An Attractor Decomposition Meta-Algorithm for Parity Games

Rémi Morvan

September 16, 2020

École normale supérieure Paris-Saclay

joint work with Marcin Jurdziński

Attractor decomposition meta-algorithm 00000

McNaughton-Zielonka

Rémi Morvan 🛛 — 🛛 An Attractor Decomposition Meta-Algorithm for Parity Games

Attractor decomposition meta-algorithm 00000

McNaughton-Zielonka

Attractor decomposition meta-algorithm 00000

McNaughton-Zielonka

McNaughton-Zielonka

Tree of Even (resp. Odd) recursive calls : embeds in (n, d/2)-complete tree.

Parys and Lehtinen-Schewe-Wojtczak

- Similar to McNaughton-Zielonka.
- \approx McNaughton-Zielonka on non-complete trees.
- Those trees are universal!

Attractor decomposition meta-algorithm

Key ideas

- Meta-algorithm.
- Pair of trees: drives the recursive calls.
- Yields McNaughton-Zielonka, Parys and Lehtinen-Schewe-Wojtczak.

Key ideas

- Meta-algorithm.
- Pair of trees: drives the recursive calls.
- Yields McNaughton-Zielonka, Parys and Lehtinen-Schewe-Wojtczak.
- Goal: find a condition for the algorithm to be correct.

Attractor decomposition meta-algorithm

Attractor decomposition

Attractor decomposition meta-algorithm

Attractor decomposition

Dominion separation theorem

winning for Even according to the algo winning for Odd according to the algo

Dominion separation theorem

Dominion separation theorem

Questions?