝐿], say 𝐿 = [𝑤]≡𝑘 . Observe that for 𝑤′ ∈ 𝐿, since 𝑤 ≡𝑘 𝑤′, The equality �̂�(𝑤) = �̂�(𝑤′) follows

from the fact that �̂�−1[�̂�(𝑤)] is
fo𝑘-definable.

we have
�̂�(𝑤) = �̂�(𝑤′), so �̂�[𝐿] = {�̂�(𝑤)}. Hence, we get

𝑋 ⊆ 𝜑[𝐿] ⊆ ��̂�[𝐿] = �̂�(𝑤) ∈ Sat+grp(𝜑).

and thus 𝑋 ∈ ↓ Sat+grp(𝜑), which concludes the proof of lem. 1.21 and of thm.
1.14.
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We finish this section by explaining how theorem 1.18 can also be used to prove
the difficult implication of Schützenberger’s theorem. Let 𝐿 ⊆ 𝐴+ be a language
recognised by a finite aperiodic semigroup 𝑆, say 𝐿 = 𝜑−1[𝑋] for some morphism
𝜑 ∶ 𝐴+ → 𝑆 and some set 𝑋 ⊆ 𝑆. By aperiodicity of 𝑆, we have that Sat+grp(𝑆) =
𝑆sgl. Hence, by theorem 1.18, 𝜑 is fo-definable, from which it follows that 𝐿 is also
fo-definable.

2. Transfinite words

Many results for finite words can be generalised to𝜔-languages: regular𝜔-langua-
ges corresponds to mso-definable languages, which are precisely the languages
recognised by finite Wilke’s algebras [Wil93] or finite 𝜔-semigroups [PP04, §II.4].
Moreover, Perrin proved [Per84, §2] an extension of Schützenberger’s theorem:
fo-definable 𝜔-languages are precisely the languages recognised by finite aperi-
odic Wilke’s algebras, or, equivalently, by finite aperiodic 𝜔-semigroups. Con-
cerning fo-separability, Place & Zeitoun gave [PZ16, prop 9.3] an extension of
Henckell’s theorem: pointlike sets of an Recall that there is a small

difference of terminology between
Place & Zeitoun [PZ16] and us:
our group saturation is not
necessarily downward closed.

𝜔-semigroup morphism coincides with
the downward closure of

The complexity of Place &
Zeitoun’s algorithm for
𝜔-languages is also ExpTime.

its omega group saturation, from which one can deduce
the decidability of fo-separability for 𝜔-languages — see exo. 2.43.

In this section, we focus on the generalisation of those results to transfinite lan-
guages: we start by explaining the results of Bedon [Bed98, Bed01] on the algebraic
characterisation of mso and fo-definability, and then prove a new result, which is
a generalisation of Henckell’s theorem to transfinite languages (thm. 2.37), from
which one can immediately deduce the decidability of fo-separability for transfi-
nite languages. To do this, we first introduce the algebraic structure (ordinal semi-
groups) that recognises transfinite regular languages in §2.1, before studying the
local structure of finite ordinal semigroups in §2.2 and their idempotents in 2.3. We
then emphasise a few properties of first-order logic on transfinite words and point-
like sets in §2.4 and introduce the notion of group saturation for ordinal semigroups
§2.5. Finally, in §2.6, we claim and prove that these two notions are equivalent.

If needs be, the necessary
definitions and elementary
properties can be found in [Ros82,
§3] or [Deh17, §II].

Note that that there is a difference
between the monadic theory of all
countable ordinals and the
monadic theory of 𝜔1: the former
consists of all monadic formulæ
true for every countable ordinal,
while the latter consits of the
formulæ that are true in 𝜔1. (But
the latter theory is also decidable:
see [Büc73].)

We assume that the reader is familiar with ordinals and ordinal arithmetic.
Recall that given a family of ordinals indexed by an ordinal, say (𝛼𝜄)𝜄<𝜅, the sum of
this family — in the sense of linear orders, see [Ros82, def. 1.38] for example —, is
itself an ordinal, denoted by ∑𝜄<𝜅𝛼𝜄. The collection of all countable ordinals — or,
equivalently, the least uncountable ordinal — is denoted by 𝜔1.

Why do we restrict ourselves to countable ordinals, and not study all ordinals?
First, Büchi proved that the monadic second-order theory of countable ordinals
was decidable [Büc73]. More generally, Rabin showed that the monadic theory of
all countable linear orders was decidable [Rab69]. On the other hand, Gurevich and
Shelah proved that the mso-theory of the real line, and thus the monadic theory of
all linear orders, was undecidable [GS82, She75].

2.1. Ordinal semigroups

We start by introducing two key algebraic structures (ordinal semigroups and fini-
tary ordinal semigroups) and then explain how those structures are related to trans-
finite languages.
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A transfinite word, over the set 𝑋, is a map from a countable ordinal (called
domain) to 𝑋. The set of all transfinite words (resp. non-empty transfinite words)
over 𝑋 is denoted by 𝑋𝗈𝗋𝖽 (resp. 𝑋𝗈𝗋𝖽+). These objects have stronger algebraic
properties than 𝑋∗ (resp. 𝑋+): it is not only a monoid (resp. semigroup), but an
ordinal monoid (resp. ordinal semigroup): not only can we concatenate two words,
but we can concatenate any family of words, as long as this family is indexed by a
(countable) ordinal.

Moreover, one can always consider a transfinite word whose letters are them-
selves transfinite words over𝑋: thus we obtain a word𝑤 ∈ (𝑋𝗈𝗋𝖽)𝗈𝗋𝖽. By forgetting
the parentheses, we obtain a word 𝑤𝖿 𝗅𝖺𝗍 in 𝑋𝗈𝗋𝖽. For example if 𝑋 = {𝑎, 𝑏, 𝑐}, then
𝑤 = (𝑎𝑏𝑏𝑎𝑎𝑏)(𝑐𝑐𝑐…)(𝑎𝑎𝑎…) ∈ (𝑋𝗈𝗋𝖽)𝗈𝗋𝖽 has three letters, the last two of which are
infinite words, and 𝑤𝖿 𝗅𝖺𝗍 = 𝑎𝑏𝑏𝑎𝑎𝑏𝑐𝑐𝑐… 𝑎𝑎𝑎… is a word of length 𝜔2.

Definition 2.1. An ordinal monoid is a pair (𝑀, 𝜋) where 𝜋 ∶ 𝑀𝗈𝗋𝖽 → 𝑀, called
generalised product, satisfy the following axioms: Observe that this definition

generalises the definition of a
monoid since the product of a
monoid can be seen as a map
𝜋 ∶ 𝑀∗ →𝑀.

(om1). 𝜋(𝑥) = 𝑥 for all 𝑥 ∈ 𝑀,
(om2). 𝜋((𝑢𝜄)𝖿 𝗅𝖺𝗍𝜄<𝜅)) = 𝜋((𝜋(𝑢𝜄))𝜄<𝜅) for every word (𝑢𝜄)𝜄<𝜅 ∈ (𝑀𝗈𝗋𝖽)𝗈𝗋𝖽.
The product of the empty word 𝜋(𝜀) is denoted by 1, and called the identity of𝑀.

(𝑀𝗈𝗋𝖽)𝗈𝗋𝖽 𝑀𝗈𝗋𝖽

𝑀𝗈𝗋𝖽 𝑀

−𝖿 𝗅𝖺𝗍

𝜋𝗈𝗋𝖽 𝜋

𝜋

Figure 3: Generalised associativity,
diagrammatically.

The axiom (om2), also called generalised associativity, is depicted as a commu-
tative diagram in figure 3 and should be understood as follows: given a word whose
elements belong to the monoid, one can arbitrarily decompose the word into smal-
ler words, evaluate these smaller words, and then evaluate the result. Doing this
should yield the same as evaluating the whole word at once.

We define ordinal semigroups in the sameway, except that we do not talk about
the empty word: an ordinal semigroup is a pair (𝑆, 𝜋)where 𝜋 ∶ 𝑆𝗈𝗋𝖽+ → 𝑆 satisfies
the axioms (os1) 𝜋(𝑥) = 𝑥 for all 𝑥 ∈ 𝑆, and (os2) 𝜋((𝑢𝜄)𝖿 𝗅𝖺𝗍𝜄<𝜅)) = 𝜋((𝜋(𝑢𝜄))𝜄<𝜅) for
every word (𝑢𝜄)𝜄<𝜅 ∈ (𝑆𝗈𝗋𝖽+)𝗈𝗋𝖽+. One might notice that −𝗈𝗋𝖽 and

−𝗈𝗋𝖽+ are monads in the category
of sets, just like −∗ and −+, and
that ordinal monoids (resp.
semigroups) are just objects of the
Eilenberg-Moore category
associated with the monad −𝗈𝗋𝖽

(resp. −𝗈𝗋𝖽+), which is what figure
3 expresses. A pedagogical
introduction to monads in
algebraic language theory can be
found in [Boj20, §4].

This situation is quite similar to
what is happening for 𝜔-words,
whose infitary algebraic structures
(𝜔-semigroups, introduced in
[PP04, §II.4]) are only equivalent
to the fitary algebraic structures
(Wilke’s algebras, introduced in
[Wil93]) when the underlying set
is finite.

Example 2.2. The set of all countable ordinals under the generalised sum (𝜔1, ∑)
is an ordinal monoid.

Given a set 𝑋, 𝑋𝗈𝗋𝖽 and 𝑋𝗈𝗋𝖽+ are the free ordinal monoid and the free ordinal
semigroup over𝑋. Observe that the free ordinal monoid generated by one element
is isomorphic to (𝜔1, ∑). Ordinal monoid (resp. ordinal semigroup) morphisms,
congruences, etc. are defined as usual.

Just like one can see a monoid (𝑀, 𝜋) with 𝜋 ∶ 𝑀∗ → 𝑀 as a triplet (𝑀, ⋅, 1)
with 𝑥 ⋅ 𝑦 ∶= 𝜋(𝑥𝑦) and 1 ∶= 𝜋(𝜀), we can (try to) see ordinal monoids as finitary
algebraic structures. However, in this case, the resulting structure (finitary ordinal
monoids) will be not be equivalent to the original structure (ordinal monoids) —
see example 2.7 — unless the underlying set is finite — see theorem 2.8.

Given an ordinal monoid (𝑀, 𝜋), define the product ⋅ ∶ 𝑀 × 𝑀 → 𝑀 and
the omega power −𝜔 ∶ 𝑀 → 𝑀 by 𝑥 ⋅ 𝑦 ∶= 𝜋(𝑥𝑦) and 𝑥𝜔 ∶= 𝜋((𝑥)𝑖<𝜔). For
example, observe that, for 𝑎, 𝑏 ∈ 𝑀, (𝑎⋅𝑏)𝜔 is, by definition, the generalised product
of the word containing 𝜔 copies of ‘𝑎𝑏’, which coincides with the word starting
by an ‘𝑎’, and then followed by 𝜔 copies of the word ‘𝑏𝑎’: we just proved that
(𝑎 ⋅ 𝑏)𝜔 = 𝑎 ⋅ (𝑏 ⋅ 𝑎)𝜔.

Definition 2.3. Finite finitary ordinal monoids
admit, by construction, a finite
representation.

A finitary ordinal monoid is quadruple (𝑀, ⋅, −𝜔, 1) where ⋅ ∶ 𝑀 ×
𝑀 →𝑀, −𝜔 ∶ 𝑀 → 𝑀 and 1 ∈ 𝑀 satisfy the following axioms, where 𝑥, 𝑦, 𝑧 range
over𝑀:
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(fom1). (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧),
(fom2). (𝑥𝑛)𝜔 = 𝑥𝜔 for 𝑛 < 𝜔,
(fom3). (𝑥 ⋅ 𝑦)𝜔 = 𝑥 ⋅ (𝑦 ⋅ 𝑥)𝜔,

(fom4). 𝑥 ⋅ 1 = 𝑥 = 1 ⋅ 𝑥,
(fom5). 1𝜔 = 1.

Likewise, a finitary ordinal semigroup is a triple (𝑆, ⋅, −𝜔) satisfying the axioms
(fos1) 𝑥⋅(𝑦⋅𝑧) = (𝑥⋅𝑦)⋅𝑧, (fos2) (𝑥𝑛)𝜔 = 𝑥𝜔 for 𝑛 < 𝜔 and (fos3) (𝑥⋅𝑦)𝜔 = 𝑥⋅(𝑦⋅𝑥)𝜔,
where 𝑥, 𝑦, 𝑧 range over 𝑆.

See, e.g., [Boj20, lem. 4.11] for the
definition of a congruence for
algebras defined by a monad.Morphisms, congruences, etc. are defined as usual.

