First-order separation over countable ordinals

LX seminar, Bordeaux

Thomas Colcombet¹, Sam van Gool¹ & <u>Rémi Morvan²</u>

7 October, 2021

¹ IRIF, CNRS & Univ. Paris ² ENS Paris-Saclay \rightarrow now at LaBRI!

Finite words

Words over countable ordinals ooooooo Let's get technical 00000

First-order logic (FO)

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

Words over countable ordinals ooooooo Let's get technical 00000

First-order logic (FO)

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

 $w \models \exists x. \exists y. x < y \land a(x) \land b(y)$

Words over countable ordinals ooooooo Let's get technical 00000

First-order logic (FO)

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

 $w \models \exists x. \exists y. x < y \land a(x) \land b(y)$

Finite words

Words over countable ordinals ooooooo Let's get technical 00000

First-order logic (FO)

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

 $w \models \exists x. \exists y. x < y \land a(x) \land b(y)$

Words over countable ordinals ooooooo Let's get technical 00000

First-order logic (FO)

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

 $w \models \exists x. \exists y. x < y \land a(x) \land b(y)$ iff $w = \cdots a \cdots b$

FO-definability

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

FO-definability

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

• Non-trivial: (*aa*)* is not FO-definable.

Words over countable 0000000 Let's get technical 00000

FO-definability

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

• Non-trivial: (*aa*)* is not FO-definable.

Fact. For every FO-formula φ , there exists $n \in \mathbb{N}$ such that for all $u \in A^*$, we have:

 $u^n \models \varphi$ IFF $u^{n+1} \models \varphi$.

Words over countable ordi

Let's get technical 00000

FO-definability

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

- Non-trivial: (*aa*)* is not FO-definable.
- Decidable: [Schützenberger '65 & McNaughton-Papert '71].

Fact. For every FO-formula φ , there exists $n \in \mathbb{N}$ such that for all $u \in A^*$, we have:

$$u^n \models \varphi$$
 IFF $u^{n+1} \models \varphi$.

Overview	
0000	

Words over countable ordinals ooooooo Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever

Overview
0000

Words over countable ordinals ooooooo Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever

Overview
0000

Words over countable ordinals 0000000 Let's get technical

FO-separability

 L_1 and L_2 are **FO-separable** whenever

Overview	
0000	

Words over countable ordinals 0000000

Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \nvDash \varphi$.

Words over countable ordinals ooooooo Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \nvDash \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

Words over countable ordinals 0000000 Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \nvDash \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

Words over countable ordinals 0000000 Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \vDash \varphi$ and for all $w \in L_2$, $w \nvDash \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

Input: L_1, L_2 regular languagesQuestion:Are L_1 and L_2 FO-separable?

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

Words over countable ordinals 0000000 Let's get technical 00000

FO-separability

 L_1 and L_2 are **FO-separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \nvDash \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

Input: L_1, L_2 regular languages *Question:* Are L_1 and L_2 FO-separable?

FO-DEFINABILITY:

Input: L regular language *Question:* Is *L* definable in FO?

Overview
0000

Words over countable ordinals

Let's get technical 00000

FO-separability (bis)

FO-separability is **decidable**: [Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

Words over countable ordinals 0000000

Let's get technical 00000

FO-separability (bis)

FO-separability is **decidable**: [Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

Words over countable ordinals

Let's get technical 00000

FO-separability (bis)

FO-separability is **decidable**: [Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

Domain	FO-definability	EO-soparability	
(countable linear order)	10 definability	το σεραταστιτιγ	
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]	

Words over countable ordinals

Let's get technical 00000

FO-separability (bis)

FO-separability is **decidable**: [Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

Domain (countable linear order)	FO-definability	FO-separability
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. [this talk!]

