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Organisation

Ce polycopié d’exercices est intégralement placé sous licence CC BY 4.0. Les exercices sont classés
par difficulté (exercices « de cours », d’application et d’approfondissement) ainsi que par théme.
La difficulté n’est donnée qu’a titre purement indicative : d'une part celle-ci dépend grandement du
moment dans I'année o I'exercice est donné, et d’autre part la difficulté exercices les plus complexes

est souvent progressive; ils contiennent donc généralement des questions « de cours ».

Les pages suivantes contiennent d'une part un sommaire par langage (sous-catégorifié selon la
difficulté), ainsi qu'un sommaire par théme abordé. Par ailleurs, ces exercices ont été donnés entre

le mois de décembre et le mois de février : ce polycopié ne couvre donc pas I'ensemble du programme

de MP2I.

Quand une source est mentionnée, tout ou partie de I'exercice s'inspire directement de cette source,
la formulation méme de I'exercice m’étant cependant propre. Quand aucune source n’est mentionnée,
cela signifie que j’ai écrit cet exercice sans source directe : je ne saurais cependant prétendre & aucune
forme d’originalité. J’ai par ailleurs essayé, d’autant que faire se peut, de créer des exercices motivés
et motivants. Par exemple, j’al essayé de ne jamais demander d'implémenter une structure sans que
la suite de I'exercice n’en propose une véritable application. En conséquence, certains exercices sont

particulierement longs.

Ce document a été mis en page avec Typst. Les sources de ce document sont disponibles sur
pag yp p
github.com/remimorvan/colles-mp2i. Des corrections imparfaites sont disponibles dans le répertoire

exercices de ce projet.

Consignes

Chaque sujet était précédé des consignes suivantes.

Apportez du soin a la qualité de vos réponses plus qu’a la quantité, et pensez a écrire des tests. Lisez
les exercices dans leur intégralité avant de vous lancer et ayez toujours de quoi écrire devant vous.
Tout fichier rendu doit pouvoir étre compilé (en C, avec 'option -Wall), ou interprété (OCaml) sans

erreur ni warning, et contenir des tests codés en dur avec des assert.


https://creativecommons.org/licenses/by/4.0/deed.fr
https://typst.app/
https://github.com/remimorvan/colles-mp2i
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I. Arbres binaires

exercice d'application OCaml  récursivité arbres complexité

On s’intéresse a des arbres binaires étiquettés par des entiers. Ce sont des structures, définies récur-
sivement : un tel arbre est soit une simple feuille, & qui on a associé un entier, soit un noeud interne,
A qui on associe un entier (son étiquette), ainsi que deux arbres, appelés fils gauche et fils droit.
1. Définir un type tree permettant de représenter cette structure.
2. Définir une fonction
max_of tree: tree -> int
qui calcule la plus grande étiquette apparaissant sur un arbre.
3. Définir une fonction
max_of subtrees quad: tree -> tree
qui prend un arbre, et retourne un nouvel arbre obtenu a partir du premier en remplagant
'étiquette d'un noeud par la plus grande valeur apparaissant sous ce nceud.! Par exemple, sur

I'entrée

4. Déterminez les complexités spatiales et temporelles de votre fonction max_of_subtrees_quad.
Votre fonction est-elle récursive terminale ?
5. Sivotre fonction n’a pas une complexité temporelle linéaire, donnez-en une nouvelle version pour

. »
qui c est le cas.

I1. Types sommes et produits

exercice de cours  OCaml types

On souhaite définir un type locality qui représente un échelon du maillage territorial francais :

pour faire simple, on veut seulement représenter soit des communes (représentée par un entier a cinq

chiffres, qui est leur code INSEE), soit des départements (représentés par un entier a deux chiffres).

Par exemple, le code INSEE de Bordeaux est le 33063, et le numéro de département de la Gironde

est le 33.

1. Ecrire un type somme locality correspondant & la description précédente.

2. Ecrire une fonction is_part_of de type locality -> locality -> bool qui détermine si l. la
premiére localité est une commune, 2. la seconde est un département, et 3. la commune appartient
au département. On admettra que les deux premiers chiffres du code INSEE d’'une commune

correspondent A son numéro de départernent.

ITI. Un probléme de mémoire

exercice de cours C mémoire tableaux

1. Le code suivant a un comportement indéterminé. Pourquoi ?

1Par « sous ce noeud » on veut dire formellement « dans le sous-arbre enraciné en ce noeud ».



#include <stdio.h>

int *foo(int step) {

int p[9] = {6};

for (int i =0; i <9; 1 += step) {
plil = 1;

}

return p;

int main(int argc, char *argv[]) {
int *p = foo(2);
printf("sd\n", pl[4]);
free(p);
return 0;

}

2. Corrigez le code de la fonction foo, puis dessinez I'état de la mémoire juste avant I'exécution de

I'instruction return p;.

IV. Min-max d’un tableau

exercice de cours C tableaux
Source : Cours de C de Floréal Morandat @ UENSEIRB.

On souhaite, étant donné un tableau, calculer son minimum et son maximum. Ecrire une fonction
void min max(int 1, int t[], int *min, int *max)

réalisant ce calcul. L'entrée 1 représente la taille du tableau t, et min et max sont des pointeurs vers
les cases mémoires ot 'on souhaite stocker le résultat. Vous étre libres de choisir le comportement de

cette fonction si le tableau est vide.

V. Retournement de chaine

exercice d'application C tableaux mémoire
Source : Cours de C de Floréal Morandat & UENSEIRB.

1. Ecrire une fonction
void reverse(char* str, char* str_rev)
qui prend deux chaines de caractéres str et str_rev, et qui écrit sur str_rev le miroir de str.
Le miroir est obtenu en lisant la chaine de droite & gauche. Par exemple, le renversé de « Hello
world! » est « ldlrow olleH ». On supposera que la chaine str_rev est de taille suffisante pour

stocker le résultat.
Vous pourrez tester votre code avec la fonction main suivante.

int main(int argc, char *argv[]) {
char str[100] = "Hello world!";
char str_rev[100] = "";
reverse(str, str _rev);
printf("ss\n", str_rev);
return 0;


https://www.labri.fr/perso/fmoranda/pg101/
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2. Dessinez |'état de la mémoire avant 'appel de reverse, puis juste avant le retour de la fonction

reverse.

VI. Types enregistrement

exercice de cours  OCaml types

On souhaite créer un type enregistrement neighbourhood qui permette de représenter une zone
géographique, correspondant & un code postal et & un nom de commune.
1. Définir un type neighbourhood de sorte que 'instruction suivante soit valide.

let bdx = {
postal code = 33000;
city = "Bordeaux";

}

2. Ecrire une fonction string of neighbourhood de type neighbourhood -> string qui associe &
chaque zone une chaine de caractéres la représentant. Par exemple, string_of_neighbourhood
bdx retournera « 33000 Bordeaux ».

VII. Uno a une joueuse

exercice d'approfondissement  0OCaml récursivité types complexité

On s'intéresse & une variante du jeu de cartes Uno, & une joueuse. Le jeu dispose de deux types
de cartes :
® des cartes de valeurs, qui ont toute une couleur (rouge, jaune, vert ou bleu) et un chiffre,

* des cartes de changement de couleur.

Dans cette variante du jeu, il y a une carte initialement posée sur la table, et la joueuse a en main un
ensemble de cartes. Son but est de déposer I’ensemble de ses cartes sur la pile. Pour poser une carte
sur la pile, il faut respecter les régles suivantes :

® on peut toujours poser une carte de changement de couleur,

® sila carte au sommet de la pile est un changement de couleur, on peut poser la carte qu'on souhaite,
® sinon, si une carte de valeur est au sommet de la pile et qu'on souhaite poser une carte de valeur, il

faut soit que leur couleur coincide, soit que leur chiffre coincide.

Le but de l'exercice est, étant donnée une main de départ, de déterminer si une joueuse a une stratégie

lui permettant de vider entiérement sa main.

1. Définir un type card permettant de représenter les cartes de ce jeu.

2. Montrer que le probléme est non-trivial : donner un (tout petit) exemple ot la joueuse peut vider
sa main, et un (tout petit) exemple ol elle ne peut pas le faire.

3. Définir une fonction
is playable: card -> card -> bool,
qui prend la derniére carte jouée et une carte que |'on souhaite jouer, et qui retourne si on peut
effectivement jouer cette carte.

