
Quelques exercices de colles
d’informatique en MP2I

donnés lors de l’année scolaire 2025–2026
dans la classe de Géraldine Olivier au Lycée Montaigne

Rémi Morvan
www.morvan.xyz

Organisation
Ce polycopié d’exercices est intégralement placé sous licence CC BY 4.0. Les exercices sont classés
par difficulté (exercices « de cours », d’application et d’approfondissement) ainsi que par thème.
La difficulté n’est donnée qu’à titre purement indicative : d’une part celle-ci dépend grandement du
moment dans l’année où l’exercice est donné, et d’autre part la difficulté exercices les plus complexes
est souvent progressive; ils contiennent donc généralement des questions « de cours ».

Les pages suivantes contiennent d’une part un sommaire par langage (sous-catégorifié selon la
difficulté), ainsi qu’un sommaire par thème abordé. Par ailleurs, ces exercices ont été donnés entre
le mois de décembre et le mois de février : ce polycopié ne couvre donc pas l’ensemble du programme
de MP2I.

Quand une source est mentionnée, tout ou partie de l’exercice s’inspire directement de cette source,
la formulation même de l’exercice m’étant cependant propre. Quand aucune source n’est mentionnée,
cela signifie que j’ai écrit cet exercice sans source directe : je ne saurais cependant prétendre à aucune
forme d’originalité. J’ai par ailleurs essayé, d’autant que faire se peut, de créer des exercices motivés
et motivants. Par exemple, j’ai essayé de ne jamais demander d’implémenter une structure sans que
la suite de l’exercice n’en propose une véritable application. En conséquence, certains exercices sont
particulièrement longs.

Ce document a été mis en page avec Typst. Les sources de ce document sont disponibles sur
github.com/remimorvan/colles-mp2i. Des corrections imparfaites sont disponibles dans le répertoire
exercices de ce projet.

Consignes
Chaque sujet était précédé des consignes suivantes.

Apportez du soin à la qualité de vos réponses plus qu’à la quantité, et pensez à écrire des tests. Lisez
les exercices dans leur intégralité avant de vous lancer et ayez toujours de quoi écrire devant vous.
Tout fichier rendu doit pouvoir être compilé (en C, avec l’option -Wall), ou interprété (OCaml) sans
erreur ni warning, et contenir des tests codés en dur avec des assert.

2

https://creativecommons.org/licenses/by/4.0/deed.fr
https://typst.app/
https://github.com/remimorvan/colles-mp2i

Sommaire par langage et difficulté

Exercices en OCaml

Exercices de cours

II. Types sommes et produits . 8
VI. Types enregistrement . 10
XIV. Recherche dichotomique . 15
XV. Exponentiation rapide . 15
XVII. Couplage de Cantor . 16
XX. Tri fusion . 20

Exercices d'application

I. Arbres binaires . 8
XII. Un peu de géométrie du plan . 13
XXII. Notation polonaise inversée . 23
XXIV. Anagrammes . 25
XXXIII. Un compteur et sa complexité moyenne . 29

Exercices d'approfondissement

VII. Uno à une joueuse . 10
X. Un brin de génétique . 11
XVIII. Arbres de décision . 17

Exercices en C

Exercices de cours

III. Un problème de mémoire . 8
IV. Min-max d’un tableau . 9

Exercices d'application

V. Retournement de chaîne . 9
VIII. Nombre de voyelles . 11
IX. Fusion de tableaux triés . 11
XI. Tri d’un tableau 0/1 en place . 13
XIII. Le cycle des quintes . 14
XVI. Tri d’un tableau borné . 16
XXIII. Crible d’Ératosthène . 24
XXXII. Nombres de Hamming . 28

Exercices d'approfondissement

XIX. Triangle de Sierpiński . 19
XXI. Télégraphe de Chappe en milieu montagneux . 20
XXXIV. Numération de Zeckendorf . 30

3

Exercices théoriques

Exercices de cours

XXV. Correction et terminaison d’une somme sur un tableaux 26
XXX. Complexité d’une fonction sur des listes . 28

Exercices d'application

XXVI. Correction d’une boucle while . 26
XXVII. Correction d’un calcul récursif de la factorielle . 27
XXIX. Correction d’un calcul d’une somme d’entiers . 27

Exercices d'approfondissement

XXVIII. Correction d’un calcul de Fibonacci . 27
XXXI. Complexité d’une drôle de fonction récursive . 28

4

Sommaire par thème

I/O
XIX. Triangle de Sierpiński (C · exercice d'approfondissement) 19
XXI. Télégraphe de Chappe en milieu montagneux (C · exercice d'approfondissement) 20
XXIII. Crible d’Ératosthène (C · exercice d'application) . 24
XXXII. Nombres de Hamming (C · exercice d'application) . 28

Arbres
I. Arbres binaires (OCaml · exercice d'application) . 8
XVIII. Arbres de décision (OCaml · exercice d'approfondissement) 17
XXII. Notation polonaise inversée (OCaml · exercice d'application) 23

Arithmétique
XV. Exponentiation rapide (OCaml · exercice de cours) . 15
XXII. Notation polonaise inversée (OCaml · exercice d'application) 23
XXIII. Crible d’Ératosthène (C · exercice d'application) . 24
XXXII. Nombres de Hamming (C · exercice d'application) . 28
XXXIV. Numération de Zeckendorf (C · exercice d'approfondissement) 30

Complexité
I. Arbres binaires (OCaml · exercice d'application) . 8
VII. Uno à une joueuse (OCaml · exercice d'approfondissement) 10
XI. Tri d’un tableau 0/1 en place (C · exercice d'application) 13
XV. Exponentiation rapide (OCaml · exercice de cours) . 15
XVI. Tri d’un tableau borné (C · exercice d'application) . 16
XIX. Triangle de Sierpiński (C · exercice d'approfondissement) 19
XX. Tri fusion (OCaml · exercice de cours) . 20
XXI. Télégraphe de Chappe en milieu montagneux (C · exercice d'approfondissement) 20
XXII. Notation polonaise inversée (OCaml · exercice d'application) 23
XXIII. Crible d’Ératosthène (C · exercice d'application) . 24
XXIV. Anagrammes (OCaml · exercice d'application) . 25
XXV. Correction et terminaison d’une somme sur un tableaux (théorique · exercice de cours) . 26
XXVII. Correction d’un calcul récursif de la factorielle (théorique · exercice d'application) . . . 27
XXX. Complexité d’une fonction sur des listes (théorique · exercice de cours) 28
XXXI. Complexité d’une drôle de fonction récursive (théorique · exercice d'approfondissement) . 28
XXXII. Nombres de Hamming (C · exercice d'application) . 28
XXXIII. Un compteur et sa complexité moyenne (OCaml · exercice d'application) 29
XXXIV. Numération de Zeckendorf (C · exercice d'approfondissement) 30

Correction
XXV. Correction et terminaison d’une somme sur un tableaux (théorique · exercice de cours) . 26
XXVI. Correction d’une boucle while (théorique · exercice d'application) 26
XXVII. Correction d’un calcul récursif de la factorielle (théorique · exercice d'application) . . . 27

5

XXVIII. Correction d’un calcul de Fibonacci (théorique · exercice d'approfondissement) 27
XXIX. Correction d’un calcul d’une somme d’entiers (théorique · exercice d'application) 27

Dictionnaires
X. Un brin de génétique (OCaml · exercice d'approfondissement) 11
XXIV. Anagrammes (OCaml · exercice d'application) . 25

Float
XII. Un peu de géométrie du plan (OCaml · exercice d'application) 13

Listes chaînées
XIII. Le cycle des quintes (C · exercice d'application) . 14

Mémoire
III. Un problème de mémoire (C · exercice de cours) . 8
V. Retournement de chaîne (C · exercice d'application) . 9
XIII. Le cycle des quintes (C · exercice d'application) . 14

Piles/files
XXII. Notation polonaise inversée (OCaml · exercice d'application) 23
XXXII. Nombres de Hamming (C · exercice d'application) . 28
XXXIII. Un compteur et sa complexité moyenne (OCaml · exercice d'application) 29

