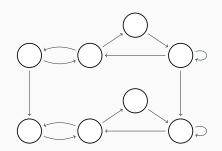
Universal algorithms for parity games and nested fixpoints

ANR DELTA meeting

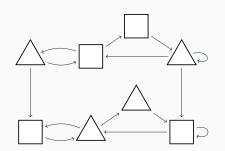
Marcin Jurdziński¹, <u>Rémi Morvan</u>², K. S. Thejaswini¹ June 28, 2021, in Paris!

¹University of Warwick

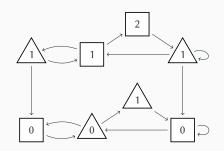
²École normale supérieure Paris-Saclay



$$G = \langle V, E, V_{\text{Even}}, V_{\text{Odd}}, \pi : V \rightarrow [0, d] \rangle$$

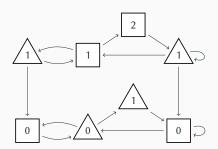


$$G = \langle V, E, V_{\text{Even}}, V_{\text{Odd}}, \pi : V \to [0, d] \rangle$$



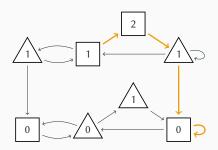
$$G = \langle V, E, V_{\text{Even}}, V_{\text{Odd}}, \ \pi : V \rightarrow \llbracket 0, d \rrbracket \rangle$$

Parity games

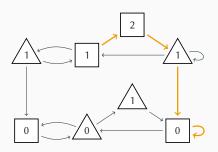


• Play: $(v_i)_{i\in\mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.

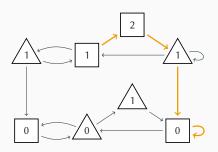
Parity games



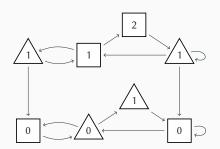
• Play: $(v_i)_{i\in\mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.



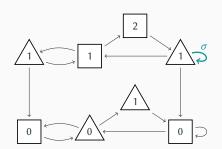
- Play: $(v_i)_{i\in\mathbb{N}}$ s.t. $\forall i$, $(v_i, v_{i+1}) \in E$.
- Even wins $(v_i)_{i \in \mathbb{N}}$ iff the maximal priority occurring infinitely often is even.



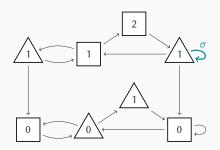
- Play: $(v_i)_{i\in\mathbb{N}}$ s.t. $\forall i$, $(v_i, v_{i+1}) \in E$.
- Even wins $(v_i)_{i \in \mathbb{N}}$ iff the maximal priority occurring infinitely often is even.



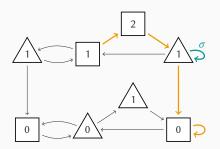
• Memoryless strategy for Odd: $\sigma: V_{\text{Odd}} \rightarrow V \text{ s.t. } (v, \sigma(v)) \in E$ for every vertex v.



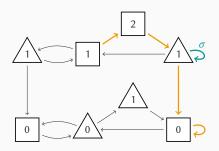
• Memoryless strategy for Odd: $\sigma: V_{\text{Odd}} \rightarrow V \text{ s.t. } (v, \sigma(v)) \in E$ for every vertex v.



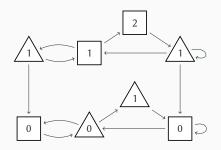
- Memoryless strategy for Odd: $\sigma: V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.
- A play $(v_i)_{i\in\mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$

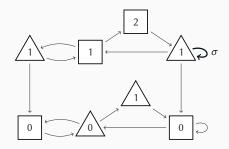


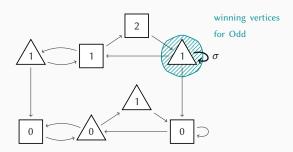
- Memoryless strategy for Odd: $\sigma: V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.
- A play $(v_i)_{i\in\mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$

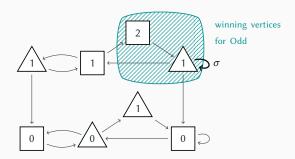


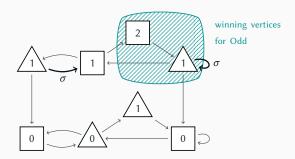
- Memoryless strategy for Odd: $\sigma: V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.
- A play $(v_i)_{i\in\mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$