Words over countable ordinals

Let's get technical 00000

FO-separability (bis)

FO-separability is **decidable**: [Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

Domain (countable linear order)	FO-definability	FO-separability
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. [this talk!]
Scattered	dec. [Bès-Carton '11]	2 [future work]
Countable	dec. [Colcombet-Sreejith '15]	f [luture work]

Finite words	
•00000	

Finite words	
•00000	

M is **aperiodic** when every group $G \subseteq M$ is trivial.

Finite words	
•00000	

M is **aperiodic** when every group $G \subseteq M$ is trivial.

Finite words	
•00000	

M is **aperiodic** when every group $G \subseteq M$ is trivial.

Aperiodic!

Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: words of even length

(<u>aa</u>)*

Words over countable ordinals

Let's get technical 00000

FO-definability: words of even length

(*aa*)*

 $\begin{array}{rcl} \varphi \colon & \mathbf{a}^* & \to & \mathbb{Z}/2\mathbb{Z} \\ & w & \mapsto & |w| \mod 2 \end{array}$

Words over countable ordinals

Let's get technical 00000

FO-definability: words of even length

 $(aa)^* = \varphi^{-1}[\bar{0}]$

 $\begin{array}{rcl} \varphi \colon & \mathbf{a}^* & \to & \mathbb{Z}/2\mathbb{Z} \\ & w & \mapsto & |w| \mod 2 \end{array}$

Words over countable ordinals

Let's get technical 00000

FO-definability: words of even length

 $(aa)^* = \varphi^{-1}[\bar{0}]$

 $\begin{array}{rcl} \varphi\colon & \mathbf{a}^* & \to & \mathbb{Z}/2\mathbb{Z} \\ & w & \mapsto & |w| \mod 2 \end{array}$

Every monoid recognising (*aa*)[∗] must contain a non-trivial group → not FO-definable.

Finite words

Words over countable ordinals ooooooo Let's get technical 00000

FO-separability: example

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

Finite words 000000 Words over countable ordinals ooooooo Let's get technical 00000

FO-separability: example

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2

Finite words

Words over countable ordinals ooooooo Let's get technical 00000

FO-separability: example

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2 are FO-separated by $\exists x. b(x)$.

Finite words oo●ooo Words over countable ordinals ooooooo Let's get technical 00000

FO-separability: example

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

L_1 and L_2 are FO-separated by $\exists x. b(x)$. L_2 and L_3

Finite words oo●ooo Words over countable ordinals ooooooo Let's get technical 00000

FO-separability: example

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2 are FO-separated by $\exists x. b(x)$.

L₂ and L₃ are not FO-separable (Schützenberger-McNaughton-Papert thm).
Words over countable ordinals

Let's get technical 00000

FO-separation: Henckell & Almeida

 L_1, L_2 recognised by $\varphi \colon A^* \to M$.

FO-separation: Henckell & Almeida

 L_1, L_2 recognised by $\varphi \colon A^* \to M$.

Theorem [Henckell '88 & **Almeida '96]:** There exists a computable object $Sat^+(A) \subseteq \mathcal{P}(M)$ such that:

 L_1 and L_2 are FO-separable

IFF for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin \downarrow \text{Sat}^+(A)$.

FO-separation: Henckell & Almeida

 L_1, L_2 recognised by $\varphi \colon A^* \to M$.

Theorem [Henckell '88 & **Almeida '96]:** There exists a computable object $Sat^+(A) \subseteq \mathcal{P}(M)$ such that:

L_1 and L_2 are FO-separable

IFF for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin \downarrow \text{Sat}^+(A)$.

FO-separation: Henckell & Almeida

 L_1, L_2 recognised by $\varphi \colon A^* \to M$.

Theorem [Henckell '88 & **Almeida '96]:** There exists a computable object $Sat^+(A) \subseteq \mathcal{P}(M)$ such that:

L_1 and L_2 are FO-separable

IFF for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin \downarrow \text{Sat}^+(A)$.

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Corollary: FO-separability is decidable.