Récursivité
I. Arbres binaires (OCaml · exercice d'application) . 8
VII. Uno à une joueuse (OCaml · exercice d'approfondissement) 10
X. Un brin de génétique (OCaml · exercice d'approfondissement) 11
XIV. Recherche dichotomique (OCaml · exercice de cours) . 15
XV. Exponentiation rapide (OCaml · exercice de cours) . 15
XVII. Couplage de Cantor (OCaml · exercice de cours) . 16
XVIII. Arbres de décision (OCaml · exercice d'approfondissement) 17
XIX. Triangle de Sierpiński (C · exercice d'approfondissement) 19
XX. Tri fusion (OCaml · exercice de cours) . 20
XXI. Télégraphe de Chappe en milieu montagneux (C · exercice d'approfondissement) 20
XXII. Notation polonaise inversée (OCaml · exercice d'application) 23
XXIV. Anagrammes (OCaml · exercice d'application) . 25
XXXIII. Un compteur et sa complexité moyenne (OCaml · exercice d'application) 29

Tableaux
III. Un problème de mémoire (C · exercice de cours) . 8
IV. Min-max d’un tableau (C · exercice de cours) . 9
V. Retournement de chaîne (C · exercice d'application) . 9
VIII. Nombre de voyelles (C · exercice d'application) . 11

6

IX. Fusion de tableaux triés (C · exercice d'application) . 11
XI. Tri d’un tableau 0/1 en place (C · exercice d'application) 13
XIV. Recherche dichotomique (OCaml · exercice de cours) . 15
XVI. Tri d’un tableau borné (C · exercice d'application) . 16
XIX. Triangle de Sierpiński (C · exercice d'approfondissement) 19
XXI. Télégraphe de Chappe en milieu montagneux (C · exercice d'approfondissement) 20
XXIII. Crible d’Ératosthène (C · exercice d'application) . 24
XXXIV. Numération de Zeckendorf (C · exercice d'approfondissement) 30

Terminaison
XV. Exponentiation rapide (OCaml · exercice de cours) . 15
XIX. Triangle de Sierpiński (C · exercice d'approfondissement) 19
XXV. Correction et terminaison d’une somme sur un tableaux (théorique · exercice de cours) . 26
XXVII. Correction d’un calcul récursif de la factorielle (théorique · exercice d'application) . . . 27
XXX. Complexité d’une fonction sur des listes (théorique · exercice de cours) 28
XXXI. Complexité d’une drôle de fonction récursive (théorique · exercice d'approfondissement) . 28
XXXIII. Un compteur et sa complexité moyenne (OCaml · exercice d'application) 29

Tri
IX. Fusion de tableaux triés (C · exercice d'application) . 11
XI. Tri d’un tableau 0/1 en place (C · exercice d'application) 13
XVI. Tri d’un tableau borné (C · exercice d'application) . 16
XX. Tri fusion (OCaml · exercice de cours) . 20

Types
II. Types sommes et produits (OCaml · exercice de cours) . 8
VI. Types enregistrement (OCaml · exercice de cours) . 10
VII. Uno à une joueuse (OCaml · exercice d'approfondissement) 10
XII. Un peu de géométrie du plan (OCaml · exercice d'application) 13

7

I. Arbres binaires
exercice d'application OCaml récursivité arbres complexité

On s’intéresse à des arbres binaires étiquettés par des entiers. Ce sont des structures, définies récur-
sivement : un tel arbre est soit une simple feuille, à qui on a associé un entier, soit un noeud interne,
à qui on associe un entier (son étiquette), ainsi que deux arbres, appelés fils gauche et fils droit.
1. Définir un type tree permettant de représenter cette structure.
2. Définir une fonction

max_of_tree: tree -> int
qui calcule la plus grande étiquette apparaissant sur un arbre.

3. Définir une fonction
max_of_subtrees_quad: tree -> tree
qui prend un arbre, et retourne un nouvel arbre obtenu à partir du premier en remplaçant
l’étiquette d’un nœud par la plus grande valeur apparaissant sous ce nœud.¹ Par exemple, sur
l’entrée

7

3 10

2 4 1 0

la fonction max_of_subtrees_quad retournera

10

4 10

2 4 1 0 .

4. Déterminez les complexités spatiales et temporelles de votre fonction max_of_subtrees_quad.
Votre fonction est-elle récursive terminale ?

5. Si votre fonction n’a pas une complexité temporelle linéaire, donnez-en une nouvelle version pour
qui c’est le cas.

II. Types sommes et produits
exercice de cours OCaml types

On souhaite définir un type locality qui représente un échelon du maillage territorial français :
pour faire simple, on veut seulement représenter soit des communes (représentée par un entier à cinq
chiffres, qui est leur code INSEE), soit des départements (représentés par un entier à deux chiffres).
Par exemple, le code INSEE de Bordeaux est le 33063, et le numéro de département de la Gironde
est le 33.
1. Écrire un type somme locality correspondant à la description précédente.
2. Écrire une fonction is_part_of de type locality -> locality -> bool qui détermine si 1. la

première localité est une commune, 2. la seconde est un département, et 3. la commune appartient
au département. On admettra que les deux premiers chiffres du code INSEE d’une commune
correspondent à son numéro de département.

III. Un problème de mémoire
exercice de cours C mémoire tableaux

1. Le code suivant a un comportement indéterminé. Pourquoi ?

¹Par « sous ce nœud » on veut dire formellement « dans le sous-arbre enraciné en ce nœud ».

8

#include <stdio.h>

int *foo(int step) {
 int p[9] = {0};
 for (int i = 0; i < 9; i += step) {
 p[i] = 1;
 }
 return p;
}

int main(int argc, char *argv[]) {
 int *p = foo(2);
 printf("%d\n", p[4]);
 free(p);
 return 0;
}

2. Corrigez le code de la fonction foo, puis dessinez l’état de la mémoire juste avant l’exécution de
l’instruction return p;.

IV. Min-max d’un tableau
exercice de cours C tableaux

Source : Cours de C de Floréal Morandat à l’ENSEIRB.

On souhaite, étant donné un tableau, calculer son minimum et son maximum. Écrire une fonction
void min_max(int l, int t[], int *min, int *max)
réalisant ce calcul. L’entrée l représente la taille du tableau t, et min et max sont des pointeurs vers
les cases mémoires où l’on souhaite stocker le résultat. Vous être libres de choisir le comportement de
cette fonction si le tableau est vide.

V. Retournement de chaîne
exercice d'application C tableaux mémoire

Source : Cours de C de Floréal Morandat à l’ENSEIRB.

1. Écrire une fonction
void reverse(char* str, char* str_rev)
qui prend deux chaînes de caractères str et str_rev, et qui écrit sur str_rev le miroir de str.
Le miroir est obtenu en lisant la chaîne de droite à gauche. Par exemple, le renversé de « Hello
world! » est « !dlrow olleH ». On supposera que la chaîne str_rev est de taille suffisante pour
stocker le résultat.

Vous pourrez tester votre code avec la fonction main suivante.

int main(int argc, char *argv[]) {
 char str[100] = "Hello world!";
 char str_rev[100] = "";
 reverse(str, str_rev);
 printf("%s\n", str_rev);
 return 0;
}

9

https://www.labri.fr/perso/fmoranda/pg101/
https://www.labri.fr/perso/fmoranda/pg101/

2. Dessinez l’état de la mémoire avant l’appel de reverse, puis juste avant le retour de la fonction
reverse.

VI. Types enregistrement
exercice de cours OCaml types

On souhaite créer un type enregistrement neighbourhood qui permette de représenter une zone
géographique, correspondant à un code postal et à un nom de commune.
1. Définir un type neighbourhood de sorte que l’instruction suivante soit valide.

let bdx = {
 postal_code = 33000;
 city = "Bordeaux";
}

2. Écrire une fonction string_of_neighbourhood de type neighbourhood -> string qui associe à
chaque zone une chaîne de caractères la représentant. Par exemple, string_of_neighbourhood
bdx retournera « 33000 Bordeaux ».

VII. Uno à une joueuse
exercice d'approfondissement OCaml récursivité types complexité

On s’intéresse à une variante du jeu de cartes Uno, à une joueuse. Le jeu dispose de deux types
de cartes :
• des cartes de valeurs, qui ont toute une couleur (rouge, jaune, vert ou bleu) et un chiffre,
• des cartes de changement de couleur.

Dans cette variante du jeu, il y a une carte initialement posée sur la table, et la joueuse a en main un
ensemble de cartes. Son but est de déposer l’ensemble de ses cartes sur la pile. Pour poser une carte
sur la pile, il faut respecter les règles suivantes :
• on peut toujours poser une carte de changement de couleur,
• si la carte au sommet de la pile est un changement de couleur, on peut poser la carte qu’on souhaite,
• sinon, si une carte de valeur est au sommet de la pile et qu’on souhaite poser une carte de valeur, il

faut soit que leur couleur coïncide, soit que leur chiffre coïncide.