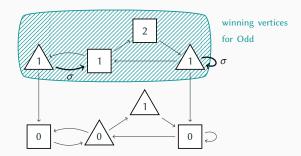


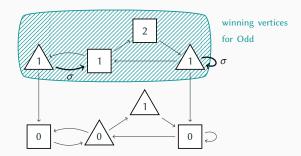


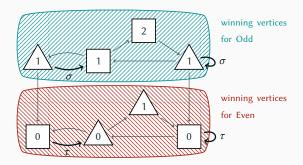












SOLVING PARITY GAMES:

Inputs: G: parity game,

 $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

SOLVING PARITY GAMES:

Inputs: G: parity game,

 $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

• In NP \cap coNP.

SOLVING PARITY GAMES:

Inputs: G: parity game,

 $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

- In NP \cap coNP.
- Believed to be in P...

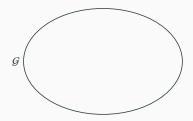
SOLVING PARITY GAMES:

Inputs: G: parity game,

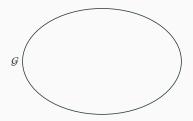
 $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

- In NP \cap coNP.
- Believed to be in P...
- Best known upper bound: quasipolynomial time $O(n^{\log(d)})$ ['17 Calude-Jain-Khoussainov-Li-Stephan]

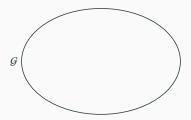


How to compute the winning vertices of Odd?



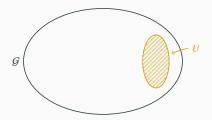
How to compute the winning vertices of Odd?

1. Identify a "small" winning set *U* for Odd.



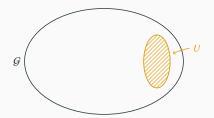
How to compute the winning vertices of Odd?

1. Identify a "small" winning set *U* for Odd. How???



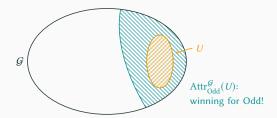
How to compute the winning vertices of Odd?

1. Identify a "small" winning set *U* for Odd. How???



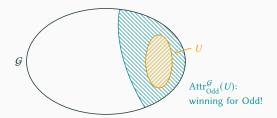
How to compute the winning vertices of Odd?

- 1. Identify a "small" winning set *U* for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.



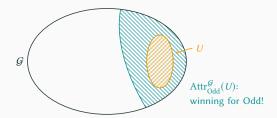
How to compute the winning vertices of Odd?

- 1. Identify a "small" winning set *U* for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.



How to compute the winning vertices of Odd?

- 1. Identify a "small" winning set *U* for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.



How to compute the winning vertices of Odd?

- 1. Identify a "small" winning set *U* for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

• d greatest priority; wlog. d is even.

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

- d greatest priority; wlog. d is even.
- If Odd wins from v, how many vertices of priority d will we see?

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

- d greatest priority; wlog. d is even.
- If Odd wins from v, how many vertices of priority d will we see?
 - none
 - · at least one, but finitely many
 - · infinitely many

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

- d greatest priority; wlog. d is even.
- If Odd wins from v, how many vertices of priority d will we see?
 - none
 - · at least one, but finitely many
 - · infinitely many

How to compute the set of v s.t. Odd can win from v without ever seeing a vertex of priority d?

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set *U* for Odd?

McNaughton-Zielonka's answer:

- d greatest priority; wlog. d is even.
- If Odd wins from v, how many vertices of priority d will we see?
 - none ← easy to identify!
 - · at least one, but finitely many
 - infinitely many

How to compute the set of v s.t. Odd can win from v without ever seeing a vertex of priority d? It is the set of winning vertices for Odd in the game

$$\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Even}}^{\mathcal{G}}(\pi^{-1}[d]).$$

Recursive algorithm. At each call: fewer priorities or fewer vertices.

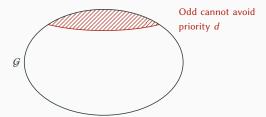
Recursive algorithm. At each call: fewer priorities or fewer vertices.

