Solving parity games

Universal trees and hierarchical decompositions

Rémi Morvan

under the supervision of Marcin Jurdziński

September 4, 2019

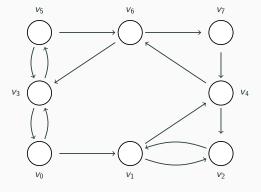
École normale supérieure Paris-Saclay

Centre for Discrete Mathematics and its Applications, University of Warwick

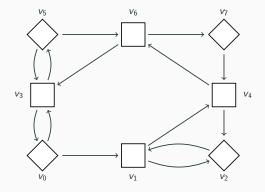
University of Warwick

Table of contents

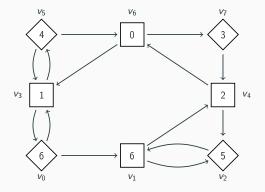
- 1. Parity games
- 2. Trees
- 3. Hierarchical decompositions



$$G = \langle V, E \rangle$$

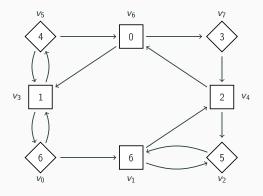


$$\mathcal{G} = \langle V, E, V_{\text{Even}}, V_{\text{Odd}} \rangle$$



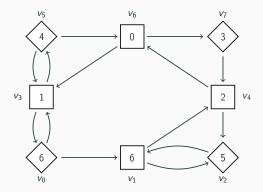
$$\begin{split} \mathcal{G} &= \langle V, E, V_{\mathrm{Even}}, V_{\mathrm{Odd}}, \ \pi: V \to \mathbb{N} \rangle \\ &\pi(V) \subseteq \llbracket 0, d \rrbracket \end{split}$$

Plays



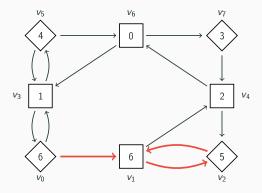
Play: $(v_i)_{i\in\mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$

Plays



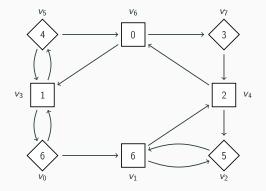
 $(v_i)_{i\in\mathbb{N}}$ winning for Even iff $\limsup_{i\in\mathbb{N}} \pi(v_i)$ is even.

Plays



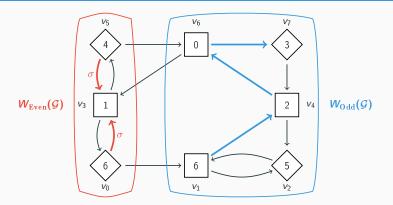
Eg: $v_0 \cdot (v_1 \cdot v_2)^{\omega}$ is winning for Even.

Strategies



(Memoryless) **strategy for Even**: $\sigma : u \mapsto v$ where $u \in V_{\text{Even}}$ and $(u, v) \in E$.

Strategies



Memoryless Determinacy Theorem:

From every vertex, one of the two players has a memoryless strategy such that every play consistant with it is winning for her.

Decision problem

Solving parity games:

Data: (\mathcal{G}, v)

Question: $v \in W_{\text{Even}}(\mathcal{G})$?

- decidable
- NP∩co-NP
- UP∩co-UP [Jurdziński, 1998]
- maybe in P: open question!

Decision problem

Solving parity games:

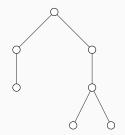
Data: (\mathcal{G}, v)

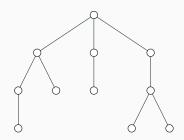
Question: $v \in W_{\text{Even}}(\mathcal{G})$?

- $O(n^{d+O(1)})$ [Zielonka, 1998]
- $O(n^{O(\sqrt{d})})$ [Björklund-Sandberg-Vorobyov, 2003]
- $O(n^{O(\lg d)})$ [Calude-Jain-Khoussainov-Li-Stephan, 2017]

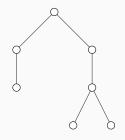
Trees

Embedding

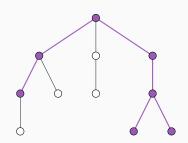




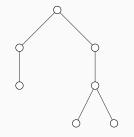
Embedding



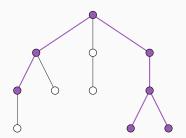
embeds in



Embedding



embeds in



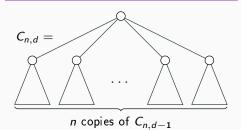
(n,d)-universal tree: [Fijalkow, 2018] Every tree with $\leq n$ leaves and of height $\leq d$ embeds in it. [Czerwiński-Daviaud-Fijalkow-Jurdziński-Lazić-Parys, 2019]

Zielonka '98

Parys '18

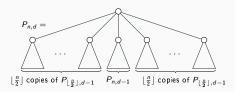
Zielonka's algorithm (1998)

Parys '18



Zielonka '98

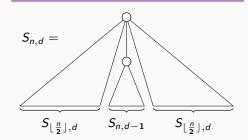
Parys' algorithm (2018)



Zielonka '98

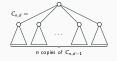
Parys '18

Lehtinen-Schewe-Wojtczak's algo. (2019)

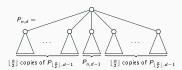


[Jurdziński-Lazić, 2017]

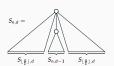
Zielonka '98



Parys '18



Those trees are (n, d)-universal!



Generalization?