Le but de l’exercice est, étant donnée une main de départ, de déterminer si une joueuse a une stratégie
lui permettant de vider entièrement sa main.
1. Définir un type card permettant de représenter les cartes de ce jeu.
2. Montrer que le problème est non-trivial : donner un (tout petit) exemple où la joueuse peut vider

sa main, et un (tout petit) exemple où elle ne peut pas le faire.
3. Définir une fonction

is_playable: card -> card -> bool,
qui prend la dernière carte jouée et une carte que l’on souhaite jouer, et qui retourne si on peut
effectivement jouer cette carte.

4. On veut implémenter ici une stratégie gloutonne : on va regarder la liste des cartes qu’on a en main,
et on va jouer la première carte que l’on peut jouer. On réitère ce processus jusqu’à ce que l’on
ne puisse plus jouer, c’est-à-dire soit jusqu’à ce qu’on n’ait plus de carte en main (victoire !), soit
jusqu’à ce qu’aucune de nos cartes ne soit jouable. Définir une fonction récursive terminale
greedy_play : card -> card list -> card list -> int
qui prend en entrée la dernière carte jouée, et la main de la joueuse (séparée en deux listes), et qui

10

retourne le nombre de cartes restant dans la main de la joueuse après avoir appliqué cette stratégie
gloutonne jusqu’à ne plus pouvoir jouer. Les deux listes de cartes représentent respectivement les
cartes que l’on a déjà essayé, sans succès, de jouer sur la pile actuelle, et les cartes que l’on a pas
encore essayé de jouer.

5. Quelles sont les complexités temporelles et spatiales, dans le pire cas, de cette fonction ?
6. Montrez que cette stratégie n’est pas optimale, c’est-à-dire qu’il existe une main initiale telle qu’en

utilisant la stratégie gloutonne, on se retrouve à ne plus pouvoir jouer en ayant encore des cartes
en main, alors qu’il existe une autre stratégie permettant de vider sa main.

7. Implémenter une fonction récursive
optimal_play : card -> card list -> int qui prend en entrée la dernière carte jouée, et la
main de la joueuse, et qui retourne le nombre de cartes restant dans la main de la joueuse après
avoir appliqué une stratégie optimale.

VIII. Nombre de voyelles
exercice d'application C tableaux

Source : Cours de C de Floréal Morandat à l’ENSEIRB.

On souhaite déterminer le nombre de voyelles dans une chaîne de caractères en C.
1. Écrire une fonction

int in_array(char x, int n, char arr[])
qui détermine si un caractère x est présent dans un tableau de caractères arr de taille n.

2. En déduire une fonction
int is_vowel(char c)
qui détermine si un caractère est une voyelle.
(Votre code doit tenir en deux lignes, sinon c’est que vous vous compliquez la vie.)

3. En déduire une fonction
int nb_vowels(char *str)
qui retourne le nombre total de voyelles contenues dans une chaîne de caractères.

IX. Fusion de tableaux triés
exercice d'application C tableaux tri

Écrire une fonction
 int* merge_sorted(int arr1[], int n1, int arr2[], int n2)
prenant deux tableaux triés et leur taille, et retournant un tableau résultant de la fusion de ces deux
tableaux. Plus précisément, on souhaite que l’ensemble des nouveaux éléments de ce tableau soit
l’union des deux tableaux passés en entrée, et que le nouveau soit trié. Votre algorithme devra être en
temps linéaire en la taille de l’entrée.

X. Un brin de génétique
exercice d'approfondissement OCaml récursivité dictionnaires

L’acide ribonucléique messager (ARNm) est une molécule qui intervient dans la synthèse des pro-
téines à partir de l’ADN. On peut voir un brin d’ARNm comme un mot sur l’alphabet {𝐴, 𝑈, 𝐺, 𝐶},

11

https://www.labri.fr/perso/fmoranda/pg101/

chaque lettre étant appelée nucléotide.² L’algorithme pour synthétiser une protéine à partir d’un brin
ARNm est le suivant :
• on regroupe les nucléotides par groupe de trois ; chaque groupe de trois nucléotides (par exemple

« AUG » et « CGA ») est appelé « codon » ;
• chaque codon produit un acide aminé (par exemple Phe (phénylalanine), ou Lys (lysine)), ou indique

le début de la synthèse (init), ou l’arrêt de la synthèse (stop). Un codon qui indique le début de la
synthèse est aussi toujours associé à un acide aminé. Par exemple, « AUG » indique le début de la
synthèse et est associé à l’acide aminé « Met ». La première fois qu’on le rencontrera, celà initiera
la synthèse de la protéine, mais la seconde fois, il produira l’acide aminé « Met ».³

Considérons par exemple le brin d’ARN messager

CUCAUGCAGAGUAUGUGAAGCCCCUUC.

Ses codons sont

CUC⏟
𝙻𝚎𝚞

AUG⏟
𝚒𝚗𝚒𝚝/𝙼𝚎𝚝

CAG⏟
𝙶𝚕𝚗

AGU⏟
𝚂𝚎𝚛

AUG⏟
𝚒𝚗𝚒𝚝/𝙼𝚎𝚝

UGA⏟
𝚜𝚝𝚘𝚙

AGC⏟
𝚂𝚎𝚛

CCC⏟
𝙿𝚛𝚘

UUC⏟
𝙿𝚑𝚎

.

Lors de la synthèse, on obtiendra donc la protéine définie par la suite d’acide aminé Gln Ser Met. Le
but de cet exercice est de simuler cette synthèse en OCaml.

1. Définir une fonction
rna_to_codon_list: string -> string list qui associe à un brin d’ARNm la liste de ses codons.

2. Écrire des fonctions

is_codon_init: string -> bool
is_codon_stop: string -> bool

qui détermine si un codon est initiant ou stopant. Les codons initiants sont UUG, CUG et AUG;
les codons stopant sont UAA, UAG et UGA.

3. On souhaite définir une structure qui décrit l’information de quel acide aminé est associé à un
codon donné : on va utiliser une liste d’association. Une liste d’association est une liste de type
('a * 'b) list, de sorte que si (𝑐, 𝑣) et (𝑐′, 𝑣′) sont tous deux éléments de la liste, alors 𝑐 ≠
𝑐′. Autrement dit, une liste d’association encode une fonction qui associe des éléments de type 'a
(appelés clés) à des éléments de type 'b (appelés valeurs).
a. Définir une fonction

is_defined: ('a * 'b) list -> 'a -> bool
qui prend une liste d’association, une clé, et détermine si une valeur lui est associée.

b. Définir une fonction
value_of: ('a * 'b) list -> 'a -> 'b
qui prend une liste d’association, une clé, et retourne la valeur qui lui est associée (si elle existe,
sinon elle produit une erreur).

c. À partir de la liste d’association de type (string * string) list

let codon_to_amino_acid_data = [("UUU", "Phe") ; ("UUC", "Phe") ; ("UUA",
"Leu") ; ("UUG", "Leu") ; ("CUU", "Leu") ; ("CUC", "Leu") ; ("CUA", "Leu") ;
("CUG", "Leu") ; ("AUU", "Ile") ; ("AUC", "Ile") ; ("AUA", "Ile") ; ("AUG",
"Met") ; ("GUU", "Val") ; ("GUC", "Val") ; ("GUA", "Val") ; ("GUG", "Val") ;
("UCU", "Ser") ; ("UCC", "Ser") ; ("UCA", "Ser") ; ("UCG", "Ser") ; ("CCU",
"Pro") ; ("CCC", "Pro") ; ("CCA", "Pro") ; ("CCG", "Pro") ; ("ACU", "Thr") ;
("ACC", "Thr") ; ("ACA", "Thr") ; ("ACG", "Thr") ; ("GCU", "Ala") ; ("GCC",

²Les lettres A, U, G et C font respectivement référence aux nucléotides adénine, uracile, guanine et cytosine.
³Bien évidemment, tout ceci est une simplification de la réalité.

12

"Ala") ; ("GCA", "Ala") ; ("GCG", "Ala") ; ("UAU", "Tyr") ; ("UAC", "Tyr") ;
("CAU", "His") ; ("CAC", "His") ; ("CAA", "Gln") ; ("CAG", "Gln") ; ("AAU",
"Asn") ; ("AAC", "Asn") ; ("AAA", "Lys") ; ("AAG", "Lys") ; ("GAU", "Asp") ;
("GAC", "Asp") ; ("GAA", "Glu") ; ("GAG", "Glu") ; ("UGU", "Cys") ; ("UGC",
"Cys") ; ("UGG", "Trp") ; ("CGU", "Arg") ; ("CGC", "Arg") ; ("CGA", "Arg") ;
("CGG", "Arg") ; ("AGU", "Ser") ; ("AGC", "Ser") ; ("AGA", "Arg") ; ("AGG",
"Arg") ; ("GGU", "Gly") ; ("GGC", "Gly") ; ("GGA", "Gly") ; ("GGG", "Gly")];;

définir une fonction codon_to_amino_acid: string -> string qui retourne l’acide aminé
associé à un codon passé en argument.