- 1. Identify a "small" winning set *U* for Odd.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Od}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$. If

Recursive algorithm. At each call: fewer priorities or fewer vertices.

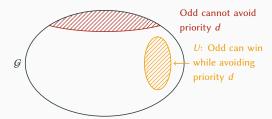
- 1. U = vertices from which Odd can win while avoiding d.
- **2.** Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



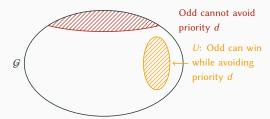
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$. If

Recursive algorithm. At each call: fewer priorities or fewer vertices.



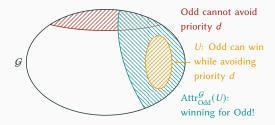
- 1. U = vertices from which Odd can win while avoiding d.
- **2.** Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



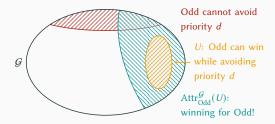
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



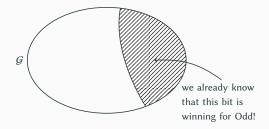
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- **3.** Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



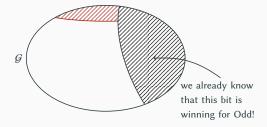
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



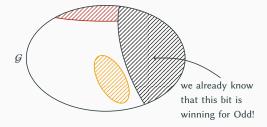
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr^{\mathcal{G}}_{Odd}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



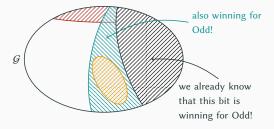
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr^{\mathcal{G}}_{Odd}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



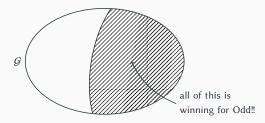
- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr^{\mathcal{G}}_{Odd}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr^{\mathcal{G}}_{Odd}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

Recursive algorithm. At each call: fewer priorities or fewer vertices.



- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

McNaughton-Zielonka's algorithm: correctness

• Correctness: by construction.

McNaughton-Zielonka's algorithm: correctness

• Correctness: by construction.

• Completeness: ???

McNaughton-Zielonka's algorithm: correctness

- Correctness: by construction.
- Completeness: ???

Need to prove: "if there is no vertex from which Odd can win while avoiding d, then there is no winning vertex for Odd".

- Correctness: by construction.
- Completeness: ???
 Need to prove: "if there is no vertex from which Odd can win while avoiding d, then there is no winning vertex for Odd".
 Recall that: "If Odd wins from v, how many vertices of priority
 - none ← easy to identify!
 - · at least one, but finitely many
 - · infinitely many"

d will we see?

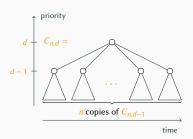
- Correctness: by construction.
- Completeness: ??? by construction!
 Need to prove: "if there is no vertex from which Odd can win while avoiding d, then there is no winning vertex for Odd".
 Recall that: "If Odd wins from v, how many vertices of priority d will we see?
 - none ← easy to identify!
 - · at least one, but finitely many
 - · infinitely many"

McNaughton-Zielonka's algorithm: complexity

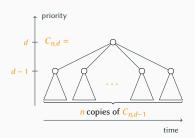
1. U = vertices from which Odd can winwhile avoiding d.

00000

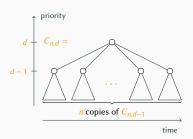
- Consider the set of vertices from which Odd can force the play to reach U, denoted $Attr_{Odd}^{\mathcal{G}}(U)$.
- 3. Iterate: compute the Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.



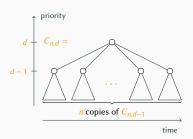
- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr Odd (*U*).
- Iterate: compute the Odd's winning vertices in G \ Attrodd(U). If you don't find any, stop.



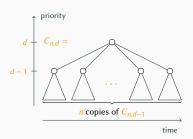
- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd} (*U*). Computable in poly. time!
- Iterate: compute the Odd's winning vertices in G \ Attrodd(U). If you don't find any, stop.



- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd} (*U*). Computable in poly. time!
- Iterate: compute the Odd's winning vertices in Attroduction of Action of Attroduction of State of



- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd} (*U*). Computable in poly. time!
- 3. Iterate: compute the Odd's winning vertices in $G \setminus Attr^{O}_{odd}(U)$. If you don't find any, stop. How many times will we need to iterate? At most n = |V|.



 Goal: solve a parity game whose priorities are [0, d].

- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.

- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.

- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority,

- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

Universal algorithm

- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

- 1. U = vertices from which Odd can win while avoiding d.
- Consider the set of vertices from which Odd can force the play to reach U, denoted Attr Gold (U).
- 3. Iterate: compute the Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$. If you don't find any, stop.

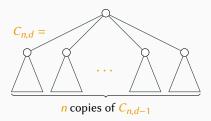
- Goal: solve a parity game whose priorities are [0, d].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

- 1. U = vertices from which Odd can win while avoiding d.
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr odd (*U*).
- Herate: compute the Odd's winning vertices in G \ \text{Attr} \frac{G}{Odd}(U).
 If you don't find any, stop.
 Iterate k times, where k is the number of children of the root of T.

McNaughton-Zielonka

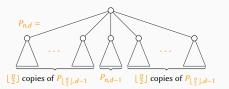
Fact: McNaughton-Zielonka's algorithm corresponds to the universal algorithm over (n, d)-complete tree.

Fact: McNaughton-Zielonka's algorithm corresponds to the universal algorithm over (n, d)-complete tree.

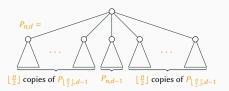


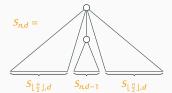
Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.



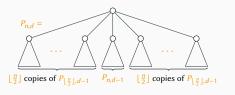
Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

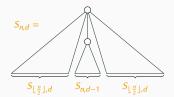




Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.





n: number of vertices & d: top priority

Universal algorithm: correctness & complexity

• Time complexity of the universal algorithm over $(\mathcal{G}, d, \mathcal{T})$: polynomial in \mathcal{G} and \mathcal{T} .

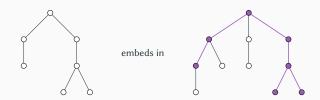
Universal algorithm: correctness & complexity

- Time complexity of the universal algorithm over $(\mathcal{G}, d, \mathcal{T})$: polynomial in \mathcal{G} and \mathcal{T} .
- Correctness: If \mathcal{T} is big enough, then the algorithm is correct.

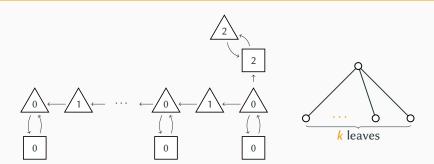
R. Morvan

Ordered trees

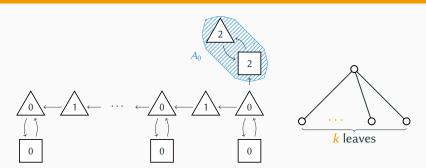
• Ordered trees: partially ordered by the "embedding" relation.



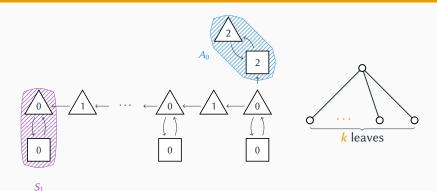
- Ordered trees: partially ordered by the "embedding" relation.
- Correctness: For every game \mathcal{G} , there exists a "small" tree $\mathcal{T}_{\mathcal{G}}$ such that the universal algorithm is correct whenever $\mathcal{T}_{\mathcal{G}}$ embeds in \mathcal{T} .



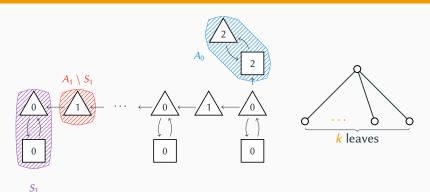
[Daviaud-Jurdziński-Lehtinen, '18]



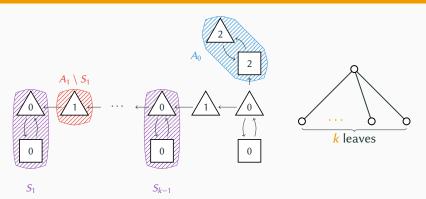
[Daviaud-Jurdziński-Lehtinen, '18]