Example 2.4. Equip the set ℕ of natural numbers with the product max ∶ ℕ ×
ℕ → ℕ and the omega power 𝑆 ∶ ℕ  → ℕ defined by 𝑆(𝑛) ∶= 𝑛+1 for all 𝑛 ∈ ℕ>0
and 𝑆(0) ∶= 0. This yields a finitary ordinal monoid 𝑇𝜔 whose identity is 0. It is
abelian, and, moreover, every element of 𝑇𝜔 is idempotent.

For 𝑛 ∈ ℕ, the equivalence relation on ℕ, defined by 𝑥 ∼𝑛 𝑦 iff 𝑥 = 𝑦 or both
𝑥 and 𝑦 are greater or equal to 𝑛, defines a finitary ordinal monoid Indeed: 𝑥 ∼𝑛 𝑦 and 𝑥′ ∼𝑛 𝑦′

implies max(𝑥, 𝑥′) ∼𝑛 max(𝑦, 𝑦′)
and 𝑥 ∼𝑛 𝑦 implies 𝑆(𝑥) ∼𝑛 𝑆(𝑦).

congruence on
𝑇𝜔. Hence, the quotient 𝑇𝜔/∼𝑛 is itself a finitary ordinal monoid, denoted by 𝑇𝑛.

Exercise 2.5. Show that the following map defines a (finitary ordinal monoid)
morphism:

𝜑 ∶
(𝜔1, ∑) → 𝑇𝜔

𝛼 ↦
⎧⎪⎨
⎪⎩
0 if 𝛼 = 0,
𝑘 if 𝜔𝑘−1 ≤ 𝛼 < 𝜔𝑘 with 𝑘 ∈ ℕ>0.

Fact 2.6.

Fact 2.6 defines a faithful functor
from the category of ordinal
monoids to the category of finitary
ordinal monoids.

Every ordinal monoid (𝑀, 𝜋) induces a finitary ordinal monoid, namely
(𝑀, ⋅, −𝜔, 1), where ⋅ and −𝜔 are defined as before, and 1 ∶= 𝜋(𝜀).

Observe that the reason why ordinal monoids satisfy axiom (fom2) is because
of the equality 𝑛 ⋅𝜔 = 𝜔 from ordinal arithmetic. Likewise, the equality 1+𝜔 = 𝜔
induces the equality 𝑥 ⋅ 𝑥𝜔 = 𝑥𝜔 for all 𝑥 ∈ 𝑀 — which can also be deduced from
(fom3) by taking 𝑥 = 𝑦 and then applying (fom2).

For example, the finitary ordinal monoid induced by (𝜔1, ∑) is (𝜔1, +, − ⋅𝜔, 0),
where + is the addition over ordinals and − ⋅ 𝜔 is the right multiplication by 𝜔.
Unfortunately, in the process of going from an ordinal monoid to a finitary ordinal
monoid, one can lose “One can lose many information”

should be understood, formally, as
“the forgetful functor is not
injective on objects”.

many information.

Example 2.7. Equip the set ℝ̄>0 of strictly positive real numbers together with
+∞ with the same generalised sum as usual, i.e. ∑𝜄<𝜅 𝑥𝜄 is the supremum of the
finite sums ∑𝑖∈𝐼 𝑥𝑖 where 𝐼 ranges over finite subsets of 𝜅. This yields an ordinal
semigroup (ℝ̄>0, ∑), and observe that the finitary ordinal semigroup it induces has
a trivial omega power — in this context, we denote the omega power by − ⋅ 𝜔 for
sanity’s sake — indeed, for every 𝑥 ∈ ℝ̄>0, we have 𝑥 ⋅ 𝜔 = ∑𝑖<𝜔 𝑥 = +∞.

Consider a different generalised sum ∑̃, which is more lazy: ∑̃𝜄<𝜅𝑥𝜄 is defined
as∑𝜄<𝜅 𝑥𝜄 if 𝜅 is finite, and +∞ otherwise. Again, we obtain an ordinal semigroup.
It is routine to check that Hint: To prove that these two

ordinal semigroups are
non-isomorphic, one can consider
the word (2−𝑖)𝑖<𝜔.

(ℝ̄>0, ∑) and (ℝ̄>0, ∑̃) are non-isomorphic, yet they
induce the same finitary ordinal semigroup.

However, just like 𝜔-semigroups and Wilke’s algebras, when the underlying
set is finite, the infinitary and finitary structures are equivalent.

Theorem 2.8: [Bed98, thm. 3.5.6]. Every finite finitary ordinal monoid is indu-
ced by a unique finite ordinal monoid.
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The forgetful functor from the
category of ordinal monoids to the
category of finitary ordinal
monoids induces an isomorphism
of categories between finite
ordinal monoids and finite finitary
ordinal monoids.

As a corollary, finite ordinal monoids admit a finite representation.

Brief sketch of proof. A full proof can be found in [Bed98]. We quickly explain this
equivalence as follows: given a finite finitary ordinal monoid (𝑆, ⋅, −𝜔)

– first, one can define a product 𝜋 ∶ 𝑆𝗈𝗋𝖽+ → 𝑆 that extends ⋅ and −𝜔 — this
part is rather easy: one can define 𝜋 by transfinite induction on the length

For basic results on cofinality, see,
e.g., [Deh17, §V.3.1].

of the words since 𝜔 is cofinal in every countable limit ordinal and by using
Ramsey’s infinite theorem ;

– secondly, prove that (𝑆, 𝜋) is an ordinal semigroup, by showing that the prod-
uct 𝜋 defined previously does not depend on the factorisation of the word
used in the induction — this part is much more technical.

This sketch of proof of thm. 2.8 is
very classical: Perrin & Pin [PP04,
§II, thm. 5.1] used it to prove the
equivalence between finite
𝜔-semigroups and finite Wilke’s
algebra, and Carton, Colcombet &
Puppis [CCP18, thm. 11] used it to
prove the equivalence between
infinitary and finitary finite
algebraic structures for countable
words. (Despite what the date of
publication might suggest, Perrin
& Pin’s proof for omega words
predates Bedon’s proof for
transfinite words.)

In the rest of this report, we will often use finite ordinal semigroup and finite
finitary ordinal semigroup interchangeably. Given a subset 𝑋 of an ordinal semi-
group (resp. finitary ordinal semigroup), we denote by ⟨𝑋⟩𝜋 (resp. ⟨𝑋⟩⋅,𝜔) the
ordinal subsemigroup (resp. finitary ordinal subsemigroup) generated by 𝑋. A
corollary of 2.8 is that, in a finite ordinal semigroup, ⟨𝑋⟩𝜋 = ⟨𝑋⟩⋅,𝜔 for all 𝑋.

Note that not every (infinite) finitary ordinal monoid is induced by an ordinal
monoid: for instance 𝑇𝜔 cannot be equipped with a generalised product 𝜋: other-
wise𝜋(1 2 3 …) should be equal tomax(1, 2, … , 𝑛, 𝜋((𝑛+1) (𝑛+2)…)) ≥ 𝑛 for every
𝑛 ∈ ℕ>0.

We now focus on the relation between those algebraic structures and transfinite
languages. A transfinite language is said to be regular whenever it is recognised
by a finite ordinal semigroup. We admit the following theorem.

Theorem 2.9: [Bed98, thm. 3.5.18]. A transfinite language is regular if, and
only if, it is mso-definable.

Short remark about the proof.

Figure 4: “Spirale représentant tous
les nombres ordinaux inférieurs à
𝜔𝜔”, licensed under CC 0, obtained
from Wikimedia Commons.

Bedon proved ([Bed98, thm 3.5.17]) that a transfinite
language is recognised by finite ordinal semigroup if, and only if, it can be defined
using 𝐷-automata, and Büchi proved (see [Bed98, thm 4.3.1] or [Büc73]) that the
latter condition is equivalent to being mso-definable.

Exercise 2.10. Let 𝐴 be an alphabet, and consider the first-order formula

∀𝑥. ¬first(𝑥) ⇒ ∃𝑦. pred(𝑦, 𝑥)

where pred(𝑦, 𝑥) ∶= 𝑦 < 𝑥∧ (∀𝑧. 𝑧 ≤ 𝑦 ∨ 𝑥 ≤ 𝑧). Show that this formula defines all
finite words over 𝐴 and give a morphism recognising this language.

Exercise 2.11: 𝝎𝝎.
1. Prove that the finitary ordinal submonoid generated by𝐴 in𝐴𝗈𝗋𝖽 is a finitary

ordinal submonoid of 𝐴[0,𝜔𝜔[.
2. Given two regular transfinite languages 𝐿1, 𝐿2, show that 𝐿1 = 𝐿2 if, and

only if, 𝐿1 and 𝐿2 coincides on words of length strictly less than 𝜔𝜔.
For a solution, see §C.3.

The ordinal 𝜔𝜔 will play a quite important role in §2.4. In fact, 𝜔𝜔 is rather
fun: 𝜔𝜔, 𝜔1 and the proper class of all ordinals are wmso-equivalent — see [Ros82,
thm. 15.14]. However, note that Litman showed [Lit72, Büc73] that 𝜔1 is not
mso-equivalent with any countable ordinal: in particular 𝜔𝜔 and 𝜔1 are not mso-
equivalent.
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Just like for finite words, there is a canonical algebraic structure There is a general reason why
everything works for ordinal
semigroups just as they did for
semigroups: monads. Bojańczyk
proved [Boj15, thm. 1.1] that
languages recognised by finitary
algebras have a syntactic
morphism. This result handles
every language of finite words,
every regular 𝜔-language and
regular transfinite languages. Note
that in general, non-regular
𝜔-languages and transfinite
languages need not have a
syntactic congruence: see, [Boj15,
running ex. 2] or [Boj20, exercises
69 & 70].

recognising
a transfinite regular language 𝐿: its syntactic ordinal semigroup, which can be
computed as a quotient of 𝐴𝗈𝗋𝖽+ by the syntactic congruence of 𝐿, denoted by ∼𝐿.

Example 2.12. Let 𝐿 ∶= 𝑎∗. First, observe that 𝜀 ≁𝐿 𝑢 for any non-empty word
𝑢 ∈ 𝑎𝗈𝗋𝖽+ since 𝜀𝜔 = 𝜀 ∈ 𝐿while 𝑢𝜔 ∉ 𝐿. It follows that the syntactic congruence of
𝐿 has three equivalence classes: {𝜀}, 𝑎+ and 𝑎≥𝜔. One can check that the syntactic
ordinal monoid of 𝐿 is 𝑇2 — defined in example 2.4.

Exercise 2.13. More generally, show that over the alphabet {𝑎}, the syntactic ordi-
nal monoid of the language 𝐿 = 𝑎<𝜔𝑛

is 𝑇𝑛+1, for every 𝑛 ∈ ℕ.

For transfinite words, we also have a very nice characterisation of fo-definable
transfinite regular language, which generalises Schützenberger’s theorem.

Theorem 2.14: Bedon’s theorem [Bed01]. A transfinite regular language is
fo-definable if, and only if, its syntactic ordinal semigroup is aperiodic.

Example 2.15.

𝑎𝜔𝑎∗ 𝑎𝜔∗

𝑎,
𝑎𝑎∗

the
group
ℤ/2ℤ

the
group

Figure 5: Egg-box diagram of the
syntactic ordinal semigroup of 𝐿 =
(𝑎𝑎)𝗈𝗋𝖽+. The meaning of the box
around 𝑎𝜔 is explained in §2.2.

Let 𝐿 = (𝑎𝑎)𝗈𝗋𝖽+. Observe that 𝐿 can be defined in mso by:

∃𝑋. (∀𝑥. lim(𝑥) ⇒ 𝑋(𝑥)) ∧ (∀𝑥. 𝑋(𝑥) ⇔ ¬𝑋(succ(𝑥))) ∧ (∀𝑥. last(𝑥) ⇒ ¬𝑋(𝑥)),

where:

lim(𝑥) ∶= ¬∃𝑦. pred(𝑦, 𝑥),
𝑋(succ(𝑥)) ∶= ∃𝑦. pred(𝑥, 𝑦) ∧ 𝑋(𝑦),

last(𝑥) ∶= ∀𝑦. 𝑦 ≤ 𝑥.

Moreover, for every 𝑝, 𝑞 ∈ ℕ, 𝑎2𝑝 ∼𝐿 𝑎2𝑞, 𝑎2𝑝+1 ∼𝐿 𝑎2𝑞+1 and 𝑎2𝑝 ≁𝐿 𝑎2𝑞+1. Then,
for 𝑝 ∈ ℕ, 𝑎2𝑝 ≁𝐿 𝑎𝜔 since 𝑎 ⋅ 𝑎2𝑝 ∉ 𝐿 while 𝑎 ⋅ 𝑎𝜔 = 𝑎𝜔 = (𝑎𝑎)𝜔 ∈ 𝐿, and,
likewise, 𝑎2𝑝+1 ≁𝐿 𝑎𝜔. Since 𝑎𝜔 ⋅ 𝑎 ∉ 𝐿, it follows that 𝑎𝜔 ⋅ 𝑎 ≁𝐿 𝑎𝜔. We then claim
that for any infinite ordinal 𝛼 = 𝜔 ⋅ 𝛼1 + 𝛼0, we have 𝑎𝛼 ∼𝐿 𝑎𝜔 if 𝛼0 is even and
𝑎𝛼 ∼𝐿 𝑎𝜔 ⋅ 𝑎 otherwise. Hence, the syntactic ordinal semigroup has four elements,
and its egg-box diagram is represented in figure 5.