Let $Solve(\mathcal{G}, d, \mathcal{T})$ be s.t. \mathcal{T} is the tree of recursive calls and:

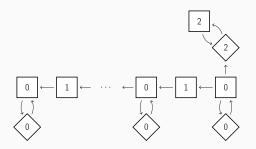
- $\mathcal{T} = C_{n,d} \rightsquigarrow \mathsf{Zielonka}$
- $\mathcal{T} = P_{n,d} \sim \text{Parys}$
- $\mathcal{T} = S_{n,d} \rightsquigarrow \mathsf{LSW}$

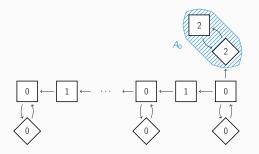
Generalization?

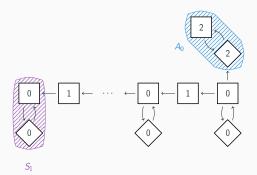
Let Solve(G, d, T) be s.t. T is the tree of recursive calls and:

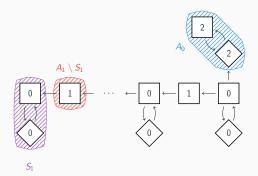
- $\mathcal{T} = C_{n,d} \rightsquigarrow \mathsf{Zielonka}$
- $\mathcal{T} = P_{n,d} \sim \text{Parys}$
- $\mathcal{T} = S_{n,d} \rightsquigarrow \mathsf{LSW}$

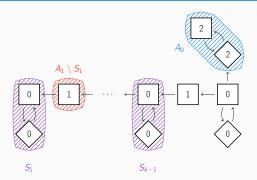
Question: If \mathcal{T} is (n, d)-universal, then $Solve(\mathcal{G}, d, \mathcal{T}) = W_{Even}(\mathcal{G})$?

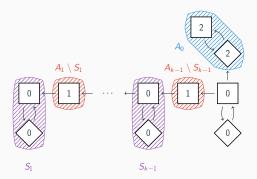


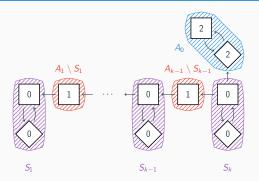


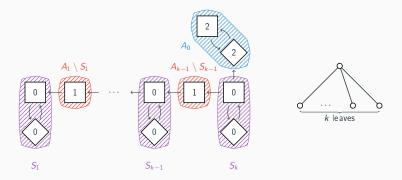




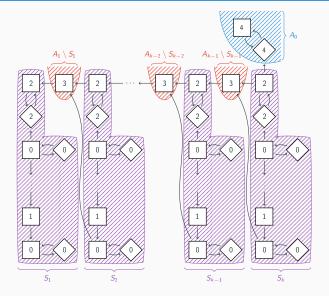




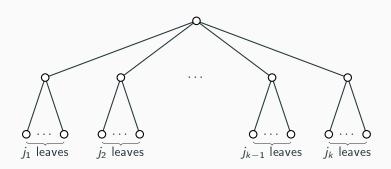




Another example



Another example



It was easy!

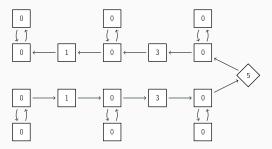
It was easy!

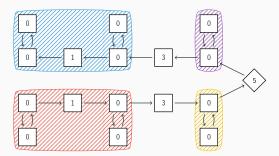
The HDT $\mathcal{T}_{\mathcal{G}}$ of a game represents its complexity. If $\mathcal{T}_{\mathcal{G}} \hookrightarrow \mathcal{T}$, then $\mathtt{Solve}(\mathcal{G}, d, \mathcal{T}) = W_{\mathrm{Even}}(\mathcal{G})$.

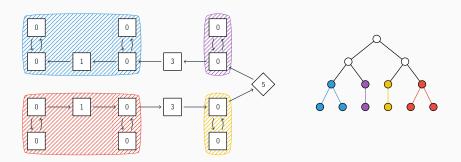
It was easy!

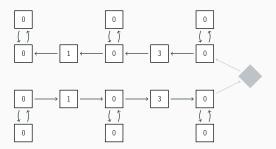
The HDT $\mathcal{T}_{\mathcal{G}}$ of a game represents its complexity. If $\mathcal{T}_{\mathcal{G}} \hookrightarrow \mathcal{T}$, then $Solve(\mathcal{G}, d, \mathcal{T}) = W_{Even}(\mathcal{G})$.

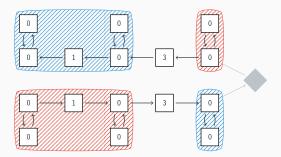
We "just" need to check that if \mathcal{G}' is a subgame of \mathcal{G} , then $\mathcal{T}_{\mathcal{G}'} \hookrightarrow \mathcal{T}_{\mathcal{G}}$.

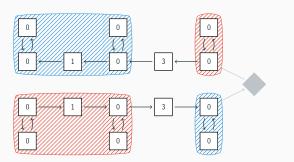


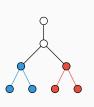


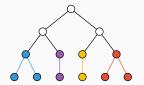












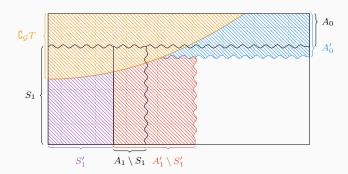
does not embed

Solution

Change the definition of the HDT $\sim \mathcal{G}$ has **a set of** HDT.

Solution

Change the definition of the HDT $\sim \mathcal{G}$ has **a set of** HDT.



Conclusion

For all games \mathcal{G} , there exists $\mathcal{T}_{\mathcal{G}}$ such that for all \mathcal{T} , if $\mathcal{T}_{\mathcal{G}} \hookrightarrow \mathcal{T}$ then $\mathtt{Solve}(\mathcal{G}, d, \mathcal{T}) = W_{\mathrm{Even}}(\mathcal{G})$.

Youpi!

Questions?