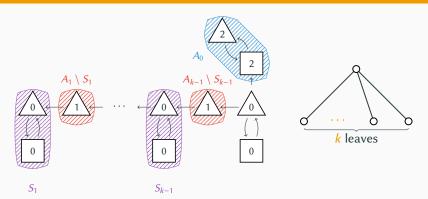
[Daviaud-Jurdziński-Lehtinen, '18]



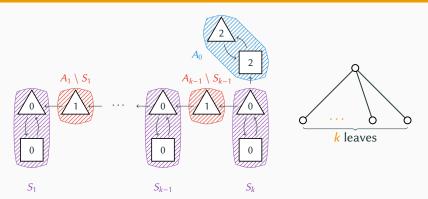
[Daviaud-Jurdziński-Lehtinen, '18]



[Daviaud-Jurdziński-Lehtinen, '18]

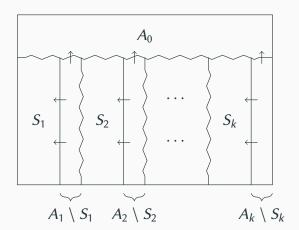


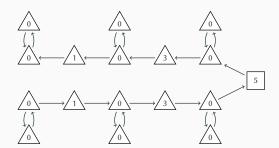
[Daviaud-Jurdziński-Lehtinen, '18]

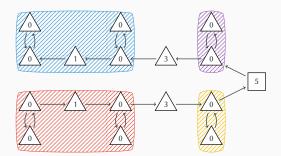


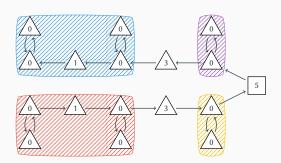
[Daviaud-Jurdziński-Lehtinen, '18]

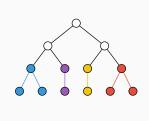
Attractor decomposition (bis)











Embeddable decomposition theorem

Theorem: If D is subset of the winning set W for Even, if Odd can force the play to stay in D, for every attractor decomposition tree \mathcal{T}_W of W, there exists an attractor decomposition tree \mathcal{T}_D of D such that: \mathcal{T}_D embeds in \mathcal{T}_W .

Embeddable decomposition theorem

Theorem: If D is subset of the winning set W for Even, if Odd can force the play to stay in D, for every attractor decomposition tree \mathcal{T}_W of W, there exists an attractor decomposition tree \mathcal{T}_D of D such that: \mathcal{T}_D embeds in \mathcal{T}_W .

Attractor decomposition trees describe the shape of the structure of a winning region.

• For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take T_G = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.

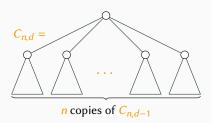
- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take T_G = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.
- · Not unique.

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take T_G = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.
- Not unique.
- · Polynomial size!

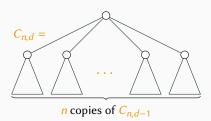
A tree is (n, d)-universal iff every tree with at most n leaves and
of height d embeds in it.

- A tree is (n, d)-universal iff every tree with at most n leaves and
 of height d embeds in it.
- Example: (*n*, *d*)-complete tree.

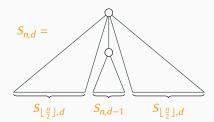
- A tree is (n, d)-universal iff every tree with at most n leaves and
 of height d embeds in it.
- Example: (n, d)-complete tree.



- A tree is (n, d)-universal iff every tree with at most n leaves and
 of height d embeds in it.
- Example: (n, d)-complete tree.
- Example: (n, d)-succinct tree.



- A tree is (n, d)-universal iff every tree with at most n leaves and
 of height d embeds in it.
- Example: (*n*, *d*)-complete tree.
- Example: (*n*, *d*)-succinct tree.



Universal trees & correctness

• For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.

Universal trees & correctness

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Works if \mathcal{T} is the product of two universal trees.

Universal trees & correctness

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Works if \mathcal{T} is the product of two universal trees.
- This applies to McNaughton-Zielonka '98, to Parys '19 and to Lehtinen-Schewe- Wojtczak '19.

Conclusion