4. On veut implémenter ici une stratégie gloutonne : on va regarder la liste des cartes qu’on a en main,
et on va jouer la premiére carte que l'on peut jouer. On réitére ce processus jusqu'a ce que l'on
ne puisse plus jouer, c’est-a-dire soit jusqu’a ce qu’on n’ait plus de carte en main (victoire !), soit
jusqu’a ce qu’aucune de nos cartes ne soit jouable. Définir une fonction récursive terminale
greedy play : card -> card list -> card list -> int

qui prend en entrée la derniére carte jouée, et la main de la joueuse (séparée en deux listes), et qui
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retourne le nombre de cartes restant dans la main de la joueuse aprés avoir appliqué cette stratégie
gloutonne jusqu'é. ne plus pouvoir jouer. Les deux listes de cartes représentent respectivement les
cartes que l'on a déja essayé, sans succes, de jouer sur la pile actuelle, et les cartes que 'on a pas
encore essayé de jouer.

Quelles sont les complexités temporelles et spatiales, dans le pire cas, de cette fonction ?
Montrez que cette stratégie n’est pas optimale, c’est-a-dire qu'il existe une main initiale telle qu’en
utilisant la stratégie gloutonne, on se retrouve a ne plus pouvoir jouer en ayant encore des cartes
en main, alors qu'il existe une autre stratégie permettant de vider sa main.

Implémenter une fonction récursive

optimal play : card -> card list -> int qui prend en entrée la derniére carte jouée, et la
main de la joueuse, et qui retourne le nombre de cartes restant dans la main de la joueuse aprés

avoir appliqué une stratégie optimale.

VIII. Nombre de voyelles

exercice d'application C tableaux

Source : Cours de C de Floréal Morandat & UENSEIRB.

On souhaite déterminer le nombre de voyelles dans une chaine de caractéres en C.

1.

Ecrire une fonction

int in array(char x, int n, char arr[])

qui détermine si un caractére X est présent dans un tableau de caractéres arr de taille n.
En déduire une fonction

int is vowel(char c)

qui détermine si un caractére est une voyelle.

(Votre code doit tenir en deusx lignes, sinon c’est que vous vous compliquez la vie.)

En déduire une fonction

int nb_vowels(char *str)

qui retourne le nombre total de voyelles contenues dans une chaine de caractéres.

IX. Fusion de tableaux triés

exercice d'application C  tableaux @ tri

Ecrire une fonction

int* merge sorted(int arrl[], int nl, int arr2[], int n2)

prenant deux tableaux triés et leur taille, et retournant un tableau résultant de la fusion de ces deux

tableaux. Plus précisément, on souhaite que I'ensemble des nouveaux éléments de ce tableau soit

I'union des deux tableaux passés en entrée, et que le nouveau soit trié. Votre algorithme devra étre en

temps linéaire en la taille de l'entrée.

X. Un brin de génétique

exercice d'approfondissement  OCaml récursivité dictionnaires

L'acide ribonucléique messager (ARNm) est une molécule qui intervient dans la syntheése des pro-
téines a partir de 'ADN. On peut voir un brin d’ARNm comme un mot sur l'alphabet {4, U, G,C},
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chaque lettre étant appelée nucléotide.? L'algorithme pour synthétiser une protéine a partir d'un brin

ARNm est le suivant :

* on regroupe les nucléotides par groupe de trois ; chaque groupe de trois nucléotides (par exemple
« AUG » et « CGA ») est appelé « codon » ;

¢ chaque codon produit un acide aminé (par exemple Phe (phénylalanine), ou Lys (Lysine)), ou indique
le début de la syntheése (init), ou l'arrét de la syntheése (stop). Un codon qui indique le début de la
synthése est aussi toujours associé & un acide aminé. Par exemple, « AUG » indique le début de la
synthése et est associé a I'acide aminé « Met ». La premiére fois qu'on le rencontrera, cela initiera
la synthése de la protéine, mais la seconde fois, il produira I'acide aminé « Met ».3

Considérons par exemple le brin d’ARN messager
CUCAUGCAGAGUAUGUGAAGCCCcCUUC.

Ses codons sont

CUC AUG CAG AGU AUG UGA AGC CCC UUC.

—_————— ——— e ——— ————— N —
Leu init/Met Gln Ser init/Met stop Ser Pro Phe

Lors de la synthése, on obtiendra donc la protéine définie par la suite d’acide aminé Gln Ser Met. Le

but de cet exercice est de simuler cette synthése en OCaml.

1. Définir une fonction
rna_to_codon_list: string -> string list quiassocie & un brin d’ARNm la liste de ses codons.

2. Ecrire des fonctions

is _codon_init: string -> bool
is codon stop: string -> bool

qui détermine si un codon est initiant ou stopant. Les codons initiants sont UUG, CUG et AUG;
les codons stopant sont UAA, UAG et UGA.

3. On souhaite définir une structure qui décrit l'information de quel acide aminé est associé & un
codon donné : on va utiliser une liste d’association. Une liste d’association est une liste de type
(‘a * 'b) list, de sorte que si (¢,v) et (¢’,v") sont tous deux éléments de la liste, alors ¢ #
¢’. Autrement dit, une liste d’association encode une fonction qui associe des éléments de type 'a
(appelés clés) a des éléments de type 'b (appelés valeurs).

a. Définir une fonction
is defined: ('a * 'b) list -> 'a -> bool
qui prend une liste d’association, une clé, et détermine si une valeur lui est associée.
b. Définir une fonction
value of: ('a * 'b) list -> 'a -> 'b
qui prend une liste d’association, une clé, et retourne la valeur qui lui est associée (si elle existe,
sinon elle produit une erreur).
c. A partir de la liste d’association de type (string * string) list

let codon to amino_acid data = [ ("UUU", "Phe") ; ("UUC", "Phe") ; ("UUA",
"Leu") ; ("UUG", "Leu") ; ("CUU", "Leu") ; ("CUC", "Leu") ; ("CUA", "Leu") ;
("CuG", "Leu") ; ("AUU", "Ile") ; ("AuC", "Ile") ; ("AUA", "Ile") ; ("AUG",
"Met") ; ("GUU", "val") ; ("GUC", "val") ; ("GUA", "val") ; ("GUG", "val") ;
("ucu", "Ser") ; ("ucc", "Ser") ; ("UCA", "Ser") ; ("UucG", "Ser") ; ("Ccu",
"Pro") ; ("CcCc", "Pro") ; ("CCA", "Pro") ; ("CCG", "Pro") ; ("ACU", "Thr") ;
("ACC", "Thr") ; ("ACA", "Thr") ; ("ACG", "Thr") ; ("GCU", "Ala") ; ("GCC",

2Les lettres A, U, G et C font respectivement référence aux nucléotides adénine, uracile, guanine et cytosine.
5Bien évidemment, tout ceci est une simplification de la réalité.
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"Ala") ; ("GCA", "Ala") ; ("GCG", "Ala") ; ("UAU", "Tyr") ; ("UAC", "Tyr") ;
("CAU", "His") ; ("CAC", "His") ; ("CAA", "Gln") ; ("CAG", "Gln") ; ("AAU",
"Asn") ; ("AAC", "Asn") ; ("AAA", "Lys") ; ("AAG", "Lys") ; ("GAU", "Asp") ;
("GAC", "Asp") ; ("GAA", "Glu") ; ("GAG", "Glu") ; ("uGuU", "Cys") ; ("ucC",
"Cys") ; ("UGG", "Trp") ; ("CGU", "Arg") ; ("CGC", "Arg") ; ("CGA", "Arg") ;
("CGG", "Arg") ; ("AGU", "Ser") ; ("AGC", "Ser") ; ("AGA", "Arg") ; ("AGG",
"Arg") ; ("GGU", "Gly") ; ("GGC", "Gly") ; ("GGA", "Gly") ; ("GGG", "Gly") 1;;
définir une fonction codon_to_amino_acid: string -> string qui retourne l'acide aminé
associé A un codon passé en argument.
4. Le but de cette question est de produire une fonction synthesis: string -> string list

qui prend une chaine de caractére représentant un brin ’ARN messager, et retourne la chatne

d’acide aminés de la protéine produite par ce brin.

a. Donnez une description haut-niveau d'un tel algorithme. On v attend a une réponse de quelques lignes,
en frangats (pas de poeudo-code), expliquant le fonctionnement de cet algorithme. Il est inutile de détailler
commenter calculer les fonctions L'mp[e’mente’e(t aux questions préce?entea.

b. Implémentez la fonction synthesis.