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

 $L_1 = b^+(aa)^+$ $L_2 = (aa)^+$ $L_3 = (aa)^*a$

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

are recognised by

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

are recognised by

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

are recognised by

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

are recognised by

b a baa

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Words over countable ordinals

Let's get technical

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

 $\operatorname{Sat}^+(A) = \{$

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

• Singletons of letters cannot be distinguished.

 $\operatorname{Sat}^+(A) = \{$

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

• Singletons of letters cannot be distinguished.

 $Sat^{+}(A) = \{\{b\}, \{a\}\}$

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

- Singletons of letters cannot be distinguished.
- Closed under product.

 $Sat^{+}(A) = \{\{b\}, \{a\}\}$

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

- Singletons of letters cannot be distinguished.
- Closed under product.

Sat⁺(A) = {{b}, {a}, {aa}, {ba}, {baa}, {baa}, {0}, {0}, }

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

- Singletons of letters cannot be distinguished.
- Closed under product.
- Elements of a group cannot be distinguished.

Sat⁺(A) = {{b}, {a}, {aa}, {ba}, {baa}, {baa}, {0}, {0}, }

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

- Singletons of letters cannot be distinguished.
- Closed under product.
- Elements of a group cannot be distinguished.

Sat⁺(A) = {{b}, {a}, {aa}, {ba}, {baa}, {baa}, {0}, {0}, {a, aa}, {baa}, {baa}, {baa}, {aa}, {aa}, {baa}, {aa}, {baa}, {baaa}, {baaa}, {baa}, {baaa}, {baaa}, {baaa}, {baaa}, {baaa},

Words over countable ordinals

Let's get technical 00000

Saturation: definition & example

Henckell's theorem: "↓ Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Definition of Sat⁺(A):

- Singletons of letters cannot be distinguished.
- Closed under product.
- Elements of a group cannot be distinguished.

Sat⁺(A) = { {b}, {a}, {aa}, {ba}, {baa}, {baa}, {0}, {a, aa}, {ba, baa} }

Words over countable ordinals

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L_1, L_2 regular languages *Question:* Are L_1 and L_2 FO-separable?

Words over countable ordinals

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

• FO-separability is decidable.

Words over countable ordinals

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

• FO-SEPARABILITY is decidable. why?

Words over countable ordinals 0000000

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

- FO-SEPARABILITY is decidable. why?
- Some computable object Sat⁺(A) allows to decide FO-SEPARABILITY. [Henckell '88 & Almeida '96]

Words over countable ordinals 0000000

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

- FO-SEPARABILITY is decidable. why?
- Some computable object Sat⁺(A) allows to decide FO-SEPARABILITY. [Henckell '88 & Almeida '96]
- Sat⁺(A): algebraic structure with union of groups.

Words over countable ordinals 0000000

Let's get technical 00000

Summary: finite words

FO-SEPARABILITY:

Input: L₁, L₂ regular languages *Question:* Are L₁ and L₂ FO-separable?

- FO-SEPARABILITY is decidable. why?
- Some computable object Sat⁺(A) allows to decide FO-SEPARABILITY. [Henckell '88 & Almeida '96]
- Sat⁺(A): algebraic structure with union of groups.
- It characterises "FO-indistinguishability".

Words over countable ordinals •000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord}.

Words over countable ordinals •000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord}. *Example: bca*,

Words over countable ordinals •000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc(ab)*^{ω},

Words over countable ordinals •000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc(ab)^{\omega}, a^{\omega}cb^{\omega}ca,*

Words over countable ordinals •000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc(ab)*^{ω}, *a*^{ω}*cb*^{ω}*ca, (ab*^{ω}*c)*^{ω}, etc.

Words over countable ordinals ●000000 Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc(ab)*^{ω}, *a*^{ω}*cb*^{ω}*ca, (ab*^{ω}*c)*^{ω}, etc.

Example: $\exists x. last(x) \land a(x)$ where $last(x) := \forall y. y \leq x$.

Words over countable ordinals ●୦୦୦୦୦୦ Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc*(*ab*)^{ω}, *a*^{ω}*cb*^{ω}*ca*, (*ab*^{ω}*c*)^{ω}, etc.