4. Le but de cette question est de produire une fonction synthesis: string -> string list
qui prend une chaîne de caractère représentant un brin d’ARN messager, et retourne la chaîne
d’acide aminés de la protéine produite par ce brin.
a. Donnez une description haut-niveau d’un tel algorithme. On s’attend à une réponse de quelques lignes,

en français (pas de pseudo-code), expliquant le fonctionnement de cet algorithme. Il est inutile de détailler
commenter calculer les fonctions implémentées aux questions précédentes.

b. Implémentez la fonction synthesis.

XI. Tri d’un tableau 0/1 en place
exercice d'application C tableaux tri complexité

Source : Exercices 25, 27 et 28 du livre « Informatique - MP2I/MPI - CPGE 1re et 2e années - Cours et exercices corrigés », de
Balabonski Thibaut, Conchon Sylvain, Filliâtre Jean-Christophe, Nguyen Kim, Sartre Laurent.

1. Écrire une fonction
void swap(int arr[], int i, int j)
qui échange les éléments n°i et j du tableau arr.

2. Écrire une fonction
twoway_sort(int arr[], int n)
qui prend en entrée un tableau et sa taille, et qui le trie en place. On supposera que le tableau ne
contient que les valeurs 0 et 1, et la seule opération qui vous est permise est la fonction swap de
la question précédente. La complexité temporelle de votre algorithme doit être au pire linéaire.

3. Question bonus, à ne faire que si vous avez terminé tout le reste de la feuille.
Écrire une fonction
dutch_flag(int arr[], int n)
qui prend en entrée un tableau et sa taille, et qui le trie en place. On supposera que le tableau ne
contient que les valeurs 0, 1 ou 2, et la seule opération qui vous est permise est la fonction swap de
la question précédente. La complexité temporelle de votre algorithme doit être au pire linéaire.
Cette question nécessite une réflexion algorithmique non-triviale. Plus encore que pour les autres questions, faites
des dessins sur une feuille.

XII. Un peu de géométrie du plan
exercice d'application OCaml types float

On souhaite représenter des points, des cercles, et des disques en OCaml. Un point sera représenté
par une paire d’abscisse et d’ordonnée (qui seront des float), un cercle par un point (son centre) et
un rayon (un float), et un disque par les mêmes informations.

1. Définir un type point représentant un point.

13

2. Définir un type shape représentant un objet géométrique (soit un cercle, soit un disque).
3. Écrire une fonction

belongs_to: point -> shape -> bool
qui détermine si un point appartient à un objet.⁴

XIII. Le cycle des quintes
exercice d'application C mémoire listes chaînées

Source : L’interface de la structure est adaptée du TP de Géraldine Olivier sur les listes chaînées en C.

On veut ici implémenter une structure de liste circulaire doublement chaînée. Concrètement,
contrairement à une liste chaînée, cette structure est circulaire (un élément a toujours un successeur),
et on veut aussi pouvoir accéder au prédécesseur d’un élément de la liste. Un exemple est donné en
Fig. 1. Notons qu’une telle liste a toujours un élément spécial, appelé « élément de tête ».

12

-2

7

5

-3

Fig. 1. – Une liste circulaire doublement chaînée.

On propose d’implémenter cette structure avec des maillons, chaque maillon contenant une valeur
(des entiers sur la Fig. 1), un pointeur vers l’élément suivant, et un pointeur vers l’élément précédent.
Vous avez le droit, et êtes même très vivement encouragé·e·s, de travailler à partir de la correction
du TP sur les listes chaînées.

Voici l’interface abstraite de la structure.

// Constructeur
list *list_create();

// Accesseurs
int list_length(list *l);
bool list_is_empty(list *l);
void list_print(list *l);
elt_type list_get_ith(list *l, int i);

⁴On rappelle qu’un disque est plein, contrairement à un cercle. Par exemple, le point de coordonnées (1, 1
2) appartient

au disque de centre (0, 0) et de rayon 2.

14

// Transformateurs
void list_set_ith(list *l, int i, elt_type v);
void list_insert_ith(list *l, int i, elt_type v);
elt_type list_rotate(list *l, int i);
elt_type list_delete_ith(list *l, int i);
void list_delete_all(list *l);

// Destructeur
extern void list_free(list **addr_l);

Notons par ailleurs que l’entier i peut désormais être négatif : par exemple, le (-3)-ème élément
d’une liste circulaire doublement chaînée, c’est le prédécesseur du prédécesseur du prédécesseur de
l’élément de tête. Il n’y a pas ici de fonction de concaténation.⁵ On a cependant rajouté une nouvelle
opération list_rotate : celle-ci fait rotationner la liste, c’est-à-dire qu’elle déplace l’élément de tête
de la liste. Elle retourne par ailleurs le nouvel élément de tête. Par exemple, sur la Fig. 1, une rotation
de −2 (ou de 3) ferait que 5 serait le nouvel élément de tête.

1. Implémentez les fonctions de l’interface. Après chaque fonction, compilez et testez.
2. Application.

a. Créez une liste circulaire doublement chaînée chromatic_scale dont les éléments sont, dans
l’ordre, les chaînes de caractères « do », « do# », « ré », « ré# », « mi », « fa », « fa# », « sol »,
« sol# », « la », « la# » et « si ».

b. Écrire une fonction
list* list_walk(list *l, int step),
qui, à partir d’une liste circulaire doublement chaînée, retourne une structure du même type,
obtenue en lisant les éléments à partir de l’élément de tête par pas de step, jusqu’à retomber
sur l’élément de tête. Ce pas pourra être positif, négatif ou nul.

c. En musique, le cycle des quintes est une liste circulaire obtenue à partir de l’échelle chroma-
tique en la parcourant par pas de 7.⁶ Calculez et affichez ce cycle.

XIV. Recherche dichotomique
exercice de cours OCaml récursivité tableaux

Écrire une fonction

dichotomy_search: 'a -> 'a array -> bool

déterminant si un élément appartient à un tableau trié. Votre algorithme devra utiliser une fonction
auxiliaire qui sera récursive terminale, et qui sera basée sur le principe de la dichotomie.

XV. Exponentiation rapide
exercice de cours OCaml récursivité complexité terminaison arithmétique

1. Implémentez un algorithme d’exponentiation rapide.
2. Justifiez sa terminaison.
3. Quelle est sa complexité temporelle dans le pire cas ?

⁵On pourrait toutefois donner un sens à une telle opération si on le souhaitait.
⁶Un intervalle de 7 demi-tons (l’intervalle élémentaire séparant ‹ do › de ‹ do# ›, ou encore ‹ mi › de ‹ fa ›) est appelé

quinte, d’où le nom « cycle des quintes ».

15

XVI. Tri d’un tableau borné
exercice d'application C tri tableaux complexité

Le but de cet exercice est de trier un tableau d’entiers positifs, lorsque l’on connaît une borne
(strictement) supérieure 𝑏 sur les entrées du tableau. L’idée de l’algorithme est la suivante : on va
créer un nouveau tableau count provisoire, de taille 𝑏, qui va compter le nombre d’occurrences de
chaque élément : plus précisément count[i] (pour 𝑖 ∈ ⟦0, 𝐵⟦) sera le nombre d’éléments du tableau
d’entrée égaux à 𝑖. À partir de ce tableau, on pourra alors trier le tableau d’origine simplement en
réécrivant les éléments dans le bon ordre.
1. Écrire une fonction

void bounded_sort(int arr[], int n, int b)
qui prend en entrée un tableau arr de taille n, dont les entrées sont toutes comprises entre 0 (inclus)
et 𝑏 (exclus), et qui trie le tableau arr avec la méthode décrite précédemment.

2. L’hypothèse que l’on connaît une borne supérieure 𝑏 est-elle contraignante ? Comment s’en déba-
rasser ? Implémentez votre solution dans une fonction
void bounded_sort_bis(int arr[], int n).

