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FO-DEFINABILITY:
Input: [ regular language
Question: Is L definable in FO?

Fact. For every FO-formula ¢,

there exists n € N such that for

all u € A*, we have:

- Non-trivial: (aa)* is not FO-definable.

- Decidable:  [Schiitzenberger '65 & U 1FF U™ = .
McNaughton-Papert '71].
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L, and L, are FO-separable whenever
there exists ¢ € FO st. forall w € L,
wE ¢ and forall w € Ly, w ¥ ¢.

Example: b*(aa)™ and (aa)™ can be
separated by 3x. b(x).

FO-SEPARABILITY:
Input: L1, L, regular languages

Question: Are Ly and L, FO-separable? \

FO-DEFINABILITY: reduces to
(L (L,A* < L))

Input: L regular language /
Question: Is L definable in FO?
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FO-separability (bis)

FO-separability is decidable: [Henckell ‘88 & Almeida '96], and [Place-Zeitoun "16].

what about infinite. words?

Domain . .
FO-definability FO-separability
(countable linear order)
w dec. [Perrin '84] dec. [Place-Zeitoun '16]
Ordinals dec. [Bedon '01] dec. [this talk!]
Scattered dec. [Bés-Carton '11]

- ? [fut |
Countable  dec. [Colcombet-Sreejith '15] ROk
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Finite words
0@0000

FO-definability: words of even length

(aa)* = ¢ '[0]

p: at - 727
W +— |w| mod 2

Every monoid recognising (aa)* must contain a non-trivial group
~» not FO-definable.
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FO-separability: example

Ly and L, are FO-separated by 3x. b(x).
L, and L5 are not FO-separable (Schiitzenberger-McNaughton-Papert thm).
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FO-SEPARABILITY:
Input: L4, L, regular languages
Question: Are Ly and L, FO-separable?

- FO-SEPARABILITY is decidable. whg?

- Some computable object Sat™(A) allows to decide FO-SEPARABILITY.
[Henckell '88 & Almeida '96]

- Satt(A): algebraic structure with union of groups.

- It characterises “FO-indistinguishability”.
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Transfinite regular languages

what does it mean for [ C A% 1o be reﬂularz

- Definition: L is regular when it can be defined in MSO.
-

- Regular languages can be finitely represented.
- Example: Finite words are defined by “evers position but the first is the
successor of someone and there is a last position” € FO.

Algebraic notion for transfinite languages:

(finitary) ordinal monoid: (M, -, 1, =) + axioms
monoid map M — M

Example: A°™ all transfinite words over A...
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Transfinite regular languages (bis)

Theorem [Bedon "98]: L C A°™ regular iff L recognised by a finite ordinal monoid.
Example: A* is recognised by the ordinal monoid:

i
' |
i

f |
P e [

Theorem [Bedon '01]: L C A°™ is FO-definable iff it is recognised by a finite
aperiodic ordinal monoid.

emPthj word

£inite. words

infinite words

&
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Words over countable ordinals
[ee]ele] Tele]

FO-separability: generalising Henckell's theorem

Finite words: Transfinite words:

To decide FO-separability, compute the “saturation”.

Saturation: algebraic structure, closed under: To go from finite
- product, - product, words to
- union of groups. - w-iteration, transfinite words,
- union of groups. Just add an w
Notation: Sat*(A) Notation: Sat®™*(A) everywhere.

Henckell & Almeida: this algorithm is correct for finite words.
Our theorem: —"—— for transfinite words!

T. Colcombet, S. van Gool & R. Morvan 15/22
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FO-separability: example

Leven = “the longest finite suffix of the word is of even length” = (a“)°"%(aa)* and
Logqg = “the longest finite suklix of the word is of odd lenﬁfh" = (a¥ )Ord(aa)*a

are not FO-separable: to distinguish them, we need to count modulo 2!

empty word \ : € a aa a*¥ a“a
w w

finite & odd € < 4 aa-a CZ’ “

a a aa a a¥ a“a

finite & even

w w
infinite & even suffix & 2l d 2(eEe aa

av a“ a%¥a a¥ a¥ a%a

infinite & odd suflix
\> a“a | a¥a  a¥ a¥a a¥ a%a
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Logqg = “the longest finite. suffix of the word is of odd lenﬁfh" = (a¥ )Ord(aa)*a

are not FO-separable: to distinguish them, we need to count modulo 2!