Example: $\exists x. last(x) \land a(x)$ where $last(x) := \forall y. y \leq x$.The word has a last position, and it is an 'a'.

Words over countable ordinals ●୦୦୦୦୦୦ Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc*(*ab*)^{ω}, *a*^{ω}*cb*^{ω}*ca*, (*ab*^{ω}*c*)^{ω}, etc.

Example:

 $\exists x. \text{ last}(x) \land a(x) \text{ where } \text{ last}(x) := \forall y. y \leq x.$ The word has a last position, and it is an 'a'.

> a[∞]cb[∞]ca yes

Words over countable ordinals ●୦୦୦୦୦୦ Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc*(*ab*)^{ω}, *a*^{ω}*cb*^{ω}*ca*, (*ab*^{ω}*c*)^{ω}, etc.

Example:

 $\exists x. \text{ last}(x) \land a(x) \text{ where } \text{ last}(x) := \forall y. y \leq x.$ The word has a last position, and it is an 'a'.

$a^{\omega}cb^{\omega}ca$	(ab)∞b
yes	no

Words over countable ordinals ●୦୦୦୦୦୦ Let's get technical 00000

Transfinite words & logics

Transfinite word: word indexed by a countable ordinal. Notation: A^{ord} . *Example: bca, cabc*(*ab*)^{ω}, *a*^{ω}*cb*^{ω}*ca*, (*ab*^{ω}*c*)^{ω}, etc.

Example:

 $\exists x. \text{ last}(x) \land a(x) \text{ where } \text{ last}(x) := \forall y. y \leq x.$ The word has a last position, and it is an 'a'.

a ^w cb ^w ca	(ab)∞b	a^{ω}
yes	no	no

Overview 0000 Finite words

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages

what does it mean for
$$L \subseteq A^{\text{ord}}$$
 to be regular?

Overview 0000 Finite words

Words over countable ordinals oooooo Let's get technical 00000

Transfinite regular languages

what does it mean for
$$L \subseteq A^{\text{ord}}$$
 to be regular?

• **Definition:** *L* is regular when it can be defined in MSO.
Words over countable ordinals 000000 Let's get technical 00000

Transfinite regular languages

what does it mean for
$$L \subseteq A^{\text{ord}}$$
 to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.

Words over countable ordinals 000000

Let's get technical 00000

Transfinite regular languages

what does it mean for
$$L \subseteq A^{\text{ord}}$$
 to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.

Words over countable ordinals

Transfinite regular languages

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone "

Words over countable ordinals

Transfinite regular languages

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position"

Words over countable ordinals

Transfinite regular languages

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position" \in FO.

Words over countable ordinals

Transfinite regular languages

what does it mean for $L \subseteq A^{\text{ord}}$ to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position" \in FO.

Algebraic notion for transfinite languages:

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages

what does it mean for $L \subseteq A^{\text{ord}}$ to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position" \in FO.

Algebraic notion for transfinite languages:

(finitary) ordinal monoid: (M, \cdot , 1, $-^{\omega}$) + axioms

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages

what does it mean for $L \subseteq A^{\text{ord}}$ to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position" \in FO.

Algebraic notion for transfinite languages:

(finitary) ordinal monoid:
$$(M, \cdot, 1, -^{\omega})$$
 + axioms
monoid \swarrow map $M \rightarrow M$

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages

what does it mean for $L \subseteq A^{\text{ord}}$ to be regular?

- **Definition:** *L* is regular when it can be defined in MSO.
- Regular languages can be finitely represented.
- Example: Finite words are defined by "every position but the first is the successor of someone and there is a last position" \in FO.

Algebraic notion for transfinite languages:

(finitary) ordinal monoid:
$$(M, \cdot, 1, -^{\omega})$$
 + axioms
monoid $\stackrel{\checkmark}{\longrightarrow}$ map $M \rightarrow M$

Example: A^{ord} all transfinite words over A...