Exercise 2.16. Let 𝐴 = {𝑎, 𝑏}.

0∗

𝑏𝑎∗ 𝑏

𝑎 𝑎𝑏∗

Figure 6: Egg-box diagram of
the syntactic ordinal semigroup of
(𝑎𝑏)𝗈𝗋𝖽+.

1. Show that the egg-box diagram of the syntactic ordinal semigroup of (𝑎𝑏)𝗈𝗋𝖽+
is the one given in figure 6.

2. Compute the egg-box diagram of the syntactic ordinal semigroup of the lan-
guage𝐴𝗈𝗋𝖽+∖(𝐴𝗈𝗋𝖽𝑎𝑎𝐴𝗈𝗋𝖽+𝐴𝗈𝗋𝖽𝑏𝑏𝐴𝗈𝗋𝖽) of words whose consecutive letters
are not equal.

The solution can be found in §C.4

The curious reader can find more (fun) examples of ordinal semigroups and
finitary ordinal semigroups in §A. We conclude the study of ordinal semigroups
by introducing the notion power ordinal semigroup.

Definition 2.17. Let (𝑈, 𝜋) be an ordinal semigroup. The map 𝒫(𝑈)𝗈𝗋𝖽+ → 𝒫(𝑈)
defined by

Π((𝑋𝜄)𝜄<𝜅) ∶= �𝜋((𝑥𝜄)𝜄<𝜅) ∣ 𝑥𝜄 ∈ 𝑋𝜄 for all 𝜄 < 𝜅�

gives an ordinal semigroup structure to 𝒫(𝑈), called power ordinal semigroup.
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Observe that the set union⋃ ∶ 𝒫(𝑈) → 𝑈 defines an ordinal semigroup mor-
phism and the singleton map −sgl ∶ 𝑈 → 𝒫(𝑈) defined by 𝑢sgl ∶= {𝑢} is an injective
morphism — hence, 𝑈 can be seen as an ordinal subsemigroup of 𝒫(𝑈).

Proposition 2.18. As a corollary, given a finite
representation of a finite ordinal
semigroup, one can compute a
finite representation of its power
ordinal semigroup.

Let 𝑈 be a finite ordinal semigroup. Then the finitary ordinal
semigroup induced by the power ordinal semigroup of 𝑈 is characterised by

𝑋 ⋅ 𝑌 ∶= {𝑥 ⋅ 𝑦 ∣ 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌},
𝑋𝜔 ∶= {𝑥 ⋅ 𝑦𝜔 ∣ 𝑥, 𝑦 ∈ ⟨𝑋⟩⋅}.

Proof. This first point is trivial, and the second one follows from Ramsey’s infinite
theorem.

2.2. Green’s relations on ordinal semigroups

We assume that the reader is familiar with basic properties of Green’s relations ≤ℒ,
≤ℛ, ≤𝒥 and ≤ℋ — say what is covered in [Pin20, §5.1, 5.2] (location theorem, egg-
box diagrams and regular elements). Unless indicated otherwise, we follow the
terminology of [Pin20]. The property stating that “if 𝑆 is a finite semigroup, for all
𝑠, 𝑡 ∈ 𝑆, then 𝑠 ≤ℒ 𝑡 ≤𝒥 𝑠 if, and only if, 𝑠 ℒ 𝑡”, the dual property for ≤ℛ, and their
corollary for ≤ℋ are called stability properties.

In this subsection, we work in a finite ordinal semigroup 𝑆. Of course, we are in fact talking
about 𝒟-classes, but since we
focus on finite semigroups 𝒟 = 𝒥,
so we do not bother ourselves
with these details.

In classical semi-
group theory, the location theorem allows us to know whether to product of two
elements of the same 𝒥-class falls into a smaller 𝒥-class — this is always the case
if the class is not regular, i.e. does not contain an idempotent — and otherwise, one
can compute the product up to ℋ-equivalence. In this subsection, we define the
notion of 𝜔-stability — which is the counterpart of regularity but for the omega
power — and give a location theorem for the omega power. Moreover, we explain
how we represent and read this information on an egg-box diagram.

Recall that idempotent elements behave like the identity for elements that are
smaller than them: formally, if 𝑒 is idempotent and 𝑠 ≤ℒ 𝑒 (resp. 𝑠 ≤ℛ 𝑒) then
𝑠𝑒 = 𝑠 (resp. 𝑒𝑠 = 𝑠).

Fact 2.19. For a proof, see [Pin20, prop 2.22].If 𝑒 𝒥 𝑓 are two idempotents in a finite semigroup, then there exists 𝑥, 𝑦
such that 𝑒 = 𝑥𝑦 and 𝑓 = 𝑦𝑥.

Observe that if 𝑥 ∈ 𝑆 then 𝑥𝜔 = (𝑥𝜋)𝜔: the omega power is uniquely determined
by its value on idempotents. In fact, this can be slightly refined.

Fact 2.20. If 𝑒 ℛ 𝑓 are idempotents, then 𝑒𝜔 = 𝑓𝜔.

Proof. Since 𝑒 ℛ 𝑓 are idempotents, 𝑒𝑓 = 𝑓 and 𝑓𝑒 = 𝑒, so 𝑒𝜔 = (𝑓𝑒)𝜔 = 𝑓 ⋅ (𝑒𝑓)𝜔 =
𝑓 ⋅ 𝑓𝜔 = 𝑓𝜔 by (fos3).

For example, in the ordinal semigroup defined in example 2.15 and depicted in
figure 5, 𝑎𝜔𝑎 and 𝑎𝜔 are two ℛ-equivalent idempotent, and have the same omega
power, which is 𝑎𝜔 itself.

Proposition 2.21: [CS15, lemma 7]. If 𝑠 𝒥 𝑠𝑠 𝒥 𝑡𝑡 𝒥 𝑡, then 𝑠𝜔 ℒ 𝑡𝜔.
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Proof. Let 𝑒 ∶= 𝑠𝜋 and 𝑓 ∶= 𝑡𝜋. Then the hypothesis 𝑠 𝒥 𝑠𝑠 yields, by stability,
𝑠 ℒ 𝑠𝑠 and hence 𝑠 ℒ 𝑠𝑛 for all 𝑛 ∈ ℕ>0, from which we deduce 𝑠 𝒥 𝑒. Likewise,
𝑡 𝒥 𝑓 and hence 𝑒 𝒥 𝑓. So, by proposition 2.19, there exists 𝑥, 𝑦 ∈ 𝑆 such that
𝑒 = 𝑥𝑦 and 𝑓 = 𝑦𝑥. It follows that 𝑒𝜔 = 𝑥𝑓𝜔 and 𝑓𝜔 = 𝑦𝑒𝜔.

For example, in the syntactic ordinal semigroup of (𝑎𝑏)𝗈𝗋𝖽+ (see exo. 2.16 & fig.
6), by letting 𝑠 ∶= 𝑎𝑏 and 𝑡 ∶= 𝑏𝑎 we have 𝑠 = 𝑠𝑠 𝒥 𝑡𝑡 = 𝑡 and 𝑠𝜔 = 𝑎𝑏 ℒ 𝑏 = 𝑡𝜔.

Definition 2.22. The implications (iii)⇒ (ii)⇒ (i)
are trivial. To prove that (i)⇒
(iii), one can use Ramsey’s infinite
theorem and proposition 2.21. See
[CS15, lem. 10]

We say that a 𝒥-class 𝐽 is𝜔-stable if one of the following equiva-
lent conditions holds:

i. 𝜋(𝑥0𝑥1…) ∈ 𝐽 for some word (𝑥𝑖)𝑖<𝜔 ∈ 𝐽𝜔 ;
ii. 𝑥𝜔 ∈ 𝐽 for some 𝑥 ∈ 𝐽 ;
iii. 𝑒𝜔 ∈ 𝐽 for every idempotent 𝑒 ∈ 𝐽 and 𝐽 is regular.

Observe that if 𝐺 is a group in 𝑆, whose neutral element is denoted by 1𝐺, then
for all 𝑥 ∈ 𝐺, (fos2) gives 𝑥𝜔 = (𝑥𝜋)𝜔 = 1𝜔𝐺: the elements of a group all have the
same omega power — in particular, the only ordinal semigroup that is also a group
is the trivial group.

Proposition 2.23: [CS15, lem. 8, item 4]. Every 𝜔-stable 𝒥-class is ℋ-trivial.

Proof. Let 𝐽 be an 𝜔-stable 𝒥-class, and let 𝑎 ∈ 𝐽. For 𝑏 ℋ 𝑎, we have 𝑏2 𝒥 𝑎2 so
𝑎 𝒥 𝑎𝑎 𝒥 𝑏𝑏 𝒥 𝑏 and proposition 2.21 yields 𝑎𝜔 ℒ 𝑏𝜔 and hence 𝑏 ℋ 𝑎 𝒥 𝑎𝜔 𝒥 𝑏𝜔.

But observe that 𝑏𝜔 ≤ℛ 𝑏 — indeed, 𝑏𝜔 = 𝑏 ⋅ 𝑏𝜔 — so, by stability, 𝑏𝜔 ℛ 𝑏, and
thus there exists 𝑐 ∈ 𝑆 such that 𝑏 = 𝑏𝜔 ⋅ 𝑐. Then 𝑏𝑏 = 𝑏 ⋅ 𝑏𝜔 ⋅ 𝑐 = 𝑏𝜔 ⋅ 𝑐 = 𝑏. Indeed, if 𝑒 ≤ℋ 𝑓 are idempotents,

then 𝑒𝑓 = 𝑒 = 𝑓𝑒, so every
ℋ-class contains at most one
idempotent.

Hence,
every element of 𝐻(𝑎) is idempotent, so 𝐻(𝑎) is trivial.

Observe that by proposition 2.23 if a 𝒥-class 𝐽 is 𝜔-stable, then it has a unique
ℒ-class containing every omega power of elements of 𝐽 that stays in 𝐽. This class
is denoted by ℒ𝜔(𝐽).

Theorem 2.24: 𝜔-location theorem. Let 𝑥 ∈ 𝑆. If 𝑥 is idempotent and 𝐽(𝑥) is
𝜔-stable, then 𝑥𝜔 is the unique element of 𝑅(𝑥) ∩ℒ𝜔(𝐽(𝑥)). Otherwise, 𝑥𝜔 <𝒥 𝑥.

Proof. First, since 𝑥𝜔 = 𝑥 ⋅ 𝑥𝜔, we have 𝑥𝜔 ≤ℛ 𝑥 and thus 𝑥𝜔 ≤𝒥 𝑥. If 𝑥 is not
idempotent or 𝐽(𝑥) is not 𝜔-stable, then 𝑥𝜔 <𝒥 𝑥 by prop. 2.23. Otherwise, if 𝑥 is
idempotent and 𝐽(𝑥) is 𝜔-stable 𝑥𝜔 𝒥 𝑥 so 𝑥𝜔 ℛ 𝑥 by stability. Proposition 2.21
and the definition of ℒ𝜔 yield 𝑥𝜔 ∈ 𝑅(𝑥) ∩ ℒ𝜔(𝐽(𝑥)). Finally, this ℋ-class indeed
contains a unique element by proposition 2.23.

Theorem 2.24 justifies the following choice: in the egg-box diagram of an or-
dinal semigroup, if a 𝒥-class 𝐽 is 𝜔-stable, then we frame the ℒ-class ℒ𝜔(𝐽).

For example, in the syntactic ordinal semigroup of (𝑎𝑏)𝗈𝗋𝖽+ (see exo. 2.16 & fig.
6), both 𝒥-class are 𝜔-stable. The elements 𝑎 and 𝑏 are not idempotent, and hence
𝑎𝜔 <𝒥 𝑎 and 𝑏𝜔 <𝒥 𝑏 — from which we deduce 𝑎𝜔 = 𝑏𝜔 = 0. On the other hand,
𝑎𝑏 and 𝑏𝑎 are idempotents and belond to an 𝜔-stable 𝒥-class, and hence their 𝜔-
power can be read on the egg-box diagram as the unique element in the ℛ-class of
𝑎𝑏 (resp. 𝑏𝑎) and in the framed ℒ-class. It follows that (𝑎𝑏)𝜔 = 𝑎𝑏 and (𝑏𝑎)𝜔 = 𝑏.
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2.3. Ordinal idempotency

In finite semigroups, every element 𝑥 has a unique idempotent power 𝑥𝜋 — which
satisfies, by definition, 𝑥𝜋 = 𝑥𝜋 ⋅ 𝑥𝜋 — but in an ordinal semigroup, this element
need not satisfy (𝑥𝜋)𝜔 = 𝑥𝜋. We introduce the notion of ordinal idempotency and
show that every element has a unique ordinal idempotent power. Finally, we give
bounds on the ordinal power that reaches this ordinal idempotent power.

