Quantitative algo on End	ebraic infini	ch .te	teria Is.	ation	8 8 8			
Den Morran								
REM Morvan LaBRI, U. Bdx https://morvan.xyz								
https://morvan.xyz								
				N`c	٩			
	· · · ·							
based on joint works	with	and						
based on joint works Thomas Colcombet & So IRTE, U. Paris-C	ite .	Sect						

Finite words: monorides and monodie second-order logie Theorem [Bichi - Elgot - Tratethenboot x '58]: For LE 2*, the following are equivalent: - L is requirer; - L is recognised by a finite monoid; - L is described by a formula of MSOT<7. De MSOT<7 on finite words: Languege defined by $\oint \in \Pi \otimes \mathbb{R}^{2}$: $\int u \in \mathbb{Z}^{n} | u \models \oint \mathcal{G}$ Signature: <(a)aer, <> $u \models \exists x. \exists y. x < y$ $\land a(x) \land b(y)$ unory predicate Models: words us Σ^{\star} variables ~~> positions a(x) ~~> v_x = a \mathbb{E} x-th letter of u x < y ~~> nutural order (=) u = [m]a/m]b/m] CI LE E XaIT DEK

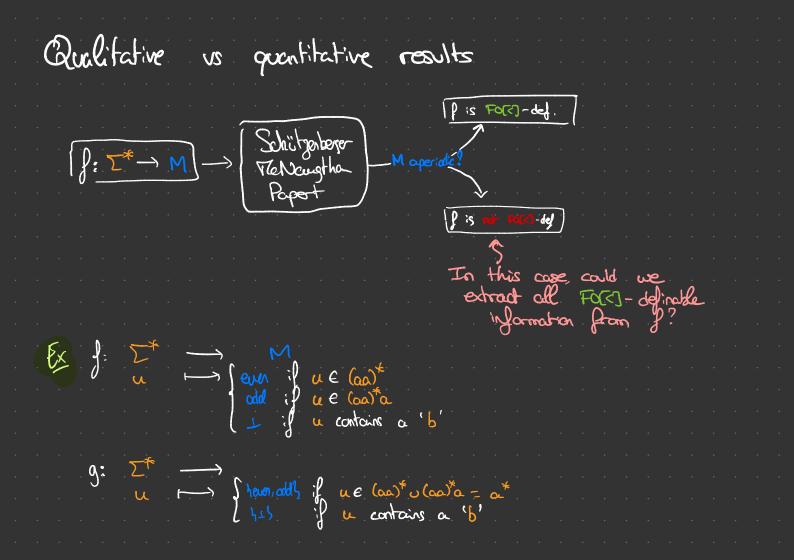
De monoid (M, ., 1) element - any greep - ZX Ex: - (10,13, max, 0) Ex ever odd ___ $(1) = \frac{1}{2} + \frac{1}{2}$ odd ever 1 A) monoid M recognises $L \subseteq \Sigma^{*}$ [(uv) = f(uv) = f(uv) + f

Theorem LBichi-Elgot-Tradethenborot]: For LEIX, the following are equivalent: - L is requirer; - L is recognised by a finite monoid; - L is described by a formula of MSOT<7. EX L = (00)^{*}, on Z=ha,bl. Goul: Find D = MSOT<) that defines L. 1) Check that the word doo not contain a 'b' aaa V aaaaa X 2) Gubb a set X of position $z \equiv 0 \mod 2$; 7) is the last position $\operatorname{odd} ?$ 3X. the first poside belongs a X contains every other position the last parions not in X Λ

First-order logic FO[X] « la logique qu'il vous fount ! » - Thomas C. FOTK] N MSOTK] with no set quantifiers. Question: Which languages L= Et can be defined in FOC<]? Ex Cta ZX6 ZX can be defined in FOC<] Corer (aa)* cannot be defined in PO[<] Theorem [Schützenberger '5 & Mc Naughten Papert '1] For any LEZ, the following are equivalent: - L is definable in FOT<) - L is star-free of this talk - L'is recognised by a finite aperiodic monoid

Apericalic manoids A finite monoid M is aperiadic when every grap G=M is trivial. (Syntactic) manoid of (aa)* on Ex even add <u>+</u> odd odd even s 7 Graps: 115, heven, odd), hevens, hodds