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages (bis)

Theorem [Bedon '98]: $L \subseteq A^{\text{ord}}$ regular iff L recognised by a finite ordinal monoid.

Words over countable ordinals

Transfinite regular languages (bis)

Theorem [Bedon '98]: $L \subseteq A^{\text{ord}}$ regular iff *L* recognised by a finite ordinal monoid. *Example:* A^* is recognised by the ordinal monoid:

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages (bis)

Theorem [Bedon '98]: $L \subseteq A^{\text{ord}}$ regular iff *L* recognised by a finite ordinal monoid. *Example:* A^* is recognised by the ordinal monoid:

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages (bis)

Theorem [Bedon '98]: $L \subseteq A^{\text{ord}}$ regular iff *L* recognised by a finite ordinal monoid. *Example:* A^* is recognised by the ordinal monoid:

Words over countable ordinals

Let's get technical 00000

Transfinite regular languages (bis)

Theorem [Bedon '98]: $L \subseteq A^{\text{ord}}$ regular iff *L* recognised by a finite ordinal monoid. *Example:* A^* is recognised by the ordinal monoid:

Theorem [Bedon '01]: $L \subseteq A^{\text{ord}}$ is FO-definable iff it is recognised by a finite aperiodic ordinal monoid.

Finite words 000000 Words over countable ordinals

Let's get technical 00000

FO-definability: co-example

 $A := \{ a \}$

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Finite words 000000 Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

$A:=\{a\}$ $L_{even}=$ "the longest finite suffix of the word is of even length"

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Finite words 000000 Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

 $A := \{a\}$ $L_{even} = \text{``the longest finite suffix of the word is of even length''} = (a^{\omega})^{\text{ord}}(aa)^*.$

Finite words 000000 Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

 $A := \{a\}$ $L_{even} = \text{``the longest finite suffix of the word is of even length''} = (a^{\omega})^{\text{ord}}(aa)^*.$

uuu no

Finite words 000000 Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

 $A:=\{a\}$ Leven = "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$. aaa a^{ω}

no yes

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Finite words 000000 Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

 $A := \{a\}$ $L_{even} = \text{"the longest finite suffix of the word is of even length"} = (a^{\omega})^{\text{ord}}(aa)^*.$ aaa $a^{\omega} (a^{\omega})^{\omega}a^{101}$ no yes no

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Words over countable ordinals 0000000 Let's get technical 00000

FO-definability: co-example

 $A := \{a\}$ $L_{\text{even}} = \text{"the longest finite suffix of the word is of even length"} = (a^{\omega})^{\text{ord}}(aa)^*.$ To decide if a word $\mu \in a^{\text{ord}}$ is in (

aaa a^{ω} $(a^{\omega})^{\omega}a^{101}$ no yes no To decide if a word $u \in a^{\text{ord}}$ is in L_{even} , we must be able to count modulo 2.

Words over countable ordinals ooo●ooo Let's get technical 00000

FO-definability: co-example

 $A := \{a\}$ Leven = "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$.

aaa a^{ω} $(a^{\omega})^{\omega}a^{101}$ no yes no To decide if a word $u \in \mathbf{a}^{\text{ord}}$ is in L_{even} , we must be able to count modulo 2. $\rightsquigarrow L_{\text{even}}$ not FO-definable.

FO-separability: generalising Henckell's theorem

Finite words:

To decide FO-separability, compute the "saturation". Saturation: algebraic structure, closed under:

- product,
- union of groups.

Notation: Sat⁺(A)

FO-separability: generalising Henckell's theorem

Finite words:

Transfinite words:

To decide FO-separability, compute the "saturation". Saturation: algebraic structure, closed under:

- product,
- union of groups.

Notation: Sat⁺(A)

- product,
- + ω -iteration ,
- union of groups. Notation: Sat^{ord+}(A)

FO-separability: generalising Henckell's theorem

Finite words:

Transfinite words:

To decide FO-separability, compute the "saturation". Saturation: algebraic structure, closed under:

- product,
- union of groups.