15 a aa a* a“a

Q“"P’fﬂ word :

finite & odd \ €

finite & even “

infinite & even suffix aa
w

infinite & odd suklix &
\ a“a

T. Colcombet, S. van Gool & R. Morvan
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0O0000e0

Leven = “the longest finite suffix of the word is of even length” = (a“)°"%(aa)* and
Logqg = “the longest finite. suffix of the word is of odd lenﬁfh" = (a¥ )Ord(aa)*a

are not FO-separable: to distinguish them, we need to count modulo 2!

empty word \ : € a aa a“ a“a
w w
finite. & odd < < | N ¢ o

|
CoUe.
w T greve
Caite & evens a a laa a W

w w
infinite & even suklix aa aa e a ¢ daa
a | a¥ a¥a a¥ a¥ a%a
a“a | a¥a a¥ a¥a a¥ a%a

infinite & odd suklix \

Sat”“*(A) contains: {a}, {aa}={a}-{a}, {a*}={a}*, {a,aa}=goug,
{a“a,a*} = {a*} - {a,aa}.
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Words over countable ordinals
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Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:
Input: L4, L, transfinite regular languages
Question: Are Ly and L, FO-separable?

- FO-SEPARABILITY OVER ORDINALS is decidable. whgf.

- A computable object Sat°™®*(A) allows to decide FO-SEPARABILITY OVER
ORDINALS.

- Sator*+(A): algebraic structure with union of groups and w-iteration.

- It characterises “FO-indistinguishability”.

T. Colcombet, S. van Gool & R. Morvan 17/22
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Glimpse of the proof for finite words (2)
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Glimpse of the proof for finite words (2)

Fact. For all A-generated monoid M: Lemma. For every alphabet A, either:
i. Ja€A a-MCM,or i. Ja €A, a-Satt(A) € Satt(A), or
i. JacA, M-aCM,or ii. da € A, Sat™(A)-a C Sat™(A), or

iii. Misa group. iii. Sat™(A) has some maximum.
monoids o N\ N N — “monoids with union of groups”

“arou\os are monoids in which £t and r\g\ﬁ multiplication is b’&ecﬂve."

Groups and monoids are symmetric objects.
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Towards a proof for transfinite words...

Proof for transfinite words. We want to study “group-like phenomenon” in ordinal
monoids, which are very not symmetric.
~ We need to think about groups “asymmetrically”. wts not eastj!

Lemma. For every alphabet A, either: we gain some information when...
i. Ja€A a-Sat°?(4) C Sat**(A), or < reading an @

ii. Sat°d*(Satt(A)¥) C Sat°'d+(A), or e~ reading any w-word!

iii. Sat°'*t(A)is an L-trivial R-class. - easy base case
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Conclusion

Let's get technical
[ee]e]e] ]

Lemma. For every alphabet A, either:

i. JaeA a-Sat®t(A) C Sat°d+(A), or
i, Satrdt(Satt(A)¥) C Sat°’dt(A), or
iii. Sat°™*(A)is an L-trivial R-class.

we 3&:’\0 some inkormation when..
e reao\'\r\s an 'd'
“~n reao\‘\(\3 any w-word!
o~ easxj base case

Domain
FO-DEFINABILITY

(countable linear order)

FO-SEPARABILITY

dec. [Schitzenberger '65 &
McNaughton-Papert '71]
w dec. [Perrin '84]

Finite

Ordinals dec. [Bedon '01]
Scattered dec. [Bés-Carton '11]
Countable dec. [Colcombet-Sreejith '15]

dec. [Henckell '88
& Almeida '96]
dec. [Place-Zeitoun '16]
dec. + new result!

7

T. Colcombet, S. van Gool & R. Morvan
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