Definition 2.25: [CS15, §3.3]. In an ordinal semigroup, we say that an element
𝑥 is ordinal idempotent when 𝑥𝛼 = 𝑥 for every countable ordinal 𝛼 > 0.
Proposition 2.26. In a finite ordinal semigroup, 𝑥 is ordinal idempotent if, and
only if, 𝑥𝜔 = 𝑥.
Proof. The implication from left to right is trivial. For the converse implication,
assume that 𝑥𝜔 = 𝑥. Then observe that 𝑥 ⋅ 𝑥 = 𝑥 ⋅ 𝑥𝜔 = 𝑥𝜔 = 𝑥 so 𝑥 is idempotent.
For 𝛼 > 0:

𝑥𝛼 ∈ ⟨𝑥⟩𝜋 by definition of ⟨𝑥⟩𝜋,
= ⟨𝑥⟩⋅,𝜔 by theorem 2.8,

= {𝑥} since 𝑥 = 𝑥 ⋅ 𝑥 = 𝑥𝜔.

For example, in the finite ordinal semigroup 𝑇𝑛, every element is idempotent.
However, only 0 and 𝑛 are ordinal idempotent.

We define an ordinal idempotent power of 𝑥 as an ordinal power, i.e. an element
of the form 𝑥𝛼, 𝛼 > 0 — that is ordinal idempotent.

Theorem 2.27. In a finite ordinal semigroup 𝑆, every element 𝑥 ∈ 𝑆 has a unique
ordinal idempotent power, denoted by 𝑥𝜌. Moreover, the least ordinal 𝛼 > 0 such
that 𝑥𝛼 = 𝑥𝜌 satisfies 𝛼 ≤ 𝜔 |𝑆| < 𝜔𝜔.

This theorem fails for infinite ordinal semigroups: for every non-empty alpha-
bet 𝐴, no element of 𝐴𝗈𝗋𝖽+ has an ordinal idempotent power. We give a proof that
uses Green’s relations (and that does prove the bound 𝛼 ≤ 𝜔 |𝑆|). However, an
elementary proof (which also proves the inequality 𝛼 ≤ 𝜔 |𝑆|) can be found in §B.2.

Proof. The uniqueness is straightforward: if 𝛼, 𝛽 > 0 are countable and such that
both 𝑥𝛼 and 𝑥𝛽 are ordinal idempotent, then there exists a countable ordinal 𝛾 such
that 𝛼 ⋅ 𝛾 = 𝛾 = 𝛽 ⋅ 𝛾 — one can build 𝛾 as follows: wlog. assume 𝛼 ≤ 𝛽 and take
𝛾 ∶= 𝛽𝜔 so that 𝛾 ≤ 𝛼 ⋅ 𝛾 ≤ 𝛽 ⋅ 𝛾 = 𝛽1+𝜔 = 𝛾. Then:

𝑥𝛼 = (𝑥𝛼)𝛾 = 𝑥𝛼𝛾 = 𝑥𝛾 = 𝑥𝛽𝛾 = (𝑥𝛽)𝛾 = 𝑥𝛽.

For the existence, consider the sequence (𝑥𝛼)𝛼<𝜔1
. It is decreasing wrt. the ≤ℛ-

preorder, but since 𝑆 is finite, the sequence (𝑅(𝑥𝛼))𝛼<𝜔1
is stationary, and by letting

𝑅 be its limit, we know that there is some ordinal 𝛼 such that for all 𝛽 ≥ 𝛼, 𝑥𝛽 ∈ 𝑅.
It follows that 𝐽(𝑅) is 𝜔-regular, so by applying the 𝜔-location theorem to (𝑥𝛼)𝜋
and ((𝑥𝛼)𝜔)𝜋, we get that both elements belong the (trivial) ℋ-class 𝑅∩ℒ𝜔(𝐽(𝑅)),
and hence are equal. Therefore, (𝑥𝛼)𝜋 is an ordinal idempotent power of 𝑥.

Proposition 2.28.
𝑠𝜔𝑖⋅𝑛
∗

𝑠𝜔𝑖⋅2

𝑠𝜔𝑖

𝑠𝜔𝑖−1
∗

𝑠𝜔∗

𝑠∗

semigroup
generated
by 𝑠𝜔𝑖

Figure 7: Egg-box diagram of a
cyclic ordinal semigroup for which
the bound of prop. 2.28 is tight.

In a finite ordinal semigroup 𝑆, for every 𝑥 ∈ 𝑆 and 𝑛 ∈ ℕ,
either 𝑥𝜔𝑛

is ordinal idempotent, or the semigroup ⟨𝑥𝜔𝑛⟩⋅ has size at most |𝑆| − 𝑛.
Proof. See §B.3.

This bound is tight: see figure 7.
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2.4. First-order logic on transfinite words

We finally have a sufficiently good understanding of ordinal semigroups to be able
to study the first-order logic over transfinite words. More precisely, we start by
recalling what the equivalence classes of𝐴𝗈𝗋𝖽+ under the first-order equivalence —
this is a classical result —, before describing approximations of the fo𝑘 equivalence.

Define the fo-equivalence ≡ and the fo𝑘-equivalence ≡𝑘, where 𝑘 ∈ ℕ, by
𝑤 ≡ 𝑤′ (resp. 𝑤 ≡𝑘 𝑤′) whenever 𝑤 and 𝑤′ satisfy exactly the same formulæ of fo
(resp. fo𝑘). By Feferman-Vaught’s theorem [Mak04, thm 1.3], both ≡ and ≡𝑘 are
ordinal semigroup congruences. This can also be proven using Ehrenfeucht-Fraïssé
games.

Fact 2.29. The proof is similar to the proof
for finite words.

Let 𝑢 ∈ 𝐴𝗈𝗋𝖽+ and 𝑘 ∈ ℕ. For all 𝑝, 𝑞 ≥ 2𝑘 − 1, we have 𝑢𝑝 ≡𝑘 𝑢𝑞.

Recall that over ℕ>0, first-order logic was able to define every singleton {𝑥}.
This is trivially not true for ordinals — there are uncountably many countable or-
dinals but only countably many first-order formulæ! We emphasise a few ordinals
and languages (subsets of 𝜔1 ∖ {0} ≅ 𝑎𝗈𝗋𝖽+) that are fo-definable.

Lemma 2.30. For each 𝑛 ∈ ℕ and 𝑘 ∈ ℕ>0, the languages {𝜔𝑛 ⋅ 𝑘}, [𝜔𝑛 ⋅ 𝑘, 𝜔1[,
and ]0, 𝜔𝑛 ⋅ 𝑘] are fo-definable.

Proof. See §B.4.

This lemma can be used to prove the following proposition — that will not be
used in the rest of the report, we only mention it because we think it is interesting!

Proposition 2.31: [Ros82, thm. 6.21]. It is a good time to think back
about exercise 2.11!

Given two ordinals 𝛼 = 𝜔𝜔 ⋅ 𝛼1 +𝛼2 and
𝛽 = 𝜔𝜔 ⋅ 𝛽1 +𝛽2 with 𝛼2, 𝛽2 < 𝜔𝜔 we have 𝛼 ≡ 𝛽 if, and only if, 𝛼2 = 𝛽2 and either
𝛼1 and 𝛽1 are both zero or both non-zero.

Finally, pointlike sets are defined exactly as before: given an ordinal semigroup
morphism 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → 𝑈 where 𝑈 is a finite ordinal semigroup

Plfo(𝜑) ∶= �𝑋 ⊆ 𝑈 ∣ ∀𝑘 ∈ ℕ, ∃𝐿 ∈ 𝐴𝗈𝗋𝖽+/≡𝑘, 𝑋 ⊆ 𝜑[𝐿]� .

They satisfy exactly the same properties as do pointlike sets for finite words. In
particular, to prove the decidability of fo-separability for transfinite words, it suf-
fices to show that pointlike sets are computable.

Example 2.32: Running example.

0∗

𝑏𝑎𝜔𝑎 𝑏𝑎𝜔

𝑏𝑎 𝑏𝑎𝑎 𝑎𝜔𝑎∗ 𝑎𝜔∗

𝑎,
𝑎𝑎∗𝑏∗

Figure 8: Egg-box diagram of the
syntactic ordinal semigroup of 𝐿 ∶=
𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽.

Let 𝐿 ∶= 𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽. One can check that the
syntactic ordinal semigroup 𝑆𝐿 of 𝐿 has ten elements, which are split between six
𝒥-classes. Among those classes, four are regular, and three of these regular classes
are 𝜔-stable. The syntactic ordinal semigroup of 𝑆𝐿 is represented in figure 8.

Let 𝐿1 ∶= 𝐿 = 𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽, 𝐿2 ∶= (𝑎𝑎)𝗈𝗋𝖽+ and 𝐿3 ∶= (𝑎𝑎)𝗈𝗋𝖽𝑎. The syntactic
ordinal semigroup 𝑆𝐿 of 𝐿1, and the syntactic ordinal semigroup of 𝐿2 and 𝐿3 (see
ex. 2.15 & fig. 5) both contain the non-trivial group ℤ/2ℤ. Hence, by Bedon’s
theorem (thm. 2.14), none of these three languages are fo-definable.

However, 𝐿1 and 𝐿2 are fo-separable: indeed, one can express “the word starts
with the letter 𝑏” in first-order logic. However, by fact 2.29, for every 𝑘 ∈ ℕ,
there exists 𝑙 ∈ ℕ such that 𝑎𝑙 ≡𝑘 (𝑎𝑎)𝑙. It follows that {𝑎, 𝑎𝑎} ∈ Plfo(𝜑) where 𝜑 ∶
𝐴𝗈𝗋𝖽+ → 𝑆𝐿 is the syntactic morphism of 𝐿. This witnesses the non-fo-separability
of 𝐿2 and 𝐿3.
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2.5. Merging groups, again

We introduce the notion of group saturation for transfinite words and for words of
length𝜔: the proof of the generalisation of Henckell’s theorem to transfinite words
relies on Henckell’s theorem for finite words and Place & Zeitoun’s generalisation
of it to 𝜔-words. We fix a finite ordinal semigroup 𝑈.

Definition 2.33. Let 𝒜 be a subset of the power ordinal semigroup 𝒫(𝑈). We
define the following saturation operators:

– Sat𝜔grp(𝒜) ∶= {𝑋 ⋅ 𝑌𝜔 ∣ 𝑋, 𝑌 ∈ Sat+grp(𝒜)} = Sat+grp(𝒜)𝜔 ;
– Satord+

grp (𝒜) is the least ordinal subsemigroup 𝒮 of 𝒫(𝑈) and stable under
group merging, or equivalently, under cyclic group merging ;

– Satord
grp(𝒜) is the ordinal monoid obtained from Satord+

grp (𝒜) by always adding
an identity, denoted by 𝜀.

Note that both Sat+grp(𝒜) and Sat𝜔grp(𝒜) are included in Satord+
grp (𝒜). Moreover,

those operators are monotonic under inclusion.

Proposition 2.34.

Proposition 2.34 is a generalisation
of the identity 𝐴𝗈𝗋𝖽+ = 𝐴 ⋅ 𝐴𝗈𝗋𝖽,
which states that every non-empty
word has a first letter. Of course,
the dual statement is false since
ordinals are not symmetric.

Satord+
grp (𝒜) = 𝒜 ⋅ Satord

grp(𝒜).

Example 2.35: continuing ex. 2.32.

{0}∗

{𝒃𝒂𝝎𝒂,
𝒃𝒂𝝎}

{𝑏𝑎𝜔𝑎} {𝑏𝑎𝜔}

{𝒃𝒂,
𝒃𝒂𝒂}

{𝒂𝝎𝒂,
𝒂𝝎}∗

{𝑏𝑎} {𝑏𝑎𝑎} {𝑎𝜔𝑎}∗ {𝑎𝜔}∗

{𝒂,
𝒂𝒂}∗

{𝑏}∗

{𝑎},
{𝑎𝑎}∗

new ele-
ments!

Figure 9: Egg-box diagram of the
group saturation Satord+

grp (𝑆𝐿) of the
syntactic ordinal semigroup of 𝐿 ∶=
𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽.