XI. Tri d’un tableau 0/1 en place

exercice d'application C  tableaux tri  complexité

Source : Exercices 25, 27 et 28 du livre « Informatique - MP2I/MPI - CPGE Ire et 2e années - Cours et exercices corrigés », de
Balabonski Thibaut, Conchon Sylvain, Fillidtre Jean-Christophe, Nguyen Kim, Sartre Laurent.

1. Ecrire une fonction
void swap(int arr[], int i, int j)
qui échange les éléments n°1i et j du tableau arr.

2. Ecrire une fonction
twoway sort(int arr[], int n)
qui prend en entrée un tableau et sa taille, et qui le trie en place. On supposera que le tableau ne
contient que les valeurs 0 et 1, et la seule opération qui vous est permise est la fonction swap de
la question précédente. La complexité temporelle de votre algorithme doit étre au pire linéaire.

3. Question bonus, a ne faire que si vous avez terminé tout le reste de la feuille.
Ecrire une fonction
dutch flag(int arr[], int n)
qui prend en entrée un tableau et sa taille, et qui le trie en place. On supposera que le tableau ne
contient que les valeurs 0, 1 ou 2, et la seule opération qui vous est permise est la fonction swap de
la question précédente. La complexité temporelle de votre algorithme doit étre au pire linéaire.
Cette question nécessite une réflexion algorithmique non-triviale. Plus encore que pour les autres questions, faites

des dessing sur une feuille.

XII. Un peu de géométrie du plan

exercice d'application 0OCaml  types  float

On souhaite représenter des points, des cercles, et des disques en OCaml. Un point sera représenté
par une paire d’abscisse et d’'ordonnée (qui seront des float), un cercle par un point (son centre) et

un rayon (un float), et un disque par les mémes informations.

1. Définir un type point représentant un point.
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2. Définir un type shape représentant un objet géométrique (soit un cercle, soit un disque).
3. Ecrire une fonction
belongs to: point -> shape -> bool

qui détermine si un point appartient & un objet.”

XIII. Le cycle des quintes

exercice d'application C ~mémoire listes chainées
Source : Llinterface de la structure est adaptée du TP de Géraldine Olivier sur les listes chainées en C.

On veut ici implémenter une structure de liste circulaire doublement chainée. Concrétement,
contrairement a une liste chainée, cette structure est circulaire (un élément a toujours un successeur),
et on veut aussi pouvoir accéder au prédécesseur d'un élément de la liste. Un exemple est donné en

Fig. 1. Notons qu'une telle liste a toujours un élément spécial, appelé « élément de téte ».

NED

—

1@

Fig. 1. — Une liste circulaire doublement chainée.

On propose d'implémenter cette structure avec des maillons, chaque maillon contenant une valeur
(des entiers sur la Fig. 1), un pointeur vers |'élément suivant, et un pointeur vers I'élément précédent.
Vous avez le droit, et étes méme trés vivement encouragé-es, de travailler a partir de la correction

du TP sur les listes chainées.
Voici l'interface abstraite de la structure.

// Constructeur
list *list create();

// Accesseurs

int list length(list *1);
bool list is empty(list *1);
void list print(list *1);

elt type list get ith(list *1, int 1i);

4On rappelle qu'un disque est plein, contrairement 4 un cercle. Par exemple, le point de coordonnées (1, %) appartient
au disque de centre (0, 0) et de rayon 2.
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// Transformateurs

void list set ith(list *1, int i, elt type v);
void list insert ith(list *1, int i, elt_type v);
elt type list rotate(list *1, int i);

elt type list delete ith(list *1, int 1i);

void list delete all(list *1);

// Destructeur
extern void list free(list **addr_1);

Notons par ailleurs que l'entier i peut désormais étre négatif : par exemple, le (-3)-éme élément
d’une liste circulaire doublement chainée, c’est le prédécesseur du prédécesseur du prédécesseur de
I'élément de téte. Il ny a pas ici de fonction de concaténation.? On a cependant rajouté une nouvelle
opération list_rotate : celle-ci fait rotationner la liste, c’est-a-dire qu’elle déplace I'élément de téte
de la liste. Elle retourne par ailleurs le nouvel élément de téte. Par exemple, sur la Fig. 1, une rotation

de -2 (ou de 3) ferait que 5 serait le nouvel élément de téte.

1. Implémentez les fonctions de I'interface. Aprés chaque fonction, compilez et testez.
2. Application.
a. Créez une liste circulaire doublement chainée chromatic_scale dont les éléments sont, dans
I'ordre, les chaines de caractéres « do », « do# », « ré », « ré# », « mi », « fa », « fa# », « sol »,
« sol# », « la », « la# » et « si ».
b. Ecrire une fonction
list* list walk(list *1, int step),
qui, & partir d'une liste circulaire doublement chainée, retourne une structure du méme type,
obtenue en lisant les éléments & partir de I'élément de téte par pas de step, jusqu’a retomber
sur I'élément de téte. Ce pas pourra étre positif, négatif ou nul.
c. En musique, le cycle des quintes est une liste circulaire obtenue a partir de I'échelle chroma-

tique en la parcourant par pas de 7.5 Calculez et affichez ce cycle.

XIV. Recherche dichotomique

exercice de cours  OCaml récursivité  tableaux

Ecrire une fonction
dichotomy search: 'a -> 'a array -> bool

déterminant si un élément appartient & un tableau trié. Votre algorithme devra utiliser une fonction

auxiliaire qui sera récursive terminale, et qui sera basée sur le principe de la dichotomie.

XV. Exponentiation rapide

exercice de cours 0OCaml récursivité complexité « terminaison ' arithmétique

1. Implémentez un algorithme d’exponentiation rapide.
2. Justifiez sa terminaison.

3. Quelle est sa complexité temporelle dans le pire cas ?

50n pourrait toutefois donner un sens a une telle opération si on le souhaitait.
6Un intervalle de 7 demi-tons (I'intervalle élémentaire séparant < do > de < do# >, ou encore < mi > de « fa ») est appelé
quinte, d’'ott le nom « cycle des quintes ».
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XVI. Tri d'un tableau borné

exercice d'application C ' tri  tableaux  complexité

Le but de cet exercice est de trier un tableau d’entiers positifs, lorsque 'on connait une borne

(strictement) supérieure b sur les entrées du tableau. L'idée de I'algorithme est la suivante : on va

créer un nouveau tableau count provisoire, de taille b, qui va compter le nombre d’occurrences de

chaque élément : plus précisément count[i] (pour i € [0, B]) sera le nombre d’éléments du tableau

d’entrée égaux a i. A partir de ce tableau, on pourra alors trier le tableau d’origine simplement en

réécrivant les éléments dans le bon ordre.

1.

Ecrire une fonction
void bounded sort(int arr[], int n, int b)
qui prend en entrée un tableau arr de taille n, dont les entrées sont toutes comprises entre 0 (inclus)

et b (exclus), et qui trie le tableau arr avec la méthode décrite précédemment.

. Lhypothése que I'on connait une borne supérieure b est-elle contraignante ? Comment s’en déba-

rasser ? Implémentez votre solution dans une fonction

void bounded sort bis(int arr[], int n).

Quelle est la complexité en temps et en espace de cet algorithme, dans le pire cas ? Dans le meilleur
cas ?

Pour quels types de tableaux cet algorithme est-il bien plus intéressant & utiliser plutdt qu'un
algorithme de tri par comparaison s’exécutant au pire cas en temps O(n log(n)) ? La réponvse attendue

n'est pas mathémaltique, maw une description en quelques mots de la « forme » des données.

XVII. Couplage de Cantor

exercice de cours OCaml récursivite

Le but de cet exercice est de calculer la bijection f de N? dans N représentée en Fig. 2, appelée

« couplage de Cantor ». L'idée derriére cette bijection est simplement d’énumérer les paires d’entiers

par diagonale. Au sein d’'une diagonale, on énumére les paires selon les z croissants. Ainsi, on a par
exemple f(0,0) =0, f(0,1) = 1et f(1,0) = 2, comme représenté en Fig. 2.

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)
o o o [}

(2, 3) (3,3) (4,3)
o

(0, 0) (4, 0)

Fig. 2. — Une bijection de N? dans N.