3. Quelle est la complexité en temps et en espace de cet algorithme, dans le pire cas ? Dans le meilleur
cas ?

4. Pour quels types de tableaux cet algorithme est-il bien plus intéressant à utiliser plutôt qu’un
algorithme de tri par comparaison s’exécutant au pire cas en temps 𝑂(𝑛 log(𝑛)) ? La réponse attendue
n’est pas mathématique, mais une description en quelques mots de la « forme » des données.

XVII. Couplage de Cantor
exercice de cours OCaml récursivité

Le but de cet exercice est de calculer la bijection 𝑓 de ℕ2 dans ℕ représentée en Fig. 2, appelée
« couplage de Cantor ». L’idée derrière cette bijection est simplement d’énumérer les paires d’entiers
par diagonale. Au sein d’une diagonale, on énumère les paires selon les 𝑥 croissants. Ainsi, on a par
exemple 𝑓(0, 0) = 0, 𝑓(0, 1) = 1 et 𝑓(1, 0) = 2, comme représenté en Fig. 2.

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Fig. 2. – Une bijection de ℕ2 dans ℕ.

1. Définir une fonction récursive bij: int * int -> int (en OCaml) calculant 𝑓 .
2. Vérifiez empiriquement que

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥 + 𝑦 + 1)
2

+ 𝑥 pour 𝑥, 𝑦 ∈ ℕ.

Pour la culture : Le couplage de Cantor a été introduit en 1873 par Georg Cantor. Vous remarquerez
que la fonction 𝑓 est un polynôme quadratique : en 1923, Rudolf Fueter et Georg Pólya publient
le théorème de Fueter–Pólya, qui affirme que 𝑓 , et son symétrique (𝑥, 𝑦) ↦ 𝑓(𝑦, 𝑥), sont les seules

16

fonctions quadratiques qui réalisent une bijection de ℕ2 dans ℕ. La conjecture Fueter–Pólya affirme
elle que ce sont les seules fonctions polynomiales satisfaisant cette propriété. À ce jour, la conjecture
est encore ouverte !

XVIII. Arbres de décision
exercice d'approfondissement OCaml récursivité arbres

𝑥 < 1.0

𝑥 < 0.5 𝑥 < 2.0

sortie 1 sortie 2 𝑥 < 1.21 sortie 5

sortie 3 sortie 4

𝑥 < 1.0

𝑥 < 0.5 𝑥 < 2.0

sortie 1 sortie 2 𝑥 < 1.21 sortie 5

sortie 3 sortie 4

Fig. 3. – Un arbre de décision (à gauche) et nœuds visités par l’algorithme d’évaluation de l’arbre sur
l’entrée 𝑥 = 1.13 (à droite).

Un arbre de décision est un arbre tel que celui représenté en Fig. 3 : il représente un algorithme
prenant en entrée une variable 𝑥 de type float, et retournant une sortie de type 'a—sur l’exemple de
Fig. 3, le type de sortie est string puisque ces sorties sont « sortie 1 », …, « sortie 5 ». Les feuilles de
cet arbre (les nœuds qui n’ont pas de fils) correspondent tous à des sorties. Les nœuds internes (ceux
avec des fils) sont eux étiquetés par des tests de la forme 𝑥 < cst où cst est un flottant. Chaque nœud
interne a exactement deux fils, appelés fils gauche et fils droit.

Un arbre représente une fonction de type float -> 'a (appelée sémantique de l’arbre), définie de
la façon récursive. Étant donné un flottant 𝑥, la sortie de cette fonction est obtenue en commençant
à la racine de l’arbre. Si cette racine est une sortie, c’est notre valeur de retour. Sinon, c’est un nœud
interne, qui est donc étiqueté par un test de la forme 𝑥 < cst : c’est par exemple le cas sur la Fig. 3,
et le test à la racine est 𝑥 < 1.0. Si le test est satisfait, on poursuit l’exécution de notre algorithme
en allant dans le fils gauche du nœud, et sinon dans le fils droit. Par exemple, si 𝑥 = 1.13, sur l’arbre
de Fig. 3, la sortie sera « sortie 3 » : l’exécution de l’algorithme est représentée sur la moitié droite
de Fig. 3.

1. On définit ces arbres en OCaml de la façon suivante :

type 'a decision_tree_univariate =
 | TestUni of float * 'a decision_tree_univariate * 'a decision_tree_univariate
 | OutputUni of 'a;;

Les trois arguments du constructeur TestUni correspondent respectivement à la constante avec
laquelle on compare 𝑥, le fils gauche du nœud, et son fils droit.
a. Définir un arbre de décision some_tree de type string decision_tree_univariate corres-

pondant à l’arbre de la Fig. 3.
b. Écrire une fonction récursive

eval_univariate: 'a decision_tree_univariate -> float -> 'a
qui prend un arbre de décision, un flottant, et évalue la fonction définie par cet arbre sur ce
flottant.

2. Les vrais arbres de décision ne manipulent en réalité pas qu’une seule variable mais plusieurs.
Par convention et souci de simplicité, on nommera ces variables 𝑥0, 𝑥1, …, 𝑥𝑛−1 (𝑛 ∈ ℕ étant le
nombre total de variables). Les tests sont désormais de la forme 𝑥𝑖 < cst (𝑖 ∈ ⟦0, 𝑛⟦) : on ne peut

17

pas comparer des variables entre elles, mais on peut comparer n’importe quelle variable avec une
constante.
a. Définir un type 'a decision_tree permettant de représenter ces arbres de décision à plusieurs

variables. Indice : On pourra représenter la variable 𝑥𝑖 par l’entier 𝑖.
b. Dans le cas 𝑛 = 2 (les variables sont donc 𝑥0 et 𝑥1), définir un arbre quarter_planes de type

string decision_tree qui retourne « NE » (north-east), « NW » (north-west), « SW » (south-
west), « SE » (south-east) selon la position du point (𝑥0, 𝑥1) dans le plan : par exemple le quart
de plan « NE » correspond aux points [0, +∞[× [0, +∞[, alors que le quart de plan « SE »
correspond aux points [0, +∞[×] − ∞, 0[.

c. On souhaite maintenant écrire un algorithme pour évaluer ces arbres. Dans le cas univarié,
l’entrée était représentée par un flottant. Dans notre cas, pour représenter une entrée
(𝑥0, 𝑥1, …, 𝑥𝑛−1), on va utiliser un float array. Écrire une fonction récursive
eval: 'a decision_tree -> float array -> 'a
qui prend un arbre de décision, un tableau de flottants, et évalue la fonction définie par cet arbre
sur ce tableau. Pour rappel, la taille d’un tableau arr peut être obtenue avec Array.length arr,
et la 𝑖-ème entrée de ce tableau avec arr.(i). On peut définir un tableau à l’aide de la syntaxe
[| x0 ; x1 ; ... |].

d. Justifiez brièvement la terminaison de votre fonction eval. Donnez des bornes supérieures
(raisonnables) sur la complexité temporelle et spatiale de cette même fonction.

Pour la culture : Arbres de décision & apprentissage

Fig. 4. – Images, représentant des chiffres, issues du jeu de données MNIST.

Les arbres de décision sont au cœur de plusieurs techniques de machine learning. Nous illustrons cela
sur un exemple de classification d’images, de 28 × 28 pixels, en noir et blanc, représentant des chiffres,
voir la Fig. 4. Une telle image est représentée par un tableau de flottants de taille 784 (= 28 · 28). La 𝑖-
ème entrée représente la couleur du 𝑖-ème pixel : 0.0 est un pixel parfaitement blanc, et 1.0 représente
un pixel parfaitement noir.

Le but d’un algorithme d’apprentissage supervisé, est, à partir d’un grand jeu d’exemples (c’est-à-dire
d’images, munies de la sortie attendue, c’est-à-dire ici du chiffre représenté sur l’image), d’apprendre
une fonction qui prend en entrée une telle image, et retourne le chiffre indiqué dessus. Bien sûr, la
difficulté ne réside pas tant dans le fait de retourner la bonne réponse sur les données sur lesquelles
on a appris, mais de retourner la bonne réponse sur d’autres données…

Un arbre de décision est une façon naturelle et simple de représenter une telle fonction, dont les
sorties sont de type int (plus précisément, elles sont dans l’intervalle ⟦0, 9⟧.) Souvent, apprendre un
arbre de décision se révèle être relativement peu efficace (l’arbre est généralement très grand, et la
fonction apprise n’est pas toujours très satisfaisante). Une technique un peu plus raffinée, appelée
forêts aléatoires a été développée à la fin des années 1990s, pour pallier certains désavantages des
arbres de décision. L’idée est de, plutôt que d’apprendre un seul grand arbre de décision, de plutôt
apprendre plusieurs petits arbres—ce qui justifie le nom de « forêt ». Pour que ces arbres soient
distincts les uns des autres, un facteur aléatoire est introduit, en limitant artificiellement (et aléatoi-
rement) quels pixels peuvent être utilisés dans un test. Les forêts aléatoires sont, bien que relativement

18

simples, terriblement efficaces sur certains problèmes d’apprentissage : c’est notamment le cas pour
le problème de classification des chiffres sur le jeu de données MNIST (Fig. 4).