The goal of this example is to compute
Satord+

grp (𝑆𝐿). First, it contains 𝑆𝐿sgl. Then, since {{𝑎}, {𝑎𝑎}} is a group in 𝒫(𝑆𝐿), we
have {𝑎, 𝑎𝑎} ∈ Satord+

grp (𝑆𝐿). From the stability under product of the group saturation,
we obtain that {𝑏𝑎, 𝑏𝑎𝑎}, {𝑎𝜔𝑎, 𝑎𝜔} and {𝑏𝑎𝜔𝑎, 𝑏𝑎𝜔} all belong to Satord+

grp (𝑆𝐿). The
egg-box diagram of Satord+

grp (𝑆𝐿) is represented in figure 9.

We give the counterpart of lemma 1.13 for transfinite words, which is the cor-
nerstone of the induction used to prove the completeness of Henckell’s theorem.
It can be informally understood as: “either (i) we fall into a smaller structure by
reading a single letter, or (ii) by reading any word of length 𝜔, or (iii) the group
saturation has a very simple structure”.

Theorem 2.36: Induction principle for transfinite words. For every subset 𝒜
of 𝒫(𝑈), either:

i. there exists 𝑎 ∈ 𝒜 such that 𝑎 ⋅ Satord+
grp (𝒜) ⊊ Satord+

grp (𝒜), or
ii. Satord+

grp (Sat𝜔grp(𝒜)) ⊊ Satord+
grp (𝒜), or

iii. Satord+
grp (𝒜) consists of a unique ℒ-trivial ℛ-class, and thus the generalised

product 𝜋 ∶ 𝒜𝗈𝗋𝖽+ → ⟨𝒜⟩⋅,𝜔 is fo-definable.

For example, the group saturation Satord+
grp (𝑆𝐿), computed in ex. 2.35, falls in

case (i) since 𝑏 ⋅ Satord+
grp (𝑆𝐿) ⊊ Satord+

grp (𝑆𝐿).

Proof of 2.36. See §B.5. Similar to the the proof of lem. 1.13 but we use properties
specific to ordinals, and especially those that we established in §2.2.

2.6. Generalisation of Henckell’s theorem

We now have the necessary tools to state and prove a generalisation of Henckell’s
theorem for transfinite words.

Theorem 2.37. For every ordinal semigroup morphism 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → 𝑈 where 𝑈
is a finite ordinal semigroup, Plfo(𝜑) = ↓ Satord+

grp (𝜑).
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Corollary 2.38. We assume that the input of the
decision problem, i.e. the two
transfinite regular languages, are
specified by a finitary ordinal
semigroup.

fo-separability is decidable, and in ExpTime, for transfinite regu-
lar languages.

Proof. By theorem 2.37, since ↓ Satord+
grp (𝜑) is computable in exponential time.

As for finite words, the proof of theorem 2.37 can be decomposed in two parts: a
correctness result — lemma 2.39: every element of the group saturation is pointlike
— and a completeness result — lemma 2.40: every pointlike set is included in an
element of the group saturation.

Lemma 2.39: Correctness. ↓ Satord+
grp (𝜑) ⊆ Plfo(𝜑).

Proof. Plfo(𝜑) contains every singleton {𝜑(𝑤)} with 𝑤 ∈ 𝐴𝗈𝗋𝖽+ because “points are
pointlike”, it is an ordinal semigroup because, for every 𝑘 ∈ ℕ, ≡𝑘 is an ordinal
semigroup congruence and finally, it is stable under group merging because of fact
2.29.

Lemma 2.40: Completeness. Plfo(𝜑) ⊆ ↓ Satord+
grp (𝜑).

The proof of lemma 2.40 relies once again on a result stating that every mor-
phism can be approximated by a fo-definable function.

Theorem 2.41: fo-approximation. Of course, this can be extended to
ordinal monoids: every morphism
𝐴𝗈𝗋𝖽 → 𝑈 can be approximated by
an fo-definable function
𝐴𝗈𝗋𝖽 → Satord

grp(𝑈).

For every morphism 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → 𝑈, where
𝑈 is a finite ordinal semigroup, there exists an fo-definable function �̂� ∶ 𝐴𝗈𝗋𝖽+ →
Satord+

grp (𝑈) such that 𝜑(𝑤) ∈ �̂�(𝑤) for every 𝑤 ∈ 𝐴𝗈𝗋𝖽+.

Example 2.42: continuing ex. 2.35.

𝑥 𝜇(𝑥)

0 {0}
𝑏 {𝑏}
𝑎 {𝑎, 𝑎𝑎}
𝑎𝑎 {𝑎, 𝑎𝑎}
𝑏𝑎 {𝑏𝑎, 𝑏𝑎𝑎}
𝑏𝑎𝑎 {𝑏𝑎, 𝑏𝑎𝑎}
𝑎𝜔𝑎 {𝑎𝜔𝑎, 𝑎𝜔}
𝑎𝜔 {𝑎𝜔𝑎, 𝑎𝜔}
𝑏𝑎𝜔𝑎 {𝑏𝑎𝜔𝑎, 𝑏𝑎𝜔}
𝑏𝑎𝜔 {𝑏𝑎𝜔𝑎, 𝑏𝑎𝜔}

Table 1: Recipe to make the syntac-
tic morphism of 𝐿 fo-definable.

Consider the syntactic ordinal semigroup
morphism of 𝐿, denoted by 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → 𝑆𝐿. It is not fo-definable: since 𝜑−1[𝑎],
𝜑−1[𝑎𝑎], 𝜑−1[𝑏𝑎], 𝜑−1[𝑏𝑎𝑎], 𝜑−1[𝑎𝜔𝑎], 𝜑−1[𝑎𝜔], 𝜑−1[𝑏𝑎𝜔𝑎] and 𝜑−1[𝑏𝑎𝜔] are not
fo-definable — always for the same reason: first-order logic cannot count modulo
2. However, by letting 𝜇 ∶ 𝑆𝐿 → Satord+

grp (𝑆𝐿) be defined as in table 1, we have that
�̂� ∶= 𝜇 ∘ 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → Satord+

grp (𝑆𝐿) is fo-definable. For example, we now have

�̂�−1[{𝑎}] = �̂�−1[{𝑎𝑎}] = ∅,

which is trivially fo-definable, and

�̂�−1[{𝑎, 𝑎𝑎}] = (𝑎𝑎)+ + 𝑎(𝑎𝑎)∗ = 𝑎+,

which is also fo-definable. Likewise, the preimage �̂�−1[{𝑎𝜔𝑎, 𝑎𝜔}] is the language
of words whose letters are ‘𝑎’ and containing infinitely many letters, i.e. 𝑎𝗈𝗋𝖽+∖𝑎+,
which can be defined in fo by:

(∀𝑥. 𝑎(𝑥)) ∧ (∃𝑥. lim(𝑥) ∧ ¬first(𝑥)).

Note that, in the proof of theorem 2.41, we first need to handle the case of
𝜔-words (lemma B.4) before treating the general case (lemma B.5). This first step
corresponds to Place & Zeitoun’s proof of completeness of their generalisation of
Henckell’s theorem for 𝜔-words [PZ16, §10.2].

Sketch of proof of 2.41. The full proof can be found in §B.6. First, we study mor-
phism for 𝜔-words (lemma B.4) — which corresponds to the completeness of Place
& Zeitoun’s generalisation of Henckell’s theorem to 𝜔-words [PZ16, §10.2]. We
prove then proof a subcase of theorem 2.41 for the genralised product 𝜋 ∶ 𝒜𝗈𝗋𝖽+ →
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Satord+
grp (𝒜)with 𝒜 ⊆ 𝒫(𝑈) (lemma B.5), by induction on |𝒜| and | Satord+

grp (𝒜)|. The
base case |𝒜| = 1 is more difficult than for finite words: we need to prove some
properties on the ≡𝑘-classes. We use the results of §2.4 (more specifically lemma
2.30) and §2.3. Then, for the inductive case |𝒜| ≥ 2, we study more precisely the
group saturation of 𝒜 and theorem 2.36 (induction principle) comes into play. Case
(iii) (when the group saturation has a very simple structure) is easily handled. Case
(i) (when one letter makes us fall into a smaller structure) is handled similarly to
what Place & Zeitoun do for finite words (see [PZ16, §6.3] or §B.1).

Proposition 2.34 also plays a major
role in the proof. The fact that the
dual of this proposition is false is
the reason why we do not single
out the case
Satord+

grp (𝒜) ⋅ 𝑎 ⊊ Satord+
grp (𝒜)

because this property does not
give us any usable information.

Finally, case
(ii) (when 𝜔-words makes us fall into a smaller structure) is handled using what
have already been proven on 𝜔-words (lemma B.4).

Proof of 2.40. Exactly like the proof of 1.21: simply consider an fo-definable ap-
proximation �̂� ∶ 𝐴+ → Satord+

grp (𝑈) of 𝜑.

This concludes the proof of our generalisation of Henckell’s theorem to trans-
finite languages.

Exercise 2.43. For a formal definition of what an
𝜔-semigroup is, see [PP04, §II].

Deduce from theorem 2.37 the following propositions:
1. Bedon’s theorem: see thm. 2.14.
2. Place-Zeitoun’s theorem: For every 𝜔-semigroup morphism 𝜑 ∶ 𝐴𝜔 → 𝑈

where 𝑈 is a finite 𝜔-semigroup, Plfo(𝜑) = ↓ Sat𝜔grp(𝜑).
3. Perrin’s theorem: An 𝜔-regular language is fo-definable if, and only if, its

syntactic 𝜔-semigroup is aperiodic.
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A. More examples of (finitary) ordinal semigroups

A.1. Successor and limit ordinals

𝜎∗ 𝜆∗

Figure 10: Egg-box diagram of
𝜔1/∼.

The equivalence relation on 𝜔1 defined by 𝑥 ∼ 𝑦 if, and only if, both 𝑥 and 𝑦
are successor ordinals or both are limit ordinals is a finitary ordinal semigroup
congruence. The quotient 𝜔1/ ∼ has two elements, denoted by 𝜆 and 𝜎, which are
the class of limit ordinal and successor ordinals, respectively. Its egg-box diagram
is represented in figure 10

A.2. Banach-Picard & the semigroup of contractions

Let (𝐸, 𝑑) be a non-empty complete metric space and let 𝒞(𝐸) be the semigroup of
contractions over 𝐸 — recall that a contraction is a map 𝑓 ∶ 𝐸 → 𝐸 such that there
exists some constant 𝑘 ∈ [0, 1[ such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐸. By
Banach-Picard theorem, every map 𝑓 ∈ 𝒞(𝐸) has a unique fixpoint, which is equal
to lim𝑛∞ 𝑓𝑛(𝑥) for all 𝑥 ∈ 𝐸. By defining 𝑓𝜔 as the constant map 𝑥 ↦ lim𝑛∞ 𝑓𝑛(𝑥),
we obtain a finitary ordinal semigroup (𝒞(𝐸), ∘, −𝜔).

Indeed it satisfies (fos2) since lim𝑛→∞ 𝑓𝑛(𝑥) = lim𝑛→∞(𝑓𝑘)𝑛(𝑥) for every 𝑘 ∈ ℕ.
Moreover, its satisfies (fos3) since, if 𝜆 is the fixpoint of 𝑓 ∘ 𝑔, then 𝑓 ∘ 𝑔(𝜆) = 𝜆
and hence by postcomposing with 𝑔, it follows that 𝑔(𝜆) is a fixpoint (and hence
the unique fixpoint) of 𝑔 ∘ 𝑓. Therefore, (𝑔 ∘ 𝑓)𝜔 = 𝑔 ∘ (𝑓 ∘ 𝑔)𝜔.

A.3. Real numbers

Equip the open interval ]0, 1[ with themax operator and the omega power defined
by 𝑥𝜔 ∶= 𝑥+1

2 for all 𝑥 ∈ ]0, 1[. Then (]0, 1[,max, −𝜔) is a finitary ordinal semigroup:
indeed, it satisfies (fos3) since

max(𝑥, 𝑦) + 1
2

= max �𝑥,
max(𝑦, 𝑥) + 1

2 � .

Every 𝒥-class of ]0, 1[ is trivial: indeed, 𝑥 ≤𝒥 𝑦 iff 𝑥 ≥ 𝑦 (where ≥ refers to
the usual ordering of the reals), so this ordinal semigroup has uncountably many
𝒥-classes. All of them are regular, yet none are 𝜔-stable.
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B. Missing proofs

B.1. Proof of theorem 1.18

Before proving theorem 1.18, we start by proving the following lemma, which
states that the product in a power semigroup is fo-approximable.

Lemma B.1. For every alphabet 𝒜 ⊆ 𝒫(𝑈), there exists an fo-definable map
�̂� ∶ 𝒜+ → Sat+grp(𝒜) such that 𝜋(𝑤) ⊆ �̂�(𝑤) for all 𝑤 ∈ 𝒜+.