- product,
- + ω -iteration ,
- union of groups. Notation: Sat^{ord+}(A)

Notation: Sat⁺(A)

Henckell & Almeida: this algorithm is correct for finite words. Our theorem: _____" for transfinite words!

Let's get technical

FO-separability: generalising Henckell's theorem

Finite words:

Transfinite words:

To decide FO-separability, compute the "saturation". Saturation: algebraic structure, closed under:

- product,
- union of groups.

Notation: $Sat^+(A)$

- product,
- + ω -iteration ,
- union of groups.
 Notation: Sat^{ord+}(A)

To go from finite words to transfinite words, just add an w everywhere.

 $L_{\text{even}} =$ "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$ and $L_{\text{odd}} =$ "the longest finite suffix of the word is of odd length" = $(a^{\omega})^{\text{ord}}(aa)^*a$

	Words over countable ordinals	
	0000000	

 $L_{\text{even}} =$ "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$ and $L_{\text{odd}} =$ "the longest finite suffix of the word is of odd length" = $(a^{\omega})^{\text{ord}}(aa)^*a$ are not FO-separable: to distinguish them, we need to count modulo 2!

 $L_{\text{even}} =$ "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$ and $L_{\text{odd}} =$ "the longest finite suffix of the word is of odd length" = $(a^{\omega})^{\text{ord}}(aa)^*a$ are not FO-separable: to distinguish them, we need to count modulo 2!

 $L_{\text{even}} =$ "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$ and $L_{\text{odd}} =$ "the longest finite suffix of the word is of odd length" = $(a^{\omega})^{\text{ord}}(aa)^*a$ are not FO-separable: to distinguish them, we need to count modulo 2!

 $L_{\text{even}} =$ "the longest finite suffix of the word is of even length" = $(a^{\omega})^{\text{ord}}(aa)^*$ and $L_{\text{odd}} =$ "the longest finite suffix of the word is of odd length" = $(a^{\omega})^{\text{ord}}(aa)^*a$ are not FO-separable: to distinguish them, we need to count modulo 2!

Sat^{ord+}(A) contains: {a}, {aa} = {a} \cdot {a}, {a^ω} = {a}^ω, {a, aa} = group!, {a^ωa, a^ω} = {a^ω} \cdot {a, aa}.

T. Colcombet, S. van Gool & <u>R. Morvan</u>

Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L₁, L₂ transfinite regular languages

Question: Are *L*₁ and *L*₂ FO-separable?

Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L_1, L_2 transfinite regular languages *Question:* Are L_1 and L_2 FO-separable?

• FO-SEPARABILITY OVER ORDINALS is decidable.

Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L_1, L_2 transfinite regular languages *Question:* Are L_1 and L_2 FO-separable?

• FO-SEPARABILITY OVER ORDINALS is decidable. why?

Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L_1, L_2 transfinite regular languages *Question:* Are L_1 and L_2 FO-separable?

- FO-SEPARABILITY OVER ORDINALS is decidable. why?
- A computable object Sat^{ord+}(A) allows to decide FO-SEPARABILITY OVER ORDINALS.
Finite words 000000 Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L_1, L_2 transfinite regular languages *Question:* Are L_1 and L_2 FO-separable?

- FO-SEPARABILITY OVER ORDINALS is decidable. why?
- A computable object Sat^{ord+}(A) allows to decide FO-SEPARABILITY OVER ORDINALS.
- Sat^{ord+}(A): algebraic structure with union of groups and ω -iteration.

Finite words 000000 Words over countable ordinals

Let's get technical 00000

Summary: transfinite words

FO-SEPARABILITY OVER ORDINALS:

Input: L_1, L_2 transfinite regular languages *Question:* Are L_1 and L_2 FO-separable?