1. Définir une fonction récursive bij: int * int -> int (en OCaml) calculant f.

2. Vérifiez empiriquement que

1
fz,y) = (:c+y)(3;+y+ )—i—:c pour z,y € N.

Pour la culture : Le couplage de Cantor a été introduit en 1873 par Georg Cantor. Vous remarquerez

que la fonction f est un polynéme quadratique : en 1923, Rudolf Fueter et Georg Pélya publient

le théoréme de Fueter—Pélya, qui affirme que f, et son symétrique (z,y) = f(y, ), sont les seules
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fonctions quadratiques qui réalisent une bijection de N? dans N. La conjecture Fueter—Pélya affirme
elle que ce sont les seules fonctions polynomiales satisfaisant cette propriété. A ce jour, la conjecture

est encore ouverte !

XVIII. Arbres de décision

exercice d'approfondissement  OCaml récursivité  arbres

z < 2.0

Fig. 3. — Un arbre de décision (a gauche) et nceuds visités par 'algorithme d’évaluation de 'arbre sur

I'entrée x = 1.13 (a droite).

‘sorﬁel‘ ‘sortie?‘ ‘x<1.21‘ ‘sorﬁe5‘

Un arbre de décision est un arbre tel que celui représenté en Fig. 3 : il représente un algorithme
prenant en entrée une variable z de type float, et retournant une sortie de type 'a—sur l'exemple de
Fig. 3, le type de sortie est string puisque ces sorties sont « sortie 1 », ..., « sortie 5 ». Les feuilles de
cet arbre (les nceuds qui n’ont pas de fils) correspondent tous a des sorties. Les nceuds internes (ceux
avec des fils) sont eux étiquetés par des tests de la forme & < cst ot cst est un flottant. Chaque nceud

interne a exactement deux fils, appelés fils gauche et fils droit.

Un arbre représente une fonction de type float -> 'a (appelée sémantique de l'arbre), définie de
la facon récursive. Etant donné un flottant x, la sortie de cette fonction est obtenue en commencant
A la racine de 'arbre. Si cette racine est une sortie, c’est notre valeur de retour. Sinon, c¢’est un nceud
interne, qui est donc étiqueté par un test de la forme x < cst : c’est par exemple le cas sur la Fig. 3,
et le test & la racine est £ < 1.0. Si le test est satisfait, on poursuit 'exécution de notre algorithme
en allant dans le fils gauche du nceud, et sinon dans le fils droit. Par exemple, si = 1.13, sur I'arbre
de Fig. 3, la sortie sera « sortie 3 » : I'exécution de 'algorithme est représentée sur la moitié droite

de Fig. 3.

1. On définit ces arbres en OCaml de la facon suivante :

type 'a decision_tree univariate =
| TestUni of float * 'a decision tree univariate * 'a decision tree univariate
| OutputUni of ‘'a;;

Les trois arguments du constructeur TestUni correspondent respectivement 2 la constante avec
laquelle on compare z, le fils gauche du nceud, et son fils droit.
a. Définir un arbre de décision some_tree de type string decision_tree univariate corres-
pondant & I'arbre de la Fig. 3.
b. Ecrire une fonction récursive
eval univariate: 'a decision _tree univariate -> float -> 'a
qui prend un arbre de décision, un flottant, et évalue la fonction définie par cet arbre sur ce
flottant.
2. Les vrais arbres de décision ne manipulent en réalité pas qu'une seule variable mais plusieurs.
Par convention et souci de simplicité, on nommera ces variables x, z;,...,z,,_; (n € N étant le

nombre total de variables). Les tests sont désormais de la forme z; < cst (i € [0,n]) : on ne peut
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pas comparer des variables entre elles, mais on peut comparer n'importe quelle variable avec une

constante.

a. Définir un type 'a decision_tree permettant de représenter ces arbres de décision a plusieurs
variables. Indice : On pourra représenter la variable x; par lentier 1.

b. Dans le cas n = 2 (les variables sont donc z, et z;), définir un arbre quarter_planes de type
string decision_tree quiretourne « NE » (north-east), « NW » (north-west), « SW » (south-
west), « SE » (south-east) selon la position du point (2, ;) dans le plan : par exemple le quart
de plan « NE » correspond aux points [0, +00[ X [0, +00], alors que le quart de plan « SE »
correspond aux points [0, +00[ X | — 00, 0].

c. On souhaite maintenant écrire un algorithme pour évaluer ces arbres. Dans le cas univarié,
I'entrée était représentée par un flottant. Dans notre cas, pour représenter une entrée
(Tg, Ty, -y Ty_1), on va utiliser un float array. Ecrire une fonction récursive
eval: 'a decision tree -> float array -> 'a
qui prend un arbre de décision, un tableau de flottants, et évalue la fonction définie par cet arbre
sur ce tableau. Pour rappel, la taille d'un tableau arr peut étre obtenue avec Array.length arr,
et la i-8me entrée de ce tableau avec arr. (i). On peut définir un tableau a I'aide de la syntaxe
[| x0 ; x1; ... ]I

d. Justifiez brievement la terminaison de votre fonction eval. Donnez des bornes supérieures

(raisonnables) sur la complexité temporelle et spatiale de cette méme fonction.

Pour la culture : Arbres de décision & apprentissage

Label: 5 Label: 0 Label: 4 Label: 1

Fig. 4. — Images, représentant des chiffres, issues du jeu de données MINIST.

Les arbres de décision sont au cceur de plusieurs techniques de machine learning. Nous illustrons cela
sur un exemple de classification d'images, de 28 x 28 pixels, en noir et blanc, représentant des chiffres,
voir la Fig. 4. Une telle image est représentée par un tableau de flottants de taille 784 (= 28 - 28). La i-
eme entrée représente la couleur du i-¢me pixel : 0.0 est un pixel parfaitement blanc, et 1.0 représente

un pixel parfaitement noir.

Le but d’un algorithme d’apprentissage supervisé, est, a partir d'un grand jeu d’exemples (c’est-a-dire
d’'images, munies de la sortie attendue, c’est-a-dire ici du chiffre représenté sur I'image), d’apprendre
une fonction qui prend en entrée une telle image, et retourne le chiffre indiqué dessus. Bien sir, la
difficulté ne réside pas tant dans le fait de retourner la bonne réponse sur les données sur lesquelles

on a appris, mais de retourner la bonne réponse sur d’autres données...

Un arbre de décision est une fagon naturelle et simple de représenter une telle fonction, dont les
sorties sont de type int (plus précisément, elles sont dans l'intervalle [[O, 9]]) Souvent, apprendre un
arbre de décision se révéle étre relativement peu efficace (I’arbre est généralement trés grand, et la
fonction apprise n’est pas toujours trés satisfaisante). Une technique un peu plus raffinée, appelée
foréts aléatoires a été développée a la fin des années 1990s, pour pallier certains désavantages des
arbres de décision. L'idée est de, plutét que d’apprendre un seul grand arbre de décision, de plutét
apprendre plusieurs petits arbres —ce qui justifie le nom de « forét ». Pour que ces arbres soient
distincts les uns des autres, un facteur aléatoire est introduit, en limitant artificiellement (et aléatoi-

rement) quels pixels peuvent étre utilisés dans un test. Les foréts aléatoires sont, bien que relativement
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simples, terriblement efficaces sur certains problémes d’apprentissage : c’est notamment le cas pour

le probléme de classification des chiffres sur le jeu de données MNIST (Fig. 4).

XIX. Triangle de Sierpinski

exercice d'approfondissement C  tableaux récursivité complexité « terminaison  I/0

Le triangle de Sierpinski est une figure fractale, représentée sur la Fig. 5, et découverte en 1915 par
le mathématicien Wactaw Sierpifiski. C'est probablement I'une des figures fractales les plus simples
A construire, grace & son étonnant rapport avec les coefficients binomiaux. Le but de cet exercice est
d’afficher cette fractale.

Fig. 5. — Le triangle de Sierpiniski.

1. En utilisant la formule de Pascal, qu’on rappelle étre
ny (n—1 n—1
<k>_ (k—1)+( k )
pourn € Netk € |I1, n— 1]], écrire une fonction récursive, la plus simple possible,
int binom naive(int k, int n)
qui calcule (Z), sous réserve que . > 0 et k € [[0, n]] On ne cherchera pas A optimiser cette
fonction.

2. Justifiez que cette fonction termine, puis donnez une borne supérieure (raisonnable) sur la
complexité temporelle de binom naive(int k, int n), en fonction de n.

3. Ecrire une fonction
void print sierpinski naive(int n)
qui prend en entrée un entier n, et affiche n + 1 lignes du triangle de Pascal, c’est-a-dire que sur la
m-iéme ligne (m € [0, n]), on affichera les coefficients binomiaux (7'), ('), ---, (") Vous devriez
remarquer que votre fonction est relativement lente A s’exécuter dés que v s'approche de ~20.

4. Modifiez la fonction précédente pour qu'au lieu d’afficher I'entier (T]?), elle affiche le caractére
< . >si (') est impair, et le caractére espace sinon. Tada !

5. Tout cecl est bien joli, mais fort peu efficace. Pour améliorer notre algorithme, on va partir de
l'observation que si I'on connait tous les coefficients binomiaux de la forme (™~!), alors on peut
calculer () = (Z:}) + (n;l) en temps constant (n € N\ {0}, k£ € [0, n]). Ecrire une fonction
int *binom list(int n, int *coefs prec)
qui prend un entier n € N, et le tableau des coefficients binomiaux d’ordre n — 1, cad le tableau
{("51), (nIl), ey (Zj)}, et qui retourne le tableau des coefficients binomiaux d’ordre n.

Lorsque n = 0, on pourra supposer que le pointeur passé en entrée est NULL.
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6. Donnez une borne supérieure sur la complexité temporelle de votre fonction binom list, en
fonction de n.

7. En déduire une fonction
void print sierpinski(int n)
qui affiche les lignes 0 & n du triangle de Sierpinski, calculée avec la fonction binom_list. Vous
ferez particuliérement attention & ne pas avoir de fuite mémoire.

8. Bonus (a faire seulement si tous les autres exercices sont finis, ou chez vous) :
Améliorer votre fonction print_sierpinski pour que votre figure ressemble a celle de la Fig. 5
(cad pour que la pointe de votre triangle soit centrée et non alignée & gauche). Faire en sorte
que pouvoir passer en argument & I'exécutable le nombre de lignes du triangle que 'on souhaite
afficher. Pour rappel, dans le prototype
int main(int argc, char *argvl[])
argc désigne le nombre d'arguments passés a I'exécutable, et argv est un tableau de chaines de

caractéres contenant ces arguments.

XX. Tri fusion

exercice de cours OCaml ' tri  récursivité complexité

On rappelle que le tri fusion est un algorithme de tri récursif dont le principe est le suivant : on

découpe la liste en deux, on trie chaque moitié (récursivement), puis on fusionne les deux résultats.
Voici une implémentation partielle de cet algorithme.

let rec split lst = match lst with
(* Takes a list and splits its content into
two lists of equal length (x1 if the initial list has odd length). *)

[ [1 -> ([, [1)
| h::tail ->
let (lstl, lst2) = split tail in (h::1st2, 1stl);;

let rec merge 1stl lst2 =
(* Merges two sorted lists into a sorted list. *)
failwith "todo";;

let rec merge sort lst = match lst with
(* Sorts a list using the merge sort algorithm. *)
| [1 -> 1]
| [x] -> [x]
[ ->
let 1stl, lst2 = split lst in
merge (merge sort lstl) (merge sort lst2);;

1. Ecrire une fonction print_list: int list -> unit qui permet d’afficher une liste d’entiers.
Vérifiez que la fonction split a bien le comportement attendu sur un ou deux exemples.

2. Implémentez la fonction merge, et testez les fonctions merge et merge_sort.

3. Déterminez (et justifiez) les complexités temporelles des fonctions split, merge et merge_sort.

XXI. Télégraphe de Chappe en milieu montagneux

exercice d'approfondissement C I/O récursivité tableaux complexité
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Fig. 6. — Télégraphe de Chappe, Louis Figuier.
Le télégraphe de Chappe est un systéme de télégraphe datant de la fin du XVIIIéme siécle, qui permet

la transmission d'un message de fagon visuelle. Des tours comme celles de la Fig. 6 sont placées a
intervalle régulier. Au sommet de ses tours se trouvent deux bras articulés, qui selon leurs positions,
encodent une information. Une premiére tour transmet cette suite d'information, qui est réceptionné

par une deuxiéme tour, qui la transmet A son tour, etc.

Ce systéme était redoutablement efficace : les tours étaient séparées d'une quinzaine de kilométres,

et 1l suffisait d'une dizaine de minutes pour transmettre un message entre Paris et Lille.

Le but de cet exercice est de déterminer ot construire des tours Chappe pour transmettre un message

entre une ville A et une ville Z, séparées par des montagnes.

Pour modéliser ce probléme, on se donne en entrée un tableau d’entiers. Ce tableau reléve l'altitude
(assimilée & un entier) sur la ligne droite reliant la ville A a la ville Z. Par exemple, le tableau
{0,3,2,7,4,2,3,6,1} signifie que le point A est & altitude 0 et que le point Z est & altitude 1. On

représente cette information visuellement de la fagon suivante :

V4

S = N N N OOy N

>
>

A
Fig. 7. — Visualisation du profil topographique décrit par le tableau {0,3,2,7,4,2,3,6,1}.

On suppose qu’une tour se trouve au point A, et une autre au point Z. Le but de I'exercice est de

déterminer a quels points il faut placer une tour, sous les contraintes suivantes :
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¢ deux tours consécutives doivent pouvoir se voir mutuellement,
® on souhaite minimiser le nombre de tours (¢a cofite cher : en plus de la construction, il y a un

employé dans chaque tour).

1. Ecrire une fonction
int are mutually visible(int elevation[], int x1, int x2)
qui prend en entrée le tableau elevation décrivant le profil topographique, et deux indices x1 et
x2 de ce tableau, et qui détermine si, si des tours étaient placées au point d’abscisse x1 et d’abscisse

x2, alors ces tours pourraient se voir mutuellement.

S = N W N OOy N

O ¢
—

3 7

Fig. 8. — Lignes droites entre les points d’abscisse x1 = 0 et x2 = 3 (bleu),
et entre X1 = 3 et x2 = 7 (rouge) pour le profil {0,3,2,7,4,2,3,6,1}.

Par exemple (voir la Fig. 8), les tours entre x1 = 3 et X2 = 7 peuvent se voir, mais celles en x1 =
0 et x2 = 3 ne le peuvent pas puisque le point d’abscisse 1 bloque leur champ de vision.
2. Ecrire une fonction
int is solution valid(int elevation[], int towers[], int n)
qui détermine si une solution towers au probléme elevation est valide. towers et elevations sont
des tableaux de taille n, et towers sera tel que towers[i] vaut | si on y a construit une tour, et 0
sinon. Par valide, on entend qu'un message peut étre transmis de A & Z en utilisant ces tours : on
ne cherche pas & déterminer si cette solution minimise le nombre de tours.
3. Nous allons implémenter des solutions au probléme des tours de Chappe avec des algorithmes
récursifs. On place initialement des tours aux points d’abscisses 0 et n — 1 (n étant le nombre
d’entrées), correspondant aux points A et Z. On va ensuite déterminer s'il y a besoin de construire
une nouvelle tour. Si ce n’est pas le cas, I'algorithme termine. Sinon, on détermine un point M,
situé entre A et Z, ol construire une tour. On appelle alors récursivement cette procédure entre
les points A et M, et entre les points M et Z. Différents algorithmes pour déterminer ce point M
ol construire une tour intermédiaire donneront différents algorithmes pour résoudre le probleme.
a. Exécutez cet algorithme a la main (vur papier) sur I'exemple de Fig. 6 lorsque la stratégie pour
choisir M est de prendre un point d’altitude maximal. (Pas besoin de rendre cette question : vous
pouvez m appeler pour me montrer vos exemples.)

b. Ecrivez une fonction
int *build towers highest(int elevation[], int n)
qui implémente cet algorithme. En entrée, on prendra le profil topographique, et on retournera
un tableau de 0/1 de méme taille, dont la i-8me entrée vaut 1 ssi on a construit une tour au point
d’abscisse 1.

c. Quelle est la complexité temporelle de cette fonction ?

d. Montrez que cette stratégie ne minimise pas le nombre de tours construites.

4. On change désormais de stratégie pour choisir M : pour tout point d’abscisse z, on considére son
altitude y(x) et 'ordonnée 3’ (z) du point d’abscisse z sur la droite (AZ). On choisit M comme
étant le point pour lequel y(x) — ¥’ (x) est maximal. Vous remarquerez que y(z) — y’(x) > 0 ssi
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le point d’abscisse  entrave la vision entre A et Z. En un sens, le point M représente donc le point
qui entrave le plus la vision entre les tours A et Z.
a. Exécutez cet algorithme a la main sur I'exemple que vous avez trouvé a la question 3d.
b. Ecrivez une fonction
int *build towers biggest obstruction(int elevation[], int n)
qui implémente cet algorithme.

5. On admet qu'une solution est optimale si, et seulement si, pour tout point M ot l'on a placé une
tour, pour toute tour G strictement & gauche de M, pour toute tour R (rzght) située a droite de M,
alors M entrave la vision entre G et R.

a. Implémentez une fonction
int is solution optimal(int elevation[], int towers[], int n)
qui détermine si une solution est optimale.

b. Vérifiez empiriquement que les solutions calculées par build_towers_biggest obstruction
sont optimales.

6. Faire en sorte que, & I'exécution de votre programme, celui-ci demande a |'utilisateur de saisir le
profil d’élévation (on rentrera un entier par ligne). Le programme affichera la solution en listant

les abscisses des points ot 1l y a des tours.

XXII. Notation polonaise inversée

exercice d'application 0Caml récursivité complexité  arbres

piles/files  arithmétique

La notation polonaise inversée (reverse polwh notation ou RPN en anglais) permet de décrire des
expressions arithmétiques sans utiliser de parenthéses. L'idée est simple : plutdt que d’écrire les
opérateurs entre ses arguments, comme on le fait en notation infixe (la notation « classique »), on
écrit plutdt 'opérateur apreés les arguments. Par exemple, 1 + 2 devient 1 2 +. De méme, (1 + 2) +
3 devient 12 + 3 +. Au contraire, 1 + (2 + 3) devient 1 2 3 + +.

1. Ecrire (1 4+ 2) % (34 4) et 1 + 2 3 + 4 en notation polonaise inversée.
2. On se dote d’un type récursif en OCaml

type expr =

| Const of int

| Add of expr * expr

| Mult of expr * expr;;

qui permet de représenter des expressions arithmétiques.
a. Ecrire une fonction
eval expr: expr -> int
qui évalue une telle expression.
b. Quelle est la complexité temporelle de votre fonction ?
3. Ecrire une fonction
expr_to _rpn: expr -> int or op list
qui transforme une expression arithmétique en une liste qui représente cette expression en notation

polonaise inversée, ol
type int or op = Int of int | Plus | Times;;

Par exemple, sur I'entrée Add (Mult (Const(1),Const(2)), Const(3)) votre algorithme retournera
[Int(1);Int(2);Times;Int(3);Plus].
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4. Le but de cette question est d’écrire une fonction
eval _rpn: int or op list -> int
qui évalue une liste de caractéres représentant une expression arithmétique en notation polonaise
inversée. Un algorithme trés efficace pour ce faire consiste & utiliser une pile : on part d'une pile
vide, et on traite la liste de caractéres de la facon suivante :
* sic'est un entier, on |'empile
* sic’est un opérateur, on l'applique aux deux entiers présents au sommet de la pile, et on empile

le résultat.

Un exemple, pour le calcul 3 * (10 + 5), qui donne 3 10 5 + * en notation polonaise inversée, est
donné en Fig. 9.

Equation: 3 10 5 + *

5

X
I 10 10 15
g 10
3 3 3 ] 3 45
=
2 3 10 5 + *

Fig. 9. — « Représentation de la structure de lecture d'une expression RPN par stacks. De gauche
a droite et de haut en bas, case par case (étapes). » Figure par Stonemountain420, issue de

Wikimedia, sous licence CC BY SA 3.0.

a. Ecrire la fonction eval rpn: int or op list -> int.
b. Vérifiez sur plusieurs expressions de type expr que les évaluer directement avec eval_expr
donne le méme résultat que de les transformer en notation polonaise inversée avec expr_to_rpn

puis de les évaluer avec eval_rpn.

XXIII. Crible d’Eratosthéne

exercice d'application C I/O tableaux  complexité  arithmétique

Le crible d’Eratosthéne est un algorithme permettant de déterminer tous les nombres premiers plus
petits qu'un entier m passé en entrée. L'algorithme repose sur une observation élémentaire : pour
tout nombre naturel k > 2, tous ses multiples de la forme k * i avec @ > 1 sont forcément composés.

En fait, la réciproque est aussi vraie, par définition d'un nombre premier. Le crible d’Eratosthéne

fonctionne en identifiant tous les entiers composés : ceux qui restent sont les nombres premiers !

L'algorithme maintient un tableau, qui contient I'information de si un nombre est composé ou premier

(jusqu'a preuve du contraire). Initialement, tous les nombres sont supposés premiers, sauf 0 et 1. On

commence par éliminer tous les multiples de 2 (c’est-a-dire qu’on déclare tous les nombres de la forme

2 % i avec ¢ > 1 comme étant composés), puis tous les multiples de 3, puis de 4, etc, jusqu'a m — 1.

1. Exécutez cet algorithme a la main pour m = 20.

2. Quand est venue l'étape d’éliminer les multiples de 4, avez-vous éliminé des nombres qui
étaient encore supposés étre premiers ? Expliquez pourquoi, puis proposez une amélioration de
'algorithme.

3. Ecrire une fonction
void remove multiples(int arr[], int n, int k)
qui prend en entrée un tableau arr, rempli de 0 et de 1, de taille n, ainsi qu'un entier k, et qui

définit la valeur de arr[k*i] & 0 pour tous les 7 > 1.
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4. En déduire une fonction
int* sieve eratosthenes(int m)
qui prend en entrée un entier m, et retourne un tableau de taille m, dont la i-¢me entrée vaut 1 si
1 est premier, et 0 sinon.

5. Donner une borne supérieure sur la complexité spatiale et temporelle de la fonction
remove_multiples puis de la fonction sieve eratosthenes

6. On peut remarquer que si un nombre n est composé, alors un de ses facteurs est forcément p]us
petit ou égal a \/n (preuve, par I'absurde : si d’aventure n pouvait s’écrire k; - ky avec ky > y/n et
ky > /n alors on aurait n = ky - ky > \/n - y/n = n: que nenni !). En déduire une amélioration
de la fonction sieve_eratosthenes. Que deviennent ses complexités spatiales et temporelles ?

7. Faire en sorte qu'a I'exécution de votre programme, |'utilisateur doive saisir un entier m ; votre
programme écrira alors ensuite |'ensemble des entiers strictement plus petits que m dans un

fichier ./primes.txt

XXIV. Anagrammes

exercice d'application 0Caml dictionnaires  récursivité complexiteé

Le but de cet exercice est de déterminer si deux chaines de caractéres sont des anagrammes, c’est-
a-dire si I'une peut étre obtenue en permutant les caractéres de 'autre. Rien de plus simple pour
déterminer si deux chalnes de caractéres sont des anagrammes : il suffit de compter le nombre
d’occurrences de chaque caractére dans la chalne, et ces valeurs sont égales si et seulement si les
deux chaines sont des anagrammes. Par exemple, « niche » est une anagramme de « chien », « la crise
économique » et « le scénario comique » sont des anagrammes, mais en revanche « étre ou ne pas étre,
voila la question » n’est pas une anagramme de « oui et la poser n’est que vanité orale » (la premiére

chaine contient deux « & > alors que la seconde non).”

Pour résoudre notre probléme, je vous propose d'utiliser une liste d’association, qui est une liste de
type ('a * 'b) list, de sorte que si (¢, v) et (¢,v") sont tous deux éléments de la liste, alors ¢ #
¢’. Autrement dit, une liste d’association encode une fonction qui associe des éléments de type 'a
(appelés clés) a des éléments de type 'b (appelés valeurs). Par exemple, dans la liste
[(ta", 1); ('b", 5); ('c', 0)]
de type (char * int) list, onaassociélavaleurla<a> 5a<bsetOa<c,.
1. a. Définir une fonction
is _defined: ('a * 'b) list -> 'a -> bool
qui prend une liste d’association, une clé, et détermine si une valeur lui est associée.
b. Définir une fonction
get value: ('a * 'b) list -> 'a -> 'Db
qui prend une liste d’association, une clé, et retourne la valeur qui lui est associée (si elle existe,
sinon elle produit une erreur).
c. Définir une fonction
update value: ('a * 'b) list -> 'a -> 'b -> ('a * 'b) list
qui prend une liste d’association, une clé ¢, une valeur v et qui retourne une nouvelle liste
d’association ott la nouvelle valeur de la clé ¢ est v. Sila clé n'est pas présente, on ve contentera dajouter
la patre (¢,v) a la liste. Stnon, on modifiera la valeur présente dans la lwlte.
d. Ecrivez une fonction
count_chars_of_str: string -> (char * int) list quiétant donné une chaine de caractéres,

retourne une liste d’association comptant le nombre d’occurrences de chaque caractére.

7Ce sont en revanche des anagrammes si on ignore les espaces, les accents et la ponctuation. (Source : topito.com.)
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2. a. De quelle(s) fonction(s) sur les listes d’associations auriez-vous besoin pour déterminer, a 'aide
de la fonction count_chars_of_str, si deux chaines sont des anagrammes ? Implémentez ces
fonctions annexes.

b. En déduire une fonction
are_anagrams: string -> string -> bool qui détermine si deux chaines sont des anagrammes.
c. Donnez une borne supérieure (raisonnable) sur la complexité temporelle de votre fonction

count_chars_of_str, puis de votre fonction are_anagrams

XXYV. Correction et terminaison d’'une somme sur un tableaux

exercice de cours  théorique correction « terminaison  complexité

int array sum(int *arr, int n) {
assert(arr !'= NULL);
assert(n >= 0);
int sum = 0;
int 1 = 0;
while (i < n) {
sum = sum + arr[il;
i++;
}

return sum;

}

1. Démontrez que la fonction array_sum termine sur toute entrée.

2. Déterminez la complexité temporelle de cette fonction.

3. Démontrez sa correction, c’est-a-dire que array sum(int *arr, int n) retourne la somme des n

premiers éléments du tableau arr pour tout entier positif n.

XXVI. Correction d’'une boucle while

exercice d'application  théorique correction

On considére la fonction suivante en C :

int get first(int *arr, int n) {

int 1 = 0;

while (i < n && arr[i] < 42) {
i++;

}

return i;

}

Démontrez que la fonction get first, sur un tableau arr, de taille n, retourne
® le plus petit indice 1 tel que arr[i] >= 42, si un tel indice existe ;

® n, sinon.

Remargue : Ne pas sous-estimer la difficulté de cet exercice pour les étudiants les moins rigoureux.
D’habitude on peut oublier de parler dans I'invariant de la condition de la boucle, et s’en sortir par
une petite arnaque (du style « on voit bien que »). Si on fait cette erreur ici, il ne reste plus grand chose
dans l'invariant... Cest donc un trés bon exercice pour apprendre la rigueur, mais il est beaucoup
plus difficile que le précédent.
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XXVII. Correction d'un calcul récursif de la factorielle

exercice d'application  théorique correction  terminaison  complexité

On considére la fonction suivante en OCaml, qui implémente le calcul de la factorielle avec une

fonction récursive terminale.

let fact n =
assert(n >= 0);
let rec fact aux n acc =
if n = 0 then
acc
else
fact _aux (n - 1) (n * acc)
in fact aux n 1

1. Démontrez que la fonction fact termine sur toute entrée.
2. Déterminez la complexité temporelle de cette fonction.

3. Démontrez que la fonction fact est correcte, c’est-a-dire que fact n vaut n! pour tout n € N.

XXVIII. Correction d'un calcul de Fibonacci

exercice d'approfondissement  théorique correction

On considére la fonction suivante en OCaml.

let fibo n =
assert(n>=0);
let rec fibo aux k a b =
if k = n then
b
else
fibo aux (k+1) a (a + b)
in fibo aux 0 1 1;;

La personne qui a écrit cette fonction souhaitait que n retourne le n-éme terme f,, de la suite de
Fibonacci, ou fy = f; = let f,, .o = f,, + fn41 pour tout n € N. Ce n’est malheureusement pas tout

a fait le cas. Que calcule n ? Prouvez-le.

XXIX. Correction d'un calcul d’'une somme d’entiers

exercice d'application  théorique correction

On consideére la fonction suivante en OCaml.

let sum_integers n =
let rec aux k acc =
assert(k >= 0);
if k = 0 then
acc
else
aux (k-1) (k+acc)
in aux n 0;;

(n+1)
2

Démontrez que sum_integers n retourne o pour tout n € N.
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XXX. Complexité d'une fonction sur des listes

exercice de cours théorique  complexité  terminaison

On consideére les fonctions suivantes en OCaml.

let rec sum list lst = match 1st with
| [1 ->0
| h::t -> h + sum list t;;

let rec is bigger than_sum lst = match lst with
| [1 -> true
| h::t -> (h > sum_list t) && (is_bigger than sum t);;

Démontrez briévement que la fonction is_bigger than_sum termine sur toute entrée. Quelle est sa

complexité temporelle ?

XXXI. Complexité d’'une dréle de fonction récursive

exercice d'approfondissement  théorique complexité @ terminaison

On considére la fonction suivante en OCaml, de type int -> int -> int.

let rec foo a b =
if a <=0 || b <=0 then
max a b
else (
let x foo (a-1) b
and y foo a (b-1) in
if x <=y then
2 * X
else
a*a+ X

)i
1. Démontrez que cette fonction termine sur toute entrée a I'aide d'un variant dans N.

2. Quelle est sa complexité temporelle ?

Remargue : Attention 2 ne pas sous-estimer la difficulté de cet exercice, qui parait a priori trivial A toute
personne expérimentée, mais qui contient en fait un difficulté conceptuelle : définir un variant dans
N pour une fonction ayant plusieurs paramétres. Il me semble important d'insister sur le fait que ce
variant soit dans N : on pourrait certes démontrer la terminaison a l'aide dans N2 muni de 'ordre
lexicographique, mais la premiére question sert aussi & mettre sur la bonne voie pour la question de

la complexité.

XXXII. Nombres de Hamming

exercice d'application C piles/files  complexité I/0 @ arithmétique
Source : Cours de Jean-Pierre Becirspahic au lycée Louts-le-Grand

Le but de cet exercice est d'implémenter une structure de files en C. Je vous laisse le choix de

I'implémentation (maillons chainés, tableau circulaire, etc.).

1. Définir un type Queue permettant de stocker des files d’entiers.

2. Définir des fonctions
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Queue *queue create(void);

void queue enqueue(Queue *, int);
void queue print(Queue *);

int queue peek(Queue *);

int queue dequeue(Queue *);

int queue is empty(Queue *);

void queue free(Queue *);

Chaque fonction devra étre testée, et la complexité temporelle de la fonction donnée en commen-
taire. Testez chaque fonction avant d'implémenter la suivante.

3. Application. Une nombre de Hamming est un entier naturel non-nul qui n’est divisible que par 2, 3,
et 5. Les plus petits nombres de Hamming sont 1, 2, 3, 4, 5, 6, 8,9, 10, 12, 15, 16, 18, etc. On se
propose de générer les nombres de Hamming en utilisant la remarque suivante : tout nombre de
Hamming autre que 1 est le produit d'un nombre de Hamming strictement inférieur avec 2, 3 ou
5. Et réciproquement, le produit d'un nombre de Hamming avec 2, 3 ou 5 est toujours un nombre
de Hamming. On considére I'algorithme suivant : on maintient trois files d’entiers, h2, h3 et h5,
toutes initialisées pour ne contenir qu'une valeur : I'entier 1. Tant qu’on veut produire un nombre
de Hamming, on chosit le plus petit entier n parmi les sommets de h2, h3 et h5, on le défile, on
affiche n, puisonenfile2 * nah2,3 * nah3et5 * nahb.

Ecrire une fonction void hamming(int m) qui affiche tous les entiers de Hamming inférieur & m.

4. Comparaison avec un algorithme naif. On considére ici un algorithme plus naif, qui se contente
d’énumérer les entiers de 1 2 m — 1 et de tester pour chacun s'il est un nombre de Hamming. Pour
tester si un entier 7 est un nombre de Hamming, on peut par exemple le diviser par 2 tant qu'il
est divisible par 2, puis par 3, puis par 5. Le résultat final est égal & 1 si et seulement si 7 est un
nombre de Hamming.

a. Empiriquement, pour m = 10?2, mon ordinateur met 10s & exécuter l'algorithme naif, contre
moins de 0.01s pour I'algorithme avec files. Expliquez cette différence.

b. Implémentez cette fonction naive (et vérifiez qu’elle donne les méme résultats que la fonction
précédente). S le besoin e fait ventin, vous pouvez utidwer les commandes Unix time pour mesurer le
tempo d'exécution d’un programme, we -1 pour compter le nombre de lignes d’un fichier et Lopérateur > pour

rediriger la sortie vers un fichier.

XXXIII. Un compteur et sa complexité moyenne

exercice d'application OCaml piles/files @ terminaison  complexité  récursivité

On consideére la fonction (partielle) suivante, qui transforme une pile de 0 et de 1 en une autre pile
de O et de 1.
® initialement, on part d'une pile remplie d'un nombre arbitraire de 1;
® ensuite, on itére la construction suivante sur la pile :
» sile sommet de la pile est un 1, on le remplace par un 0.
» sinon, on dépile tous les 0 jusqu’a tomber sur le premier 1 ; on remplace ce 1 par un 0, puis on
réempile un 1 pour chaque 0 dépilé.

» sinon (cad s'il n’y a que des 0), on s’arréte.

1. Itérez cette fonction sur la pile [1;1;1], jusqu’a ce que l'algorithme termine. Que semble faire cette
fonction ?

2. On souhaite maintenant I'implémenter en OCaml. Comme notre fonction est partielle (sur la pile
remplie de 0, on ne retourne rien), on va utiliser le type option. On rappelle que le type 'a option
permet de représenter soit un objet de type 'a, avec la syntaxe Some (x), soit rien (None). Par

ailleurs on représentera les piles avec des listes.
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a. Ecrire une fonction
next_stack: int list -> int list option qui prend une pile et retourne soit Some(p) ol p
est la pile obtenue par la fonction décrite dans 'énoncé, soit None s’il n'y a rien a retourner.

b. Ecrire une fonction récursive
countdown: int list option -> unit
qui ne fait rien sur None, et sur Some(p) applique récursivement la fonction next_stack a p en
affichant I'état de la pile & chaque étape.

3. Donnez un variant permettant de montrer que la fonction countdown termine.

4. Quelle est la complexité temporelle moyenne de la fonction next_stack ?

XXXIV. Numération de Zeckendorf

exercice d'approfondissement C ~arithmétique  tableaux  complexité

Vous connaissez |'écriture en base 10, en base 2, et plus généralement en base b € N, ot la séquence
(g, @1, Tgy -y T,_q) (avec n € N et z; € [0,b — 1] pour tout ¢ < n) représente |'entier Z;:Ol z; bt
On s’intéresse ici & systéme de numération plus excentrique : le systéme de numération de Zecken-
dorf. Dans ce systéme, on représente un nombre en le décomposant comme la somme de nombres
appartenant a la suite de Fibonacci. Pour rappel, la suite de Fibonacci est définie récursivement par
fo=1fi=2etf, o= f,+ fuy1 pour n € N: ses premiers termes sont donc 1, 2,3, 5,8, 13, etc.®
Par exemple, on peut écrire 6 comme 5+ 1 et 17 comme 13 + 3 + 1. On remarque vite que cette
écriture n’est pas unique : 5 peut s’écrire comme 5 (c’est un nombre de Fibonacci) mais aussi comme
2 + 3. Par suite, on peut écrire 6 comme 5 + 1, mais aussi 2 + 3 4+ 1. Le théoréme de Zeckendorf,
énoncé et démontré par le médecin belge Edouard Zeckendorf dans les années 1950, montre que tout
entier peut s'écrire de fagon unique comme la somme de nombres de Fibonacci distincts et tels que
deux nombres de Fibonacci consécutifs ne puissent apparaitre dans cette somme. C'est-a-dire que,
par exemple, on s'interdit d'utiliser a la fois 3 et 5 (on utilisera a la place leur somme, 8, qui par un
heureux miracle est aussi un nombre de Fibonacci). On admet ici ce théoréme : étant donné un entier
n € N, I'unique suite (z;),_ € {0, 1} telle que n = E::O; z;f;, et Vie N, ~(z; =1Az;q =1),
est appelée écriture de Zeckendorf (ou représentation de Zeckendorf) de n.

1. Calculez a la main l'écriture de Zeckendorf des entiers 10, 20 et 30.

2. Proposez une description haut-niveau de quelques lignes, en frangais (pas de pseudo-code !), d'un

algorithme permettant de calculer I'écriture de Zeckendorf d'un nombre.

Dans le reste de cet exercice, on va manipuler ce systéme de numération en C. Sans surprise, le calcul
des nombres de la suite de Fibonacci va donc jouer un réle crucial. Pour des raisons de performance,’
nous souhaitons éviter de répéter ces calculs. Pour ce faire, on va utiliser la mémoization, c’est-a-
dire qu'on va stocker dans une structure de données les valeurs de la suite qui ont déja été calculées.
Naturellement, on veut une structure qui permette d’accéder a tout élément en temps constant, mais
aussi qui soit redimensionnable. On va donc utiliser des... tableaux redimensionnables !

3. a. Définir un type resizable_array permettant de représenter un tableau redimensionnable

contenant des entiers positifs.

b. Définir des fonctions

resizable array *rar create();
int rar get elem(resizable array *rar, int i);
void rar set elem(resizable array *rar, int i, int x);

811 est plus commun de choisir comme premiers termes 0 et 1, ou méme 1 et 1, mais le choix de fy = 1et f; = 2est
important pour cet exercice : nous avons besoin que tous les entiers de la suite soient distincts.
9(Et pour coller au programme de colle.)
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void rar print(resizable array *rar);
void rar free(resizable array *rar);

La fonction rar_get_elem devra toujours retourner quelque chose : on retournera une valeur
par défaut, par exemple -1, siI’élément n’a pas été initialisé. La fonction rar_set_elemchangera
la valeur d’'un élément du tableau : bien siir, si le tableau n’est pas assez grand, on 'aggrandira
auparavant. Vous vous assurerez que votre implémentation a une complexité amortie raison-
nable; je ne vous demande cependant pas de le justifier par écrit.

c. Ecrire une fonction int fib(int n), qui:
e vérifie dans une variable globale stockant un pointeur vers un resizable_arraysionya

stocké le n-éme élément de la suite de Fibonacci, et

* le retourne si c’est le cas,
* sinon, le calcule, I’y stocke, puis le retourne.

d. Quelle est la complexité temporelle dans le pire cas de fib(n) ; en fonction de n, sos I'hypothése
qu’on a déja calculé f; pouri < n?
Etde for (int i = 0; i < n; i++) { fib(i); }, sous ’hypothése que l'on n’a encore calculé
aucune valeur ?

4. On se propose de représenter une écriture de Zeckendorf (z;), - comme un array contenant les

valeurs {z,, 1, ..., Z5_1,—1} ot k un entier tel que z,, =0 pouiﬁiout n > k.

a. Ecrire une fonction void print zeck repr(int repr[]) qui affiche une telle représentation
(on n’affichera pas le -1 final, celui-ci ne sert qu’'a marquer la fin du tableau).

b. Ecrire une fonction int int of zeck repr(int repr[]) qui prend un array représentant
(,xi)ieN’ et retourne Z;og x,; - f,L

c. Ecrire une fonction int *zeck repr of int(int n) qui retourne l'écriture de Zeckendorf de
son entrée.

5. Bonus (difficile). Déterminez un algorithme pour additionner des nombres écrits sous leur
écriture de Zeckendorf. On s'interdira de calculer les entiers qu'ils représentent : on souhaite
trouver un algorithme qui travaille directement sur les écritures de Zeckendorf. Implémentez
cet algorithme en une fonction int *add zeck repr(int x[], int y[]). /ndice : Commencez
par additionner naivement (wl)ze

(z; + yi)ieN. Elle ne satisfait les régles de Zeckendorf (cad que z_i in {0,1} et qu'il ne peut y avoir

deitel que z; = letz; | = 1) : trouvez des régles de réécriture & appliquer a (zi)ieN pour lui faire

N et (yi)ieN’ ce qui nous donne la représentatlon (zi)ieN =

respecter les contraintes souhaitées.
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