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SOLVING PARITY GAMES:
Inputs: G+ parity game,
v € VY: vertex.
Question:  Can player Even win from v, in G?

e In NP N coNP.
- Believed to be in P...

« Best known upper bound: quasipolynomial time O(n'°%(?))
[’17 Calude-Jain-Khoussainov-Li-Stephan]
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McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?
McNaughton-Zielonka’s answer:

« d greatest priority ; wlog. d is even.
« If Odd wins from v, how many vertices of priority d will we
see?
+ none <« easy to identify!
« at least one, but finitely many

-

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game
G\ Ateg (77'[d]).
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while avoiding d. One recursive call
with fewer priorities!

Consider the set of vertices from which
Odd can force the play to reach U,
denoted Attrgdd(U). Computable in
poly. time!

Iterate: compute the Odd’s winning
vertices in G ~ Attrgdd(U). If you don’t
find any, stop. How many times will we
need to iterate?
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U = vertices from which Odd can win
while avoiding d. One recursive call
with fewer priorities!

Consider the set of vertices from which
Odd can force the play to reach U,
denoted Attrgdd(U). Computable in
poly. time!

Iterate: compute the Odd’s winning
vertices in G ~ Attrgdd(U). If you don’t
find any, stop. How many times will we
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Goal: solve a parity game whose priorities 27 priority
are [0, d].

Principle: McNaughton-Zielonka’s 1
algorithm with fixed tree of recursive calls.

Inputs: G: game, d: top priority, 7: tree of 0

height d.

U = vertices from which Odd can win while avoiding d.
Consider the set of vertices from which Odd can force the play to reach U, denoted

G
Attrdy, (V).

Iterate: compute the Odd’s winning vertices in & Attrgdd(U).
If you don’t find any, stop.
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[ Jelele]e}

Goal: solve a parity game whose priorities 27 priority
are [0, d].
Principle: McNaughton-Zielonka’s 1
algorithm with fixed tree of recursive calls.
Inputs: G: game, d: top priority, 7: tree of 0
height d.
U = vertices from which Odd can win while avoiding d.
. Consider the set of vertices from which Odd can force the play to reach U, denoted
At (V).
; heOdd s winni icesing g
) Odd :

Hoyerdortfind-amy—stop:

Iterate k times, where k is the number of children of the root of 7.
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McNaughton-Zielonka

Fact: McNaughton-Zielonka’s algorithm corresponds to the
universal algorithm over (1, d)-complete tree.
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Fact: Parys ("19) and Lehtinen-Schewe-Wojtczak (*19) algorithms are
instances of the universal algorithm.
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Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys ("19) and Lehtinen-Schewe-Wojtczak (*19) algorithms are
instances of the universal algorithm.

= — Y
| %] copies of Plz)d-1 Prd-1 | 5] copies of Pla)d-1

Slzld Sn,d-1 Slzld

R. Morvan
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Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak (*19) algorithms are
instances of the universal algorithm.

= S
| %] copies of Plz)d-1 Pod-1 | 5] copies of Pl)d-1

Slzld Snd-1 Slzld

n: number of vertices & d: top priority
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Universal algorithm: correctness & complexity

+ Time complexity of the universal algorithm over (&. d, 7 ):
polynomial in G and 7.
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Universal algorithm: correctness & complexity

+ Time complexity of the universal algorithm over (&. d, 7 ):
polynomial in G and 7.

« Correctness: If 7 is big enough, then the algorithm is correct.
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Ordered trees

« Ordered trees: partially ordered by the “embedding” relation.
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Ordered trees

embeds in

« Ordered trees: partially ordered by the “embedding” relation.

« Correctness: For every game G, there exists a “small” tree 7
such that the universal algorithm is correct whenever 7
embeds in 7.

R. Morvan 15/23
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An attractor decomposition Wingye,(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdzinski-Lehtinen, *18]
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Embeddable decomposition theorem

Theorem: If D is subset of the winning set W/ for Even, if Odd can
force the play to stay in D, for every attractor decomposition tree
Ty of W, there exists an attractor decomposition tree 7, of D such
that: 7, embeds in 7.
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Embeddable decomposition theorem

Theorem: If D is subset of the winning set W/ for Even, if Odd can
force the play to stay in D, for every attractor decomposition tree
Ty of W, there exists an attractor decomposition tree 7, of D such
that: 7, embeds in 7.

Attractor decomposition trees describe the shape of the structure of
a winning region.

R. Morvan 19/23
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Correctness

R. Morvan

For every game G, there exists a “small” tree 7 such that the
universal algorithm is correct whenever 7; embeds in 7.

Take 7 = product of an attractor decomposition tree for Even
and an attractor decomposition tree for Odd.

Not unique.

Polynomial size!
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universal algorithm is correct whenever 7, embeds in 7.

« Works if 7" is the product of two universal trees.
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Universal trees & correctness

« For every game G, there exists a “small” tree 7 such that the

universal algorithm is correct whenever 7, embeds in 7.
« Works if 7" is the product of two universal trees.

+ This applies to McNaughton-Zielonka ’98, to Parys 19 and to
Lehtinen-Schewe- Wojtczak *19.
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