- FO-SEPARABILITY OVER ORDINALS is decidable. why?
- A computable object Sat^{ord+}(A) allows to decide FO-SEPARABILITY OVER ORDINALS.
- Sat^{ord+}(A): algebraic structure with union of groups and ω -iteration.
- It characterises "FO-indistinguishability".

		Let's get technical ●0000
Respectfully		

This is not impressive: it's the same algorithm as for finite words, you've just added $\omega\text{-iteration!}$

		Let's get technical ●0000
Respectfully		

		Let's get technical ●0000
Respectfully		

This is not impressive: it's the same algorithm as for finite words, you've just added ω -iteration!

Correctness & completeness of the algorithm for finite words [Henckell '88 & Almeida '96]: " \downarrow Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes) "

Respectfully...

This is not impressive: it's the same algorithm as for finite words, you've just added ω -iteration!

Correctness & completeness of the algorithm for finite words [Henckell '88 & Almeida '96]: "↓ Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes) "

• Correctness: "If $X \in \downarrow$ Sat⁺(A), then points of X can't be distinguished by FO." FO cannot distinguish the elements of a group. easy to prove!

Respectfully...

This is not impressive: it's the same algorithm as for finite words, you've just added ω -iteration!

Correctness & completeness of the algorithm for finite words [Henckell '88 & Almeida '96]: "↓ Sat⁺(A) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes) "

- Correctness: "If $X \in \downarrow$ Sat⁺(A), then points of X can't be distinguished by FO." FO cannot distinguish the elements of a group. easy to prove!
- Completeness: "If X cannot be distinguished by FO, then $X \in \downarrow Sat^+(A)$." There is other "phenomenon" that FO cannot distinguish. extremely not trivial!

Glimpse of the proof for finite words

• Completeness: "If X cannot be distinguished by FO, then $X \in \downarrow Sat^+(A)$." There is other "phenomenon" that FO cannot distinguish. extremely not trivial.

Let's get technical

Glimpse of the proof for finite words

• Completeness: "If X cannot be distinguished by FO, then $X \in \downarrow \text{Sat}^+(A)$." There is other "phenomenon" that FO cannot distinguish. extremely not trivial. Idea: induction on the alphabet (A) & on the algebraic structure (Sat⁺(A)). How different is the current structure Sat⁺(A) from a group?

Let's get technical

Glimpse of the proof for finite words

- Completeness: "If X cannot be distinguished by FO, then X ∈ ↓ Sat⁺(A)." There is other "phenomenon" that FO cannot distinguish. extremely not trivial.
 Idea: induction on the alphabet (A) & on the algebraic structure (Sat⁺(A)). How different is the current structure Sat⁺(A) from a group?
- Fact. For all A-generated monoid M:
- i. $\exists a \in A, a \cdot M \subsetneq M$, or ii. $\exists a \in A, M \cdot a \subsetneq M$, or iii. M is a group.

Let's get technical

Glimpse of the proof for finite words

 Completeness: "If X cannot be distinguished by FO, then X ∈ ↓ Sat⁺(A)." There is other "phenomenon" that FO cannot distinguish. extremely not trivial.
Idea: induction on the alphabet (A) & on the algebraic structure (Sat⁺(A)). How different is the current structure Sat⁺(A) from a group?

Fact. For all A-generated monoid M:

i. $\exists a \in A, a \cdot M \subsetneq M$, or ii. $\exists a \in A, M \cdot a \subsetneq M$, or iii. M is a group. **Lemma.** For every alphabet *A*, either: i. $\exists a \in A, a \cdot \text{Sat}^+(A) \subsetneq \text{Sat}^+(A)$, or ii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or iii. $\text{Sat}^+(A)$ has some maximum.

monoids

 \longrightarrow

"monoids with union of groups"

Glimpse of the proof for finite words (2)

Fact. For all A-generated monoid M:

i. $\exists a \in A, a \cdot M \subsetneq M$, or ii. $\exists a \in A, M \cdot a \subsetneq M$, or

iii. *M* is a group.