Proof of B.1. Fix a semigroup 𝑈. We prove the statement of this lemma by induc-
tion on | Sat+grp(𝒜)| and |𝒜|.

Y First case: | Sat+grp(𝓐)| = 𝟏. ⟨𝒜⟩⋅ is always a subsemigroup of
Sat+grp(𝒜).

The constant map �̂� ∶ 𝒜+ → Sat+grp(𝒜)
satisfies the property since Sat+grp(𝒜) and ⟨𝒜⟩⋅ are trivial.

Y Second case: |𝓐| = 𝟏. Let 𝒜 = {𝑎} and observe that ⟨𝒜⟩⋅ is a cyclic
semigroup. Let 𝑛 ≤ |⟨𝒜⟩⋅| be the least integer such that 𝑎𝑛 belong to the maximal
group 𝒢 in ⟨𝒜⟩⋅. For 𝑤 = 𝑎𝑘 ∈ 𝒜+, let

�̂�(𝑤) =
⎧⎪⎨
⎪⎩
{𝜋(𝑤)} = {𝜋(𝑎𝑘)} if 𝑘 < 𝑛,
⋃𝒢 otherwise.

Then �̂� is fo-definable — indeed, the preimage by �̂� of {{𝑎𝑘}} with 𝑘 < 𝑛 is the
singleton {𝑎𝑘}, and the preimage of {⋃𝒢} is the language {𝑎𝑘 ∣ 𝑘 ≥ 𝑛}, and we
clearly have 𝜋(𝑤) ⊆ �̂�(𝑤) for all 𝑤 ∈ 𝒜+.

Y Third case: | Sat+grp(𝓐)| ≥ 𝟐 and |𝓐| ≥ 𝟐. By induction principle (lemma
1.13), either there exists 𝑎 ∈ 𝒜 such that 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜), or there exists
𝑎 such that Sat+grp(𝒜) ⋅ 𝑎 ⊊ Sat+grp(𝒜), or Sat+grp(𝒜) has a maximum.

YY First subcase: 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜) for some 𝑎 ∈ 𝒜. To prove this, given a word
𝑤 ∈ 𝒜∗, consider every position
labelled by an ‘𝑎’ that is not
preceded by another ‘𝑎’ — these
positions are called distinguished.

Let ℬ ∶= 𝒜∖ {𝑎}
and observe that 𝒜∗ = ℬ∗(𝑎+ℬ+)∗𝑎∗. Since {𝑎} and ℬ are strictly smaller alpha-
bets than 𝒜, by induction hypothesis, there exists fo-definable maps 𝑓𝑎 ∶ 𝑎+ →
Sat+grp(𝑎) and 𝑓ℬ ∶ ℬ+ → Sat+grp(ℬ) such that 𝜋(𝑤) ⊆ 𝑓𝑎(𝑤) for every 𝑤 ∈ 𝑎+ and
𝜋(𝑤) ⊆ 𝑓ℬ(𝑤) for every 𝑤 ∈ ℬ+.

The hypothesis 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜) together with proposition 1.12 yields

Sat+grp(Sat+grp(𝑎) ⋅ Sat+grp(ℬ)) ⊆ 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜),

so by induction hypothesis, there exists an fo-definable map

𝑔 ∶ [Sat+grp(𝑎) ⋅ Sat+grp(ℬ)]+ → Sat+grp(Sat+grp(𝑎) ⋅ Sat+grp(ℬ))

such that 𝜋(𝑤) ⊆ 𝑔𝑎ℬ(𝑤) for every word 𝑤 ∈ [Sat+grp(𝑎) ⋅ Sat+grp(ℬ)]+. We define
�̂� ∶ 𝒜+ → Sat+grp(𝒜) by, for every 𝑤 = 𝑤ℬ(𝑤𝑎,𝑖𝑤ℬ,𝑖)𝑖<𝑘𝑤𝑎 ∈ 𝒜∗ = ℬ∗(𝑎+ ⋅ℬ+)∗𝑎∗:

A way of formally proving that �̂�
is fo-definable would be to use an
fo-interpretation (in the
model-theoretic sense, see, e.g.,
[Grä07, def 3.5.7]).

Why Sat∗grp(−) and not Sat+grp(−)?
Because 𝑤ℬ, 𝑤𝑎 and (𝑤𝑎,𝑖𝑤ℬ,𝑖)𝑖<𝑘
can be empty — but never all three
at the same time!

�̂�(𝑤) ∶= 𝑓ℬ(𝑤ℬ) ⋅ 𝑔 �(𝑓𝑎(𝑤𝑎,𝑖) ⋅ 𝑓ℬ(𝑤ℬ,𝑖))𝑖<𝑘� ⋅ 𝑓𝑎(𝑤𝑎),

which is fo-definable since 𝑓𝑎, 𝑓ℬ and 𝑔 are fo-definable, and since distinguished
positions can be defined in first-order logic. Furthermore, by definition,

�̂�(𝑤) ∈ Sat∗grp(ℬ) ⋅ Sat∗grp(Sat+grp(𝑎) ⋅ Sat+grp(ℬ)) ⋅ Sat∗grp(𝑎) ⊆ Sat∗grp(𝒜),
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and since 𝑤 is not empty �̂�(𝑤) ∈ Sat+grp(𝒜). The inclusion 𝜋(𝑤) ⊆ �̂�(𝑤) follows
from the monotonicity of the product in a power semigroup.

YY Second subcase: Sat+grp(𝒜) ⋅ 𝑎 ⊊ Sat+grp(𝒜) for some 𝑎 ∈ 𝒜. This case is
symmetric with the first subcase.

YY Third subcase: Sat+grp(𝒜) has a maximum. Observe that in the third case, we
never used the hypothesis
“| Sat+grp(𝒜)| ≥ 2”, so we could
have included the first case (when
Sat+grp(𝒜) is trivial) in subcase 3 of
case 3.

The first step of this proof can be
understood as “every deterministic
morphism can be seen as a
non-deterministic morphism”.
Observe that the induction of
lemma B.1, even if one starts with
deterministic objects (i.e. 𝒜 only
consists of singletons), the
induction step will make the
object non-deterministic, because
of group saturation.

Define �̂� ∶ 𝒜+ → Sat+grp(𝒜) to
be the constant map, sending every word to the maximum of the group saturation:
it is clearly fo-definable — its preimages are ∅ and 𝒜+ —, and over-approximate
the product 𝜋 ∶ 𝒜+ → ⟨𝐴⟩⋅, which concludes the proof of lemma B.1.

Proof of 1.18. The morphism 𝜑 ∶ 𝐴+ → 𝑈 can be factorised as

𝜑 = �⏟
projection

on 𝑈

∘ 𝜋�𝑈sgl ∘ −sgl�
lift to
𝒫(𝑈)

∘ 𝜑+

where 𝜑+ ∶ 𝐴+ → 𝑈+ is the letter-to-letter map induced by 𝜑 and 𝜋�𝑈sgl is the
restriction of the product 𝜋 ∶ 𝒫(𝑈)+ → 𝒫(𝑈) on 𝒫(𝑈) to the subsemigroup of
singletons of 𝒫(𝑈), and consider the alphabet 𝑈sgl — without loss of generality,
we assume that 𝜑 is surjective: otherwise, replace 𝑈 by the image of 𝜑.

By lemma B.1, there exists an fo-definable map �̂� ∶ 𝑈sgl → Sat+grp(𝑈sgl) such
that 𝜋(𝑤) ⊆ �̂�(𝑤) for all 𝑤 ∈ (𝑈sgl)+. Since Sat+grp(𝑈sgl) = Sat+grp(𝜑) by definition
of the latter object, we define the map �̂� ∶ 𝐴+ → Sat+grp(𝜑) as ⋃∘�̂� ∘ −sgl ∘ 𝜑+: it
is then routine to check that 𝜑(𝑤) ∈ �̂�(𝑤) for all 𝑤 ∈ 𝐴+. The fo-definability of 𝜑
follows from the fo-definability of �̂� and from 𝜑+ being a letter-to-letter map.

B.2. Elementary proof of theorem 2.27

Proof of 2.27 (existence of the ordinal idempotent power). Consider the finite direc-
ted graph whose vertices are the powers {𝑥𝛼 ∣ 0 < 𝛼 < 𝜔1} of 𝑥 with an edge
𝑦 → 𝑧 if and only if 𝑧 = 𝑦𝜔. Since every vertex has at least one outgoing edge, the
graph has a cycle

𝑦0 → 𝑦1 →⋯→ 𝑦𝑛−1 → 𝑦0
of size 𝑛. We want to show that this cycle is a loop, i.e. 𝑛 = 0. For all 𝑖 ∈ ℤ/𝑛ℤ,
we have:

𝑦𝑖 = 𝑦𝜔𝑖−1 = 𝑦𝑖−1 ⋅𝑦
𝜔
𝑖−1 = 𝑦𝑖−1 ⋅𝑦𝑖 = 𝑦

𝜔
𝑖−2 ⋅𝑦𝑖 = … = 𝑦𝜔

𝑘−1

𝑖−𝑘 ⋅𝑦𝑖 = … = 𝑦𝜔
𝑛−1

𝑖 ⋅𝑦𝑖 = 𝑦𝜔
𝑛−1+1

𝑖

and hence
𝑦𝜔𝑖 = 𝑦

(𝜔𝑛−1+1)𝜔
𝑖 = 𝑦𝜔

𝑛

𝑖 ,

i.e. 𝑦𝑖+1 = 𝑦𝑖. Hence 𝑦0 = 𝑦1 = … = 𝑦𝑛−1 and thus 𝑛 = 0, i.e. our graph has a
self-loop, from which it follows that 𝑥 has an ordinal idempotent power.

B.3. Proof of proposition 2.28

We start by generalising prop. 2.26 as follows.
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Proposition B.2. In a finite ordinal semigroup an element 𝑥 is ordinal idempotent
if, and only if, 𝑥𝜆 = 𝑥 for some limit ordinal 𝜆.

Proof of B.2. As usual, the implication from left to right is trivial. For the converse
implication, assume that 𝑥𝜆 = 𝑥 where 𝜆 is a limit ordinal. First notice that 𝑥 is
idempotent — cf. proof of 2.26 —, and then that we can assume wlog. that 𝜆 < 𝜔𝜔
— see exo. 2.11. It follows that 𝑥 = 𝑥𝜆 ≤ℛ 𝑥𝜔 ≤ℛ 𝑥, so (𝑥𝜔)𝜋 ℛ 𝑥, and thus by fact.
2.20, 𝑥𝜔2 = 𝑥𝜔, from which we get, by trivial induction on 𝑛 ∈ ℕ>0 that 𝑥𝜔

𝑛 = 𝑥𝜔,
and hence by using Cantor’s normal form on 𝜆 < 𝜔𝜔, we get 𝑥𝜆 = 𝑥𝜔⋅𝑝 for some
𝑘, 𝑝 ∈ ℕ. Thus, 𝑥 = 𝑥𝜔⋅𝑝, and hence 𝑥 ≤ℋ 𝑥𝜔, so by stability 𝑥 ℋ 𝑥𝜔, and thus
𝑥 = 𝑥𝜔 by prop. 2.23. The conclusion follows from prop. 2.26.

Note that there are some elements 𝑥 such that 𝑥𝛼 = 𝑥 for every successor
ordinal, yet 𝑥 is not idempotent: see §A.1.

Proof of 2.28. Let 𝑥 ∈ 𝑆 and 𝑛 ∈ ℕ. We want to show that the semigroup generated
by 𝑥𝜔𝑛

contains at most |𝑆|−𝑛 elements if 𝑥𝜔𝑛
is not ordinal idempotent. We do that

by first showing that 𝑥𝜔𝑚 ∉ ⟨𝑥𝜔𝑛⟩⋅ for all𝑚 < 𝑛: indeed, otherwise 𝑥𝜔𝑚 = 𝑥𝜔𝑛⋅𝑘 for
some 𝑛 ∈ ℕ and hence, by prop. B.2, 𝑥𝜔𝑚

would be ordinal idempotent, and thus
so would 𝑥𝜔𝑛

. Then, observe that the elements (𝑥𝜔𝑚)𝑚<𝑛 are pairwise distinct for
the same reason.

B.4. Proof of lemma 2.30

The proof relies on condensations — see, e.g., [Ros82, §4] for an introduction to the
subject —, and more particularly on the finite condensation. This has nothing to do with

ordinals: we can define
condensations on any linear order.

A condensation of an
ordinal 𝛼 is an equivalence relation ∼ over 𝛼 such that if 𝑥 ∼ 𝑧 and 𝑥 ≤ 𝑦 ≤ 𝑧 then
𝑥 ∼ 𝑦 ∼ 𝑧. Equivalently, it is an equivalence relation whose classes are convex.
The quotient of an ordinal by a condensation is still an ordinal.

Figure 11: The ordinal 𝜔 ⋅ 3.

The finite condensation ∼fin over 𝛼 is the condensation defined by 𝑥 ∼fin 𝑦
whenever [𝑥, 𝑦] is finite. For example, the ordinal 𝜔 ⋅ 3 — see fig. 11 — has 3
equivalence classes under the finite condensation [0, 𝜔[, [𝜔, 𝜔 ⋅2[ and [𝜔 ⋅ 2, 𝜔 ⋅3[,
and hence 𝜔 ⋅3/∼fin = 3. More generally, one can show that for 𝛼 < 𝜔1 and 𝑛 < 𝜔,
we have (𝜔 ⋅ 𝛼 + 𝑛)/∼fin = 𝛼 if 𝑛 = 0 and 𝛼 + 1 otherwise. In particular, the three
smallest ordinals 𝛽 satisfying 𝛽/ ∼fin= 𝛽 are 0, 1 and 𝜔𝜔.

Interestingly, the finite condensation is definable in first-order logic, in the fol-
lowing sense.

PropositionB.3. For every first-order formula𝜑, there exists a first-order formula
𝜑† such that for every ordinal 𝛼 < 𝜔1:

𝛼 ⊨ 𝜑† ⟺ 𝛼/∼fin ⊨ 𝜑

and, moreover, rk(𝜑†) = rk(𝜑) + 2.

Proof. Trivial, by using an fo-interpretation — in the model-theoretic sense, see,
e.g., [Grä07, def 3.5.7] — whose domain formula is lim(𝑥), which is a formula of
rank 2.

As an immediate corollary of prop. B.3, for all 𝛼, 𝛽, for every 𝑘 ∈ ℕ, if 𝛼 ≡𝑘+2 𝛽
then 𝛼/∼fin ≡𝑘 𝛽/∼fin.
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Proof of 2.30. We prove by induction on 𝑛 ∈ ℕ that for all 𝑘 ∈ ℕ>0, the language
{𝜔𝑛 ⋅ 𝑘} is fo-definable. The base case 𝑛 = 0 is trivial: it follows from exo. 2.10 and
lem. 1.3.

Assume that the property holds for 𝑛 ∈ ℕ, and let us build a formula defining
{𝜔𝑛+1 ⋅ 𝑘}. Observe that (𝜔𝑛+1 ⋅ 𝑘)/ ∼fin= 𝜔𝑛 ⋅ 𝑘. By induction hypothesis, there
exists a formula 𝜑 ∈ fo such that 𝜑 is exactly satisfied by {𝜔𝑛 ⋅ 𝑘}. Then by prop.
B.3, for every ordinal 𝛼 ∈ ]0, 𝜔1[, we have 𝛼 ⊨ 𝜑† iff 𝛼/∼fin = 𝜔𝑛 ⋅𝑘 i.e. 𝛼 = 𝜔𝑛+1 ⋅𝑘.
This concludes the induction.

Then one can deduce that [𝜔𝑛 ⋅ 𝑘, 𝜔1[ is fo-definable by observing that if 𝜑
defines exactly {𝜔𝑛 ⋅ 𝑘} then ∃𝑥. 𝜑<𝑥 defines ]𝜔𝑛 ⋅ 𝑘, 𝜔1[.

B.5. Proof of theorem 2.36

Recall that we want to show that either:
i. 𝑎 ⋅ Satord+

grp (𝒜) ⊊ Satord+
grp (𝒜) for some 𝑎 ∈ 𝒜, or

ii. Satord+
grp (Sat𝜔grp(𝒜)) ⊊ Satord+

grp (𝒜), or
iii. Satord+

grp (𝒜) consists of a unique ℒ-trivial ℛ-class, and thus the product 𝜋 ∶
𝒜𝗈𝗋𝖽+ → Satord+

grp (𝒜) is fo-definable.

Proof of 2.36. We consider Green’s relations
over Satord+

grp (𝒜).
Assume that (i) and (ii) do not hold. Then let 𝐽 be a maximal 𝒥-class

in Satord+
grp (𝒜). For 𝑋 ∈ 𝐽, by ¬(i), we have 𝑋 ≤ℛ 𝑎 for every 𝑎 ∈ 𝒜, and hence, by

𝒥-maximality of 𝐽, 𝑋 ℛ 𝑎. Hence 𝒜 ⊆ 𝐽 — from which we deduce the uniqueness
of the maximal 𝒥-class — and 𝐽 is an ℛ-class.

Moreover, for 𝑋 ∈ 𝐽, by ¬(ii) we get 𝑋 = 𝑌 ⋅ 𝑍𝜔 ≤𝒥 𝑍𝜔 for some 𝑌,𝑍 ∈
Satord+

grp (𝒜), so 𝑋 ≤𝒥 𝑍 and thus, by 𝒥-maximality of 𝑋, 𝑋 𝒥 𝑍, from which we get
𝑍 𝒥 𝑋 ≤𝒥 𝑍𝜔 ≤𝒥 𝑍 so 𝐽 is 𝜔-stable.

Since 𝐽 is 𝜔-stable, it is ℋ-trivial by prop. 2.23, and thus ℒ-trivial since 𝐽 is
an ℛ-class. Furthermore, since 𝐽 is 𝜔-stable, it is regular, so every ℒ-class must
contain an idempotent. By ℒ-triviality, it follows that 𝐽 only contains idempotents.

For 𝐸, 𝐹 ∈ 𝐽, since 𝐸 ℛ 𝐹 are idempotents, we have 𝐸 ⋅ 𝐹 = 𝐹. Together with
the 𝜔-stability of 𝐽, it yields that any product of elements of 𝐽 stays in 𝐽 — more
precisely, if 𝜅 is a limit ordinal, then 𝜋((𝑤𝜄)𝜄<𝜅) is the unique element of 𝐽 that can
be written as an 𝜔-power, and otherwise 𝜋((𝑤𝜄)𝜄<𝜅) = 𝑤𝜃 where 𝜃 is the greatest
position in 𝜅. Hence, the restriction of the product of Satord+

grp (𝒜) indeed yields a
map 𝜋 ∶ 𝐽𝗈𝗋𝖽+ → 𝐽 — said otherwise, 𝐽 is an ordinal subsemigroup of Satord+

grp (𝒜).
The equality 𝐽 = Satord+

grp (𝐽) follows from 𝐽 being an ℋ-trivial (and hence group-
trivial) ordinal semigroup. But since 𝒜 ⊆ 𝐽 we get Satord+

grp (𝒜) ⊆ Satord+
grp (𝐽) = 𝐽 so

Satord+
grp (𝒜) = 𝐽 is indeed an ℒ-trivial ℛ-class.

In fact the fo-definability of 𝜋 is
also a corollary of Bedon’s
theorem since 𝐽 is aperiodic — but
this is overkill.

Finally, the fo-definability of 𝜋 ∶ 𝒜𝗈𝗋𝖽+ → Satord+
grp (𝒜) is straighforward: for

𝑋 ∈ Satord+
grp (𝒜), if 𝑋 is not the unique 𝜔-power of Satord+

grp (𝒜), then the preimage
of 𝑋 is the set of words that have a last position, and this position is labelled by 𝑋
; if 𝑋 is the unique 𝜔-power of Satord+

grp (𝒜) — i.e. the unique element of ℒ𝜔(𝐽) —,
then the preimage of 𝑋 is the set of words that do not have a last position, or that
have a last position and this position is labelled by 𝑋.
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B.6. Proof of theorem 2.41

As for finite words, we prove that the product can be fo-approximated before
showing the general result. First, we need to treat the case of words of length
𝜔. We fix a finite ordinal semigroup 𝑈.

LemmaB.4. This lemma corresponds to [PZ16,
prop 10.2]

For every𝒜 ⊆ 𝒫(𝑈), there exists an fo-definable function �̂� ∶ 𝒜𝜔 →
Sat𝜔grp(𝒜) such that 𝜋(𝑤) ⊆ �̂�(𝑤) for every 𝑤 ∈ 𝒜𝜔.

Proof. This is not a typo.Proof by induction on |𝒜| and | Sat+grp(𝒜)|.

Y First case: |𝓐| = 𝟏. Then 𝒜𝜔 consists of a single word, so every map
whose domain is 𝒜𝜔 is fo-definable.

Y Second case: |𝓐| ≥ 𝟐. By induction principle for finite words (lem. 1.13),
either (i) there exists 𝑎 ∈ 𝒜 such that 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜), or (ii) there exists
𝑎 ∈ 𝒜 such that Sat+grp(𝒜) ⋅ 𝑎 ⊊ Sat+grp(𝒜), or (iii) Sat+grp(𝒜) has a maximum.

YY First subcase: 𝑎 ⋅ Sat+grp(𝒜) ⊊ Sat+grp(𝒜) for some 𝑎 ∈ 𝒜. Let ℬ = 𝒜∖ {𝑎}
Note that a word of 𝒜𝜔 belongs to
𝐿𝑎 (resp. 𝐿ℬ) iff its letters
ultimately all belong to {𝑎} (resp.
ℬ).

and consider the decomposition 𝒜𝜔 = 𝐿𝑎 + 𝐿ℬ + 𝐿𝑎ℬ, with 𝐿𝑎 = ℬ∗(𝑎+ℬ+)∗𝑎𝜔,
𝐿ℬ = ℬ𝜔 + ℬ∗(𝑎+ℬ+)∗𝑎+ℬ𝜔 and 𝐿𝑎ℬ = ℬ∗(𝑎+ℬ+)𝜔. which can be done in first-
order logic. We define �̂� ∶ 𝒜𝜔 → Sat𝜔grp(𝒜) by defining its restrictions to 𝐿𝑎, 𝐿ℬ
and 𝐿𝑎ℬ — we focus on the last language, since the first two are easier to handle.
By lemma B.1 (fo-approximation of the generalised product for finite words), there
exists fo-definable functions

𝑔 ∶ 𝒜∗ → Sat∗grp(𝒜) 𝜋(𝑤) ⊆ 𝑔(𝑤) for all 𝑤 ∈ 𝒜∗,
𝑔𝑎 ∶ 𝑎+ → Sat+grp(𝑎) s.t. 𝜋(𝑤) ⊆ 𝑔𝑎(𝑤) for all 𝑤 ∈ 𝑎+,
𝑔ℬ ∶ ℬ+ → Sat+grp(ℬ) 𝜋(𝑤) ⊆ 𝑔ℬ(𝑤) for all 𝑤 ∈ ℬ+.

Moreover, since 𝑎 ⋅ Sat+grp(𝒜) ⊆ Sat+grp(𝒜), and hence Sat+grp(Sat+grp(𝑎) ⋅ Sat+grp(ℬ)) ⊊
Sat+grp(𝒜) by prop. 1.12, the induction hypothesis yields the existence of an fo-defi-
nable function

𝑓 ∶ (Sat+grp(𝒜) ⋅ Sat+grp(ℬ))𝜔 → Sat𝜔grp(Sat+grp(𝒜) ⋅ Sat+grp(ℬ))

such that 𝜋(𝑤) ⊆ 𝑓(𝑤) for every 𝑤 ∈ (Sat+grp(𝒜) ⋅ Sat+grp(ℬ))𝜔. Hence, one can
define

�̂��𝐿𝑎ℬ ∶ 𝐿𝑎ℬ → Sat𝜔grp((𝐴))
𝑤ℬ(𝑤𝑎,𝑖𝑤ℬ,𝑖)𝑖<𝜔 ↦ 𝑔(𝑤ℬ) ⋅ 𝑓([𝑔𝑎(𝑤𝑎,𝑖) ⋅ 𝑔ℬ(𝑤ℬ,𝑖)]𝑖<𝜔).

Moreover, one can define �̂��𝐿𝑎 and �̂��𝐿ℬ
by using the induction hypothesis on the

smaller alphabets {𝑎} and ℬ. Then𝜋(𝑤) ⊆ �̂�(𝑤) bymonotonicity of the generalised
product and �̂� is fo-definable since every function and every decomposition used
to define it are fo-definable.

YY Second subcase: Sat+grp(𝒜) ⋅ 𝑎 ⊊ Sat+grp(𝒜) for some 𝑎 ∈ 𝒜. Symmetric of
case the first subcase.

YY Third subcase: Sat+grp(𝒜) has a maximum. Let 𝑋 be this maximum. Then
𝑋𝜔 is the maximum of Sat𝜔grp(𝒜), so take �̂� ∶ 𝑤 ↦ 𝑋𝜔. This concludes the induc-
tion.
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Observe that the technical details and propositions used for the proof of B.4 are
the same as what were used to prove lemma B.1 (lemma for finite words). Notably,
the tool used to progress in the induction is the “induction principle” for finite
words. The case of all transfinite words — see the following lemma — is trickier:
even if the induction in itself is very similar to the induction for finite and omega
words, it relies on stronger properties — those that were established in §2.3, 2.4 and
2.5. Let 𝜋 ∶ 𝒫(𝑈)𝗈𝗋𝖽+ → 𝒫(𝑈) denote the generalised product of the finite power
ordinal semigroup 𝒫(𝑈).

Lemma B.5. For every 𝒜 ⊆ 𝒫(𝑈), there exists an fo-definable function �̂� ∶
𝒜𝗈𝗋𝖽+ → Satord+

grp (𝒜) such that 𝜋(𝑤) ⊆ �̂�(𝑤) for every 𝑤 ∈ 𝒜𝗈𝗋𝖽+.

Proof. Proof by induction on |𝒜| and | Satord+
grp (𝒜)|.

Y First case: |𝓐| = 𝟏. Then 𝒜𝗈𝗋𝖽+ is isomorphic to 𝜔1 ∖ {0}, so we can see
𝜋�𝒜𝗈𝗋𝖽+ as a morphism 𝜔1 ∖ {0} → ⟨𝒜⟩𝜋 =∶ 𝒮. For 𝑛 ∈ ℕ and 𝑘 ∈ ℕ>0, if 𝜔𝑛 ⋅ 𝑘
belongs to the maximal group 𝒢 in the semigroup generated by {𝜔𝑛}, then define
�̂�(𝜔𝑛 ⋅ 𝑘) ∶= ⋃𝒢, and otherwise, let �̂�(𝜔𝑛 ⋅ 𝑘) ∶= 𝜋(𝜔𝑛 ⋅ 𝑘). Let𝑚 ∈ ℕ be such that
𝜋(𝜔𝑚) = 𝜋(1)𝜌. Defining By convention, if 𝑎𝑖 = 0, �̂�(𝜔𝑚−1𝑎𝑖)

designated the neutral element of
Satord

grp(𝒜).�̂�(𝜔𝑚 ⋅ 𝛼𝑚+𝜔𝑚−1 ⋅ 𝑎𝑚−1+…+𝜔𝑎1+𝑎0) ∶= �̂�(𝜔𝑚) ⋅ �̂�(𝜔𝑚−1𝑎𝑚−1)⋯ �̂�(𝜔𝑎1) ⋅ �̂�(𝑎0)

for 𝛼𝑚 < 𝜔1 and 𝑎𝑚−1, … , 𝑎0 ∈ ℕ gives the desired property: we clearly have
𝜋(𝑤) ⊆ �̂�(𝑤), and moreover, �̂� is fo-definable — see lem. 2.30.

Y Second case: |𝓐| ≥ 𝟐. By theorem 2.36, either (i) 𝑎⋅Satord+
grp (𝒜) ⊊ Satord+

grp (𝒜)
for some 𝑎 ∈ 𝒜, or (ii) Satord+

grp (Sat𝜔grp(𝒜)) ⊊ Satord+
grp (𝒜), or (iii) 𝜋 ∶ 𝒜𝗈𝗋𝖽+ → ⟨𝒜⟩⋅,𝜔

is fo-definable.

YY First subcase: 𝑎⋅Satord+
grp (𝒜) ⊊ Satord+

grp (𝒜) for some 𝑎 ∈ 𝒜. Let ℬ = 𝒜∖{𝑎}.
Then 𝒜𝗈𝗋𝖽 = ℬ𝗈𝗋𝖽(𝑎𝗈𝗋𝖽+ℬ𝗈𝗋𝖽+)𝗈𝗋𝖽𝑎𝗈𝗋𝖽 and proposition 2.34 yields

Satord+
grp (Satord+

grp (𝑎) Satord+
grp (ℬ)) ⊊ Satord+

grp (𝒜) ∶

thus we can construct �̂� (nearly) exactly as what we did for finite words — see §B.1.

YY Second subcase: Satord+
grp (Sat𝜔grp(𝒜)) ⊊ Satord+

grp (𝒜). First, notice that The equality 𝒜𝗈𝗋𝖽 = (𝒜𝜔)𝗈𝗋𝖽𝒜∗

comes from the fact that every
countable ordinal can be written as
𝜔 ⋅ 𝛼 + 𝑛 with 𝛼 < 𝜔1 and 𝑛 ∈ ℕ.

𝒜𝗈𝗋𝖽 =
(𝒜𝜔)𝗈𝗋𝖽𝒜∗. Moreover, by lem. B.1 (finite words) and B.4 (omega words), there
exists two fo-definable functions

𝑔∗ ∶ 𝒜∗ → Sat∗grp(𝒜) s.t.
𝜋(𝑤) ⊆ 𝑔∗(𝑤) for all 𝑤 ∈ 𝒜∗,

𝑔𝜔 ∶ 𝒜𝜔 → Sat𝜔grp(𝒜) 𝜋(𝑤) ⊆ 𝑔𝜔(𝑤) for all 𝑤 ∈ 𝒜𝜔.

Moreover, since Satord+
grp (Sat𝜔grp(𝒜)) ⊆ Satord+

grp (𝒜), by induction hypothesis, there
exists a map

𝑓 ∶ Sat𝜔grp(𝒜)𝗈𝗋𝖽+ → Satord+
grp (Sat𝜔grp(𝒜))

such that 𝜋(𝑤) ⊆ 𝑓(𝑤) for all 𝑤 ∈ Sat𝜔grp(𝒜)𝗈𝗋𝖽+. Then define �̂� as follows:

�̂� ∶ 𝒜𝗈𝗋𝖽+ → Satord+
grp (𝒜)

(𝑤𝜄)𝜄<𝜅𝑤∗ ↦ 𝑓([𝑔𝜔(𝑤𝜄)]𝜄<𝜅)𝑔∗(𝑤∗).
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Then 𝜋(𝑤) ⊆ �̂�(𝑤) by monotonicity of the generalised product and �̂� is fo-defina-
ble since 𝑓, 𝑔∗ and 𝑔𝜔 are fodefinable, and since the first letter of each block of size
𝜔 in the non-ambiguous decomposition 𝒜𝗈𝗋𝖽 = (𝒜𝜔)𝗈𝗋𝖽𝒜∗ can be recognised in
first-order logic by the formula lim(𝑥).

YY Third subcase: 𝜋 is fo-definable. Then take �̂� ∶= 𝜋. This concludes the
induction.

Finally, theorem 2.41 can be immediately deduced from lemma B.5 — the proof
is the same as what was done for finite words.
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C. Solutions of some exercises

C.1. Exercise 1.11

1. Let 𝑉 ∶= ℤ/2ℤ × ℤ/2ℤ, and consider the semigroup morphism 𝜑 ∶ 𝐴+ →
𝑉 that sends 𝑤 to (|𝑤|𝑎 mod 2, |𝑤|𝑏 mod 2). Since 𝑉 is finite and 𝐿 =
𝜑−1[(0̄, 0̄)], it follows that 𝐿 is regular. Moreover 𝑉 is indeed the syntac-
tic semigroup of 𝐿 since the only semigroups dividing 𝑉 are (isomorphic to)
the trivial group and ℤ/2ℤ, which trivially cannot recognise 𝐿.

2. Notice that 𝑉 is abelian, so 𝒥=ℋ. The groups ℤ/2ℤ × {0}, {0} × ℤ/2ℤ and
{(0̄, 0̄), (1̄, 1̄)} all belong to Sat+grp(𝑉), and since it is closed under product, it
follows that Sat+grp(𝑉) contains every subset of 𝑉 of cardinality 2. Moreover,
since 𝑉 is a group, 𝑉 ∈ Sat+grp(𝑉). Then, one can check that by product and
by group merging, we cannot obtain a set of cardinality 3.
Hence, the Sat+grp(𝑉) has three ℋ-classes, that are linearly ordered: the max-
imal ℋ-class contains every singleton, the intermediate class contains every
subset of cardinality 2, and the minimal ℋ-class contains only 𝑉.

C.2. Exercise 1.20

𝑎2∗ ,
𝑎3

𝑎

Figure 12: Egg-box diagram of the
syntactic semigroup of 𝑎(𝑎𝑎)+.

The syntactic semigroup 𝑆𝐿 of 𝑎(𝑎𝑎)+ is represented in figure 12. Then Sat+grp(𝑆𝐿)
has four elements: {𝑎}, {𝑎2}, {𝑎3} and {𝑎2, 𝑎3}. There is not a unique map �̂� that
is fo-definable and such that 𝜑(𝑤) ∈ �̂�(𝑤) for all 𝑤: for example, one can take
�̂�1(𝑎) ∶= {𝑎} and �̂�1(𝑎𝑛) = {𝑎𝑎, 𝑎𝑎𝑎} for 𝑛 ≥ 2, or one can take �̂�2(𝑎𝑛) ∶= {𝑎𝑛} for
𝑛 ≤ 42 and �̂�2(𝑎𝑛) ∶= {𝑎𝑎, 𝑎𝑎𝑎} for 𝑛 > 42. In all cases, there is always some 𝑛 such
that both �̂�(𝑎) and �̂�(𝑎𝑛) are singletons while �̂�(𝑎𝑛+1) is a 2-element set. It follows
that �̂�(𝑎)�̂�(𝑎𝑛) ≠ �̂�(𝑎𝑛+1).

C.3. Exercise 2.11

1. This amounts to showing that for every ordinals 𝛼, 𝛽 ∈ 𝜔1, if 𝛼, 𝛽 < 𝜔𝜔 then
𝛼 + 𝛽 < 𝜔𝜔 and 𝛼 ⋅ 𝜔 < 𝜔𝜔. Both inequalities follow from the fact that
𝛼 < 𝜔𝜔 implies 𝛼 < 𝜔𝑛 for some 𝑛 ∈ ℕ — see, e.g., [Deh17, prop. II.3.3.3].

2. If 𝐿1 = 𝐿2, then they coincide on words of length strictly less than 𝜔𝜔. Con-
versely, if 𝐿1 ∩ 𝐴[0,𝜔

𝜔[ = 𝐿2 ∩ 𝐴[0,𝜔
𝜔[, let 𝜑 ∶ 𝐴𝗈𝗋𝖽+ → 𝑆 be a surjective

morphism recognising both 𝐿1 and 𝐿2. The previous question and thm. 2.8
yields

𝜑 [𝐴[0,𝜔
𝜔[] ⊆ 𝑆 = ⟨𝜑[𝐴]⟩𝜋 = ⟨𝜑[𝐴]⟩⋅,𝜔 = 𝜑[⟨𝐴⟩⋅,𝜔] ⊆ 𝜑 [𝐴[0,𝜔

𝜔[]

from which the conclusion follows.

C.4. Exercise 2.16

Let 𝐿1 ∶= (𝑎𝑏)𝗈𝗋𝖽+ and 𝐿2 ∶= 𝐴𝗈𝗋𝖽+ ∖ (𝐴𝗈𝗋𝖽𝑎𝑎𝐴𝗈𝗋𝖽 + 𝐴𝗈𝗋𝖽𝑏𝑏𝐴𝗈𝗋𝖽). 0∗

𝑏𝑎∗ 𝑏 (𝑏𝑎)𝜔∗

𝑎 𝑎𝑏∗ (𝑎𝑏)𝜔∗

Figure 13: Egg-box diagram of the
syntactic ordinal semigroup of 𝐿2.

First, notice that 𝐿2 ⊋ 𝐿1 since 𝐿2 contains words like (𝑏𝑎)𝜔 or even (𝑎𝑏)𝜔(𝑏𝑎)𝜔.
Then the syntactic ordinal semigroup of 𝐿2, whose egg-box diagram is represented
in figure 13, contains seven elements:
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– 0, recognising words that do not belong in 𝐿2 ;
– 𝑎, recognising words that must be followed by a ‘𝑏’ and preceded by either

an ‘𝑏’ or a limit ordinal — in this context, by “limit ordinal”, we mean “a word
of 𝐿2 whose domain is a limit ordinal, i.e. either (𝑎𝑏)𝜔 or (𝑏𝑎)𝜔.” ;

– 𝑏, recognising words that must be followed by an ‘𝑎’ and preceded by an ‘𝑎’
or a limit ordinal ;

– 𝑎𝑏, recognising words that must be followed by an ‘𝑎’ and preceded by a ‘𝑏’
or a limit ordinal ;

– 𝑏𝑎, recognising words that must be followed by an ‘𝑏’ and preceded by a ‘𝑎’
or a limit ordinal ;

– (𝑎𝑏)𝜔, recognising words that can be followed by anything, and must be pre-
ceded by a ‘𝑏’ or by a limit ordinal ;

– (𝑏𝑎)𝜔, recognising words that can be followed by anything, and must be pre-
ceded by an ‘𝑎’ or by a limit ordinal.
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