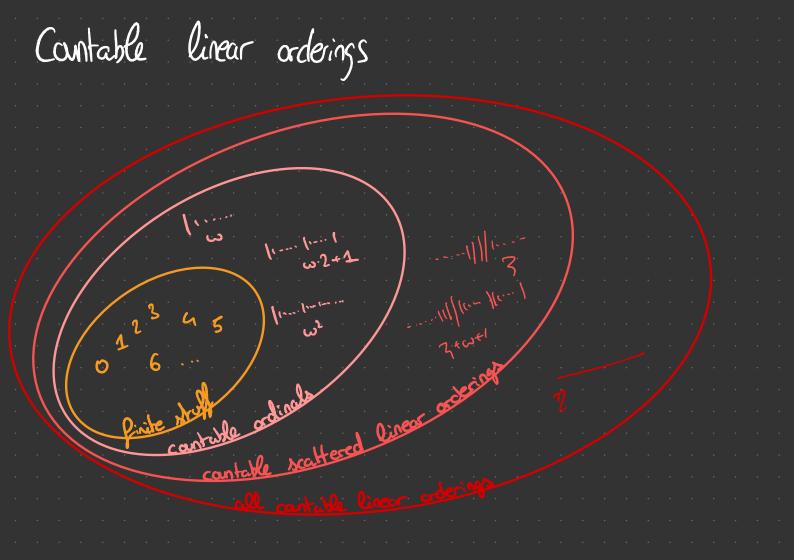
Deciding first-order definabil	2. ty
Def A morphism $f: T^* \rightarrow M$ is $FOTCI - definable$ be written as $T^* M$ $f: u \rightarrow \int M if uc Ls$ $M_{n} : f uc Ls$	where $L_{1,,L_n} \in FO[5]$.
Ex $f: \mathcal{T}^*$ \longrightarrow $f: \mathcal{T}^*$ \longrightarrow $f: \mathcal{T}^*$ $f: $	even even add <u>r</u> even even odd <u>r</u> <u>add add even <u>r</u></u>
is not FOT~]-definctle. (Reformulation of) Schützenberger-McNaughter A morphism f: [*→ M ^c is FOT~]- M is aperiodic.	· · · · · · · · · · · · · · · · · ·



An FOCKI-approximent of such that: - 9 is FOCKI-definethe - Yue It, P(u) e g(u) $P: \mathcal{T}^* \to \mathcal{M}$ is a function $g: \mathcal{T}^* \to \mathcal{P}(\mathcal{H})$ $\frac{\mathbb{R}_{h}}{9: u} \xrightarrow{\mathbb{C}^{+}} \mathbb{P}(\mathcal{H})$ is always an FOTO - approximent -s nation of "minimal" approximants (not detailled here) The Ethendeell '88] The following specification is computable. $(p: z^* \rightarrow M) \mapsto (g: z^* \rightarrow Poin)$ minimal FOT- approximation) g is obtained from f by "morging groups." Idea

Finite - Q		è charact	erisc ^o of	ο τ τ τ τ τ τ τ τ τ τ τ τ τ		nëtzerbege	165 & T Par	CNughta ot 171	
	vantitati	Fota » ive char to obtai	aterisa	of Fat	د). ۲			· · · ·	
C Perrin '84] & } }	E Place -	Zeiton '16		scheription	to ω-c		have you ever heard about Ariane V ?!	

Beyond finite / w-words God: undestand logics (FOT<], TSO[~],...) on (2) Cantable ordinals: (baoab ab $\omega + 2$ $\overline{3}$ 6 2 W MSOES/FOES] on countable ordinal words: "words with no last position" Hz. Jy, z Ky " every a is followed by infinitely many b's":



FOT<] is not very expressive... Q? Can we find a formula \$ \$ FO[<] defining all finite words? ie. Vu word over lineer, u = 5 iff u e tre. order <u>ພ</u>

Conclusion: c	characterisations g	For<]	
Recall: give ue -	n a morphism P. Z. are interested in: is f definable in can we compute	$ \xrightarrow{\bullet} M (or \begin{array}{c} c \\ some \\ some \\ c \\ $	rent of 8?
This is	always decidab	le !	
Domain	Characterisation: forbidden patterns	Qualitative	Quentitative
Finite	no graps	[Schützenbeger '65 & TheNoughten-Papert '71]	(Horchell 1887)
Omega-	no grafs	[Perrin '84]	[Flace-Zeitan '16]
Cat. ordiacles	no grafs	[Bedon '01]	(Colcombet- ver Gool-Morver 12]
Cat scattered words	no groups, no gops	(Bès-Carton 11]	[Calcombet - Morron]. (unpublished)]
Cut linear orderings	no graps, no gaps, no shuffle	- [Colcombet-Sreejith '15]	cropsing work