Lemma. For every alphabet *A*, either: i. $\exists a \in A, a \cdot \text{Sat}^+(A) \subsetneq \text{Sat}^+(A)$, or ii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or iii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or

monoids

"monoids with union of groups"

Glimpse of the proof for finite words (2)

Fact. For all A-generated monoid M:

- i. $\exists a \in A, a \cdot M \subsetneq M, or$
- ii. $\exists a \in A, M \cdot a \subsetneq M$, or

iii. *M* is a group.

Lemma. For every alphabet *A*, either: i. $\exists a \in A, a \cdot \text{Sat}^+(A) \subsetneq \text{Sat}^+(A)$, or ii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or iii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or

monoids \longrightarrow

"monoids with union of groups"

"Groups are monoids in which left and right multiplication is bijective."

Glimpse of the proof for finite words (2)

Fact. For all A-generated monoid M:

- i. $\exists a \in A, a \cdot M \subsetneq M, or$
- ii. $\exists a \in A, M \cdot a \subsetneq M$, or

iii. *M* is a group.

Lemma. For every alphabet *A*, either: i. $\exists a \in A, a \cdot \text{Sat}^+(A) \subsetneq \text{Sat}^+(A)$, or ii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or iii. $\exists a \in A, \text{Sat}^+(A) \cdot a \subsetneq \text{Sat}^+(A)$, or

monoids \longrightarrow "monoids with union of groups"

"Groups are monoids in which left and right multiplication is bijective."

Groups and monoids are symmetric objects.

Towards a proof for transfinite words...

Proof for transfinite words. We want to study "group-like phenomenon" in ordinal monoids, which are very not symmetric.

Towards a proof for transfinite words...

Proof for transfinite words. We want to study "group-like phenomenon" in ordinal monoids, which are very not symmetric.

→ We need to think about groups "asymmetrically". It's not easy!

Towards a proof for transfinite words...

Proof for transfinite words. We want to study "group-like phenomenon" in ordinal monoids, which are very not symmetric.

→ We need to think about groups "asymmetrically". It's not easy!

Lemma. For every alphabet *A*, either: we gain a i. $\exists a \in A, a \cdot \operatorname{Sat}^{\operatorname{ord}+}(A) \subsetneq \operatorname{Sat}^{\operatorname{ord}+}(A), \operatorname{or} \qquad \text{$\leftarrow $reading a}$ ii. $\operatorname{Sat}^{\operatorname{ord}+}(\operatorname{Sat}^+(A)^{\omega}) \subsetneq \operatorname{Sat}^{\operatorname{ord}+}(A), \operatorname{or} \qquad \text{$\leftarrow $reading a}$ iii. $\operatorname{Sat}^{\operatorname{ord}+}(A)$ is an \mathcal{L} -trivial \mathcal{R} -class. $\qquad \text{$\leftarrow $easy bas}$

we gain some information when... ~ reading an 'a' ~ reading any ω-word! ~ easy base case

Finite words 000000 Words over countable ordinals

Let's get technical 0000●

Conclusion

Lemma. For every a	lphabet A, either:
--------------------	--------------------

- i. $\exists a \in A, a \cdot Sat^{ord+}(A) \subsetneq Sat^{ord+}(A)$, or
- ii. Sat^{ord+}(Sat⁺(A) $^{\omega}$) \subsetneq Sat^{ord+}(A), or
- iii. Sat^{ord+}(A) is an \mathcal{L} -trivial \mathcal{R} -class.

we gain some information when... Or ← reading an 'a' ← reading any w-word! ← easy base case

Domain (countable linear order)	FO-definability	FO-SEPARABILITY
Finite	dec. [Schützenberger '65 & McNaughton-Papert '71]	dec. [Henckell '88 & Almeida '96]
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. \leftarrow new result!
Scattered Countable	dec. [Bès-Carton '11] dec. [Colcombet-Sreejith '15]	??

T. Colcombet, S. van Gool & <u>R. Morvan</u>