XIX. Triangle de Sierpiński
exercice d'approfondissement C tableaux récursivité complexité terminaison I/O

Le triangle de Sierpiński est une figure fractale, représentée sur la Fig. 5, et découverte en 1915 par
le mathématicien Wacław Sierpiński. C’est probablement l’une des figures fractales les plus simples
à construire, grâce à son étonnant rapport avec les coefficients binomiaux. Le but de cet exercice est
d’afficher cette fractale.

 █
 █ █
 █ █
 █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █
 █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █
 █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █ █ █
 █ █ █ █ █ █ █ █
 █ █
 █ █ █ █
 █ █
█

Fig. 5. – Le triangle de Sierpiński.

1. En utilisant la formule de Pascal, qu’on rappelle être

(𝑛
𝑘

) = (𝑛 − 1
𝑘 − 1

) + (𝑛 − 1
𝑘

)

pour 𝑛 ∈ ℕ et 𝑘 ∈ ⟦1, 𝑛 − 1⟧, écrire une fonction récursive, la plus simple possible,
int binom_naive(int k, int n)
qui calcule (𝑛

𝑘), sous réserve que 𝑛 ≥ 0 et 𝑘 ∈ ⟦0, 𝑛⟧. On ne cherchera pas à optimiser cette
fonction.

2. Justifiez que cette fonction termine, puis donnez une borne supérieure (raisonnable) sur la
complexité temporelle de binom_naive(int k, int n), en fonction de 𝑛.

3. Écrire une fonction
void print_sierpinski_naive(int n)
qui prend en entrée un entier n, et affiche 𝑛 + 1 lignes du triangle de Pascal, c’est-à-dire que sur la
𝑚-ième ligne (𝑚 ∈ ⟦0, 𝑛⟧), on affichera les coefficients binomiaux (𝑚

0), (𝑚
1), …, (𝑚

𝑚). Vous devriez
remarquer que votre fonction est relativement lente à s’exécuter dès que 𝑛 s’approche de ~20.

4. Modifiez la fonction précédente pour qu’au lieu d’afficher l’entier (𝑚
𝑘), elle affiche le caractère

‹ █ › si (𝑚
𝑘) est impair, et le caractère espace sinon. Tada !

5. Tout ceci est bien joli, mais fort peu efficace. Pour améliorer notre algorithme, on va partir de
l’observation que si l’on connaît tous les coefficients binomiaux de la forme (𝑛−1

−), alors on peut
calculer (𝑛

𝑘) = (𝑛−1
𝑘−1) + (𝑛−1

𝑘) en temps constant (𝑛 ∈ ℕ ∖ {0}, 𝑘 ∈ ⟦0, 𝑛⟧). Écrire une fonction
int *binom_list(int n, int *coefs_prec)
qui prend un entier 𝑛 ∈ ℕ, et le tableau des coefficients binomiaux d’ordre 𝑛 − 1, càd le tableau
{(𝑛−1

0), (𝑛−1
1), …, (𝑛−1

𝑛−1)}, et qui retourne le tableau des coefficients binomiaux d’ordre 𝑛.
Lorsque 𝑛 = 0, on pourra supposer que le pointeur passé en entrée est NULL.

19

6. Donnez une borne supérieure sur la complexité temporelle de votre fonction binom_list, en
fonction de 𝑛.

7. En déduire une fonction
void print_sierpinski(int n)
qui affiche les lignes 0 à 𝑛 du triangle de Sierpiński, calculée avec la fonction binom_list. Vous
ferez particulièrement attention à ne pas avoir de fuite mémoire.

8. Bonus (à faire seulement si tous les autres exercices sont finis, ou chez vous) :
Améliorer votre fonction print_sierpinski pour que votre figure ressemble à celle de la Fig. 5
(càd pour que la pointe de votre triangle soit centrée et non alignée à gauche). Faire en sorte
que pouvoir passer en argument à l’exécutable le nombre de lignes du triangle que l’on souhaite
afficher. Pour rappel, dans le prototype
int main(int argc, char *argv[])
argc désigne le nombre d’arguments passés à l’exécutable, et argv est un tableau de chaînes de
caractères contenant ces arguments.

XX. Tri fusion
exercice de cours OCaml tri récursivité complexité

On rappelle que le tri fusion est un algorithme de tri récursif dont le principe est le suivant : on
découpe la liste en deux, on trie chaque moitié (récursivement), puis on fusionne les deux résultats.

Voici une implémentation partielle de cet algorithme.

let rec split lst = match lst with
 (* Takes a list and splits its content into
 two lists of equal length (±1 if the initial list has odd length). *)
 | [] -> ([], [])
 | h::tail ->
 let (lst1, lst2) = split tail in (h::lst2, lst1);;

let rec merge lst1 lst2 =
 (* Merges two sorted lists into a sorted list. *)
 failwith "todo";;

let rec merge_sort lst = match lst with
 (* Sorts a list using the merge sort algorithm. *)
 | [] -> []
 | [x] -> [x]
 | _ ->
 let lst1, lst2 = split lst in
 merge (merge_sort lst1) (merge_sort lst2);;

1. Écrire une fonction print_list: int list -> unit qui permet d’afficher une liste d’entiers.
Vérifiez que la fonction split a bien le comportement attendu sur un ou deux exemples.

2. Implémentez la fonction merge, et testez les fonctions merge et merge_sort.
3. Déterminez (et justifiez) les complexités temporelles des fonctions split, merge et merge_sort.

XXI. Télégraphe de Chappe en milieu montagneux
exercice d'approfondissement C I/O récursivité tableaux complexité

20

Fig. 6. – Télégraphe de Chappe, Louis Figuier.

Le télégraphe de Chappe est un système de télégraphe datant de la fin du XVIIIème siècle, qui permet
la transmission d’un message de façon visuelle. Des tours comme celles de la Fig. 6 sont placées à
intervalle régulier. Au sommet de ses tours se trouvent deux bras articulés, qui selon leurs positions,
encodent une information. Une première tour transmet cette suite d’information, qui est réceptionné
par une deuxième tour, qui la transmet à son tour, etc.

Ce système était redoutablement efficace : les tours étaient séparées d’une quinzaine de kilomètres,
et il suffisait d’une dizaine de minutes pour transmettre un message entre Paris et Lille.

Le but de cet exercice est de déterminer où construire des tours Chappe pour transmettre un message
entre une ville A et une ville Z, séparées par des montagnes.

Pour modéliser ce problème, on se donne en entrée un tableau d’entiers. Ce tableau relève l’altitude
(assimilée à un entier) sur la ligne droite reliant la ville A à la ville Z. Par exemple, le tableau
{0,3,2,7,4,2,3,6,1} signifie que le point A est à altitude 0 et que le point Z est à altitude 1. On
représente cette information visuellement de la façon suivante :

0
1
2
3
4
5
6
7

A
Z

Fig. 7. – Visualisation du profil topographique décrit par le tableau {0,3,2,7,4,2,3,6,1}.

On suppose qu’une tour se trouve au point A, et une autre au point Z. Le but de l’exercice est de
déterminer à quels points il faut placer une tour, sous les contraintes suivantes :

21

https://commons.wikimedia.org/wiki/File:T2-_d056_-_Fig._18._%E2%80%94_T%C3%A9l%C3%A9graphe_de_Chappe.png

• deux tours consécutives doivent pouvoir se voir mutuellement,
• on souhaite minimiser le nombre de tours (ça coûte cher : en plus de la construction, il y a un

employé dans chaque tour).

1. Écrire une fonction
int are_mutually_visible(int elevation[], int x1, int x2)
qui prend en entrée le tableau elevation décrivant le profil topographique, et deux indices x1 et
x2 de ce tableau, et qui détermine si, si des tours étaient placées au point d’abscisse x1 et d’abscisse
x2, alors ces tours pourraient se voir mutuellement.

0
1
2
3
4
5
6
7

0 1 3 7

Fig. 8. – Lignes droites entre les points d’abscisse x1 = 0 et x2 = 3 (bleu),
et entre x1 = 3 et x2 = 7 (rouge) pour le profil {0,3,2,7,4,2,3,6,1}.

Par exemple (voir la Fig. 8), les tours entre x1 = 3 et x2 = 7 peuvent se voir, mais celles en x1 =
0 et x2 = 3 ne le peuvent pas puisque le point d’abscisse 1 bloque leur champ de vision.

2. Écrire une fonction
int is_solution_valid(int elevation[], int towers[], int n)
qui détermine si une solution towers au problème elevation est valide. towers et elevations sont
des tableaux de taille 𝑛, et towers sera tel que towers[i] vaut 1 si on y a construit une tour, et 0
sinon. Par valide, on entend qu’un message peut être transmis de A à Z en utilisant ces tours : on
ne cherche pas à déterminer si cette solution minimise le nombre de tours.

3. Nous allons implémenter des solutions au problème des tours de Chappe avec des algorithmes
récursifs. On place initialement des tours aux points d’abscisses 0 et 𝑛 − 1 (𝑛 étant le nombre
d’entrées), correspondant aux points A et Z. On va ensuite déterminer s’il y a besoin de construire
une nouvelle tour. Si ce n’est pas le cas, l’algorithme termine. Sinon, on détermine un point M,
situé entre A et Z, où construire une tour. On appelle alors récursivement cette procédure entre
les points A et M, et entre les points M et Z. Différents algorithmes pour déterminer ce point M
où construire une tour intermédiaire donneront différents algorithmes pour résoudre le problème.
a. Exécutez cet algorithme à la main (sur papier) sur l’exemple de Fig. 6 lorsque la stratégie pour

choisir M est de prendre un point d’altitude maximal. (Pas besoin de rendre cette question : vous
pouvez m’appeler pour me montrer vos exemples.)

b. Écrivez une fonction
int *build_towers_highest(int elevation[], int n)
qui implémente cet algorithme. En entrée, on prendra le profil topographique, et on retournera
un tableau de 0/1 de même taille, dont la 𝑖-ème entrée vaut 1 ssi on a construit une tour au point
d’abscisse 𝑖.

c. Quelle est la complexité temporelle de cette fonction ?
d. Montrez que cette stratégie ne minimise pas le nombre de tours construites.

4. On change désormais de stratégie pour choisir M : pour tout point d’abscisse 𝑥, on considère son
altitude 𝑦(𝑥) et l’ordonnée 𝑦′(𝑥) du point d’abscisse 𝑥 sur la droite (AZ). On choisit M comme
étant le point pour lequel 𝑦(𝑥) − 𝑦′(𝑥) est maximal. Vous remarquerez que 𝑦(𝑥) − 𝑦′(𝑥) > 0 ssi

22

le point d’abscisse 𝑥 entrave la vision entre A et Z. En un sens, le point M représente donc le point
qui entrave le plus la vision entre les tours A et Z.
a. Exécutez cet algorithme à la main sur l’exemple que vous avez trouvé à la question 3d.
b. Écrivez une fonction

int *build_towers_biggest_obstruction(int elevation[], int n)
qui implémente cet algorithme.

5. On admet qu’une solution est optimale si, et seulement si, pour tout point M où l’on a placé une
tour, pour toute tour G strictement à gauche de M, pour toute tour R (right) située à droite de M,
alors M entrave la vision entre G et R.
a. Implémentez une fonction

int is_solution_optimal(int elevation[], int towers[], int n)
qui détermine si une solution est optimale.

b. Vérifiez empiriquement que les solutions calculées par build_towers_biggest_obstruction
sont optimales.

6. Faire en sorte que, à l’exécution de votre programme, celui-ci demande à l’utilisateur de saisir le
profil d’élévation (on rentrera un entier par ligne). Le programme affichera la solution en listant
les abscisses des points où il y a des tours.

XXII. Notation polonaise inversée
exercice d'application OCaml récursivité complexité arbres

piles/files arithmétique

La notation polonaise inversée (reverse polish notation ou RPN en anglais) permet de décrire des
expressions arithmétiques sans utiliser de parenthèses. L’idée est simple : plutôt que d’écrire les
opérateurs entre ses arguments, comme on le fait en notation infixe (la notation « classique »), on
écrit plutôt l’opérateur après les arguments. Par exemple, 1 + 2 devient 1 2 +. De même, (1 + 2) +
3 devient 12 + 3 +. Au contraire, 1 + (2 + 3) devient 1 2 3 + +.

1. Écrire (1 + 2) ∗ (3 + 4) et 1 + 2 ∗ 3 + 4 en notation polonaise inversée.
2. On se dote d’un type récursif en OCaml

type expr =
| Const of int
| Add of expr * expr
| Mult of expr * expr;;

qui permet de représenter des expressions arithmétiques.
a. Écrire une fonction

eval_expr: expr -> int
qui évalue une telle expression.

b. Quelle est la complexité temporelle de votre fonction ?
3. Écrire une fonction

expr_to_rpn: expr -> int_or_op list
qui transforme une expression arithmétique en une liste qui représente cette expression en notation
polonaise inversée, où

type int_or_op = Int of int | Plus | Times;;

Par exemple, sur l’entrée Add(Mult(Const(1),Const(2)), Const(3)) votre algorithme retournera
[Int(1);Int(2);Times;Int(3);Plus].

23

4. Le but de cette question est d’écrire une fonction
eval_rpn: int_or_op list -> int
qui évalue une liste de caractères représentant une expression arithmétique en notation polonaise
inversée. Un algorithme très efficace pour ce faire consiste à utiliser une pile : on part d’une pile
vide, et on traite la liste de caractères de la façon suivante :
• si c’est un entier, on l’empile
• si c’est un opérateur, on l’applique aux deux entiers présents au sommet de la pile, et on empile

le résultat.

Un exemple, pour le calcul 3 ∗ (10 + 5), qui donne 3 10 5 + * en notation polonaise inversée, est
donné en Fig. 9.

Fig. 9. – « Représentation de la structure de lecture d’une expression RPN par stacks. De gauche
à droite et de haut en bas, case par case (étapes). » Figure par Stonemountain420, issue de

Wikimedia, sous licence CC BY SA 3.0.

a. Écrire la fonction eval_rpn: int_or_op list -> int.
b. Vérifiez sur plusieurs expressions de type expr que les évaluer directement avec eval_expr

donne le même résultat que de les transformer en notation polonaise inversée avec expr_to_rpn
puis de les évaluer avec eval_rpn.

XXIII. Crible d’Ératosthène
exercice d'application C I/O tableaux complexité arithmétique

Le crible d’Ératosthène est un algorithme permettant de déterminer tous les nombres premiers plus
petits qu’un entier 𝑚 passé en entrée. L’algorithme repose sur une observation élémentaire : pour
tout nombre naturel 𝑘 ≥ 2, tous ses multiples de la forme 𝑘 ∗ 𝑖 avec 𝑖 > 1 sont forcément composés.
En fait, la réciproque est aussi vraie, par définition d’un nombre premier. Le crible d’Ératosthène
fonctionne en identifiant tous les entiers composés : ceux qui restent sont les nombres premiers !
L’algorithme maintient un tableau, qui contient l’information de si un nombre est composé ou premier
(jusqu’à preuve du contraire). Initialement, tous les nombres sont supposés premiers, sauf 0 et 1. On
commence par éliminer tous les multiples de 2 (c’est-à-dire qu’on déclare tous les nombres de la forme
2 ∗ 𝑖 avec 𝑖 > 1 comme étant composés), puis tous les multiples de 3, puis de 4, etc, jusqu’à 𝑚 − 1.
1. Exécutez cet algorithme à la main pour 𝑚 = 20.
2. Quand est venue l’étape d’éliminer les multiples de 4, avez-vous éliminé des nombres qui

étaient encore supposés être premiers ? Expliquez pourquoi, puis proposez une amélioration de
l’algorithme.

3. Écrire une fonction
void remove_multiples(int arr[], int n, int k)
qui prend en entrée un tableau arr, rempli de 0 et de 1, de taille 𝑛, ainsi qu’un entier 𝑘, et qui
définit la valeur de arr[k*i] à 0 pour tous les 𝑖 > 1.

24

https://commons.wikimedia.org/wiki/File:CPT-RPN-example1.svg

4. En déduire une fonction
int* sieve_eratosthenes(int m)
qui prend en entrée un entier 𝑚, et retourne un tableau de taille 𝑚, dont la 𝑖-ème entrée vaut 1 si
𝑖 est premier, et 0 sinon.

5. Donner une borne supérieure sur la complexité spatiale et temporelle de la fonction
remove_multiples puis de la fonction sieve_eratosthenes.

6. On peut remarquer que si un nombre 𝑛 est composé, alors un de ses facteurs est forcément plus
petit ou égal à

√
𝑛 (preuve, par l’absurde : si d’aventure 𝑛 pouvait s’écrire 𝑘1 ⋅ 𝑘2 avec 𝑘1 >

√
𝑛 et

𝑘2 >
√

𝑛 alors on aurait 𝑛 = 𝑘1 ⋅ 𝑘2 >
√

𝑛 ⋅
√

𝑛 = 𝑛 : que nenni !). En déduire une amélioration
de la fonction sieve_eratosthenes. Que deviennent ses complexités spatiales et temporelles ?

7. Faire en sorte qu’à l’exécution de votre programme, l’utilisateur doive saisir un entier 𝑚 ; votre
programme écrira alors ensuite l’ensemble des entiers strictement plus petits que 𝑚 dans un
fichier ./primes.txt.

XXIV. Anagrammes
exercice d'application OCaml dictionnaires récursivité complexité

Le but de cet exercice est de déterminer si deux chaînes de caractères sont des anagrammes, c’est-
à-dire si l’une peut être obtenue en permutant les caractères de l’autre. Rien de plus simple pour
déterminer si deux chaînes de caractères sont des anagrammes : il suffit de compter le nombre
d’occurrences de chaque caractère dans la chaîne, et ces valeurs sont égales si et seulement si les
deux chaînes sont des anagrammes. Par exemple, « niche » est une anagramme de « chien », « la crise
économique » et « le scénario comique » sont des anagrammes, mais en revanche « être ou ne pas être,
voilà la question » n’est pas une anagramme de « oui et la poser n’est que vanité orale » (la première
chaîne contient deux ‹ ê › alors que la seconde non).⁷

Pour résoudre notre problème, je vous propose d’utiliser une liste d’association, qui est une liste de
type ('a * 'b) list, de sorte que si (𝑐, 𝑣) et (𝑐′, 𝑣′) sont tous deux éléments de la liste, alors 𝑐 ≠
𝑐′. Autrement dit, une liste d’association encode une fonction qui associe des éléments de type 'a
(appelés clés) à des éléments de type 'b (appelés valeurs). Par exemple, dans la liste
[('a', 1); ('b', 5); ('c', 0)]
de type (char * int) list, on a associé la valeur 1 à ‹ a ›, 5 à ‹ b ›, et 0 à ‹ c ›.
1. a. Définir une fonction

is_defined: ('a * 'b) list -> 'a -> bool
qui prend une liste d’association, une clé, et détermine si une valeur lui est associée.

b. Définir une fonction
get_value: ('a * 'b) list -> 'a -> 'b
qui prend une liste d’association, une clé, et retourne la valeur qui lui est associée (si elle existe,
sinon elle produit une erreur).

c. Définir une fonction
update_value: ('a * 'b) list -> 'a -> 'b -> ('a * 'b) list
qui prend une liste d’association, une clé 𝑐 , une valeur 𝑣 et qui retourne une nouvelle liste
d’association où la nouvelle valeur de la clé 𝑐 est 𝑣. Si la clé n’est pas présente, on se contentera d’ajouter
la paire (c,v) à la liste. Sinon, on modifiera la valeur présente dans la liste.

d. Écrivez une fonction
count_chars_of_str: string -> (char * int) list qui étant donné une chaîne de caractères,
retourne une liste d’association comptant le nombre d’occurrences de chaque caractère.

⁷Ce sont en revanche des anagrammes si on ignore les espaces, les accents et la ponctuation. (Source : topito.com.)

25

https://www.topito.com/top-anagramme-retourner-cerveau

2. a. De quelle(s) fonction(s) sur les listes d’associations auriez-vous besoin pour déterminer, à l’aide
de la fonction count_chars_of_str, si deux chaînes sont des anagrammes ? Implémentez ces
fonctions annexes.

b. En déduire une fonction
are_anagrams: string -> string -> bool qui détermine si deux chaînes sont des anagrammes.

c. Donnez une borne supérieure (raisonnable) sur la complexité temporelle de votre fonction
count_chars_of_str, puis de votre fonction are_anagrams.

XXV. Correction et terminaison d’une somme sur un tableaux
exercice de cours théorique correction terminaison complexité

int array_sum(int *arr, int n) {
 assert(arr != NULL);
 assert(n >= 0);
 int sum = 0;
 int i = 0;
 while (i < n) {
 sum = sum + arr[i];
 i++;
 }
 return sum;
}

1. Démontrez que la fonction array_sum termine sur toute entrée.
2. Déterminez la complexité temporelle de cette fonction.
3. Démontrez sa correction, c’est-à-dire que array_sum(int *arr, int n) retourne la somme des n

premiers éléments du tableau arr pour tout entier positif 𝑛.

XXVI. Correction d’une boucle while
exercice d'application théorique correction

On considère la fonction suivante en C :

int get_first(int *arr, int n) {
 int i = 0;
 while (i < n && arr[i] < 42) {
 i++;
 }
 return i;
}

Démontrez que la fonction get_first, sur un tableau arr, de taille n, retourne
• le plus petit indice i tel que arr[i] >= 42, si un tel indice existe ;
• n, sinon.

Remarque : Ne pas sous-estimer la difficulté de cet exercice pour les étudiants les moins rigoureux.
D’habitude on peut oublier de parler dans l’invariant de la condition de la boucle, et s’en sortir par
une petite arnaque (du style « on voit bien que »). Si on fait cette erreur ici, il ne reste plus grand chose
dans l’invariant… C’est donc un très bon exercice pour apprendre la rigueur, mais il est beaucoup
plus difficile que le précédent.

26

XXVII. Correction d’un calcul récursif de la factorielle
exercice d'application théorique correction terminaison complexité

On considère la fonction suivante en OCaml, qui implémente le calcul de la factorielle avec une
fonction récursive terminale.

let fact n =
 assert(n >= 0);
 let rec fact_aux n acc =
 if n = 0 then
 acc
 else
 fact_aux (n - 1) (n * acc)
 in fact_aux n 1

1. Démontrez que la fonction fact termine sur toute entrée.
2. Déterminez la complexité temporelle de cette fonction.
3. Démontrez que la fonction fact est correcte, c’est-à-dire que fact n vaut 𝑛! pour tout 𝑛 ∈ ℕ.

XXVIII. Correction d’un calcul de Fibonacci
exercice d'approfondissement théorique correction

On considère la fonction suivante en OCaml.

let fibo n =
 assert(n>=0);
 let rec fibo_aux k a b =
 if k = n then
 b
 else
 fibo_aux (k+1) a (a + b)
 in fibo_aux 0 1 1;;

La personne qui a écrit cette fonction souhaitait que n retourne le 𝑛-ème terme 𝑓𝑛 de la suite de
Fibonacci, où 𝑓0 = 𝑓1 = 1 et 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1 pour tout 𝑛 ∈ ℕ. Ce n’est malheureusement pas tout
à fait le cas. Que calcule n ? Prouvez-le.

XXIX. Correction d’un calcul d’une somme d’entiers
exercice d'application théorique correction

On considère la fonction suivante en OCaml.

let sum_integers n =
 let rec aux k acc =
 assert(k >= 0);
 if k = 0 then
 acc
 else
 aux (k-1) (k+acc)
 in aux n 0;;

Démontrez que sum_integers n retourne 𝑛(𝑛+1)
2 pour tout 𝑛 ∈ ℕ.

27

XXX. Complexité d’une fonction sur des listes
exercice de cours théorique complexité terminaison

On considère les fonctions suivantes en OCaml.

let rec sum_list lst = match lst with
 | [] -> 0
 | h::t -> h + sum_list t;;

let rec is_bigger_than_sum lst = match lst with
 | [] -> true
 | h::t -> (h > sum_list t) && (is_bigger_than_sum t);;

Démontrez brièvement que la fonction is_bigger_than_sum termine sur toute entrée. Quelle est sa
complexité temporelle ?

XXXI. Complexité d’une drôle de fonction récursive
exercice d'approfondissement théorique complexité terminaison

On considère la fonction suivante en OCaml, de type int -> int -> int.

let rec foo a b =
 if a <= 0 || b <= 0 then
 max a b
 else (
 let x = foo (a-1) b
 and y = foo a (b-1) in
 if x <= y then
 2 * x
 else
 a * a + x
);;

1. Démontrez que cette fonction termine sur toute entrée à l’aide d’un variant dans ℕ.
2. Quelle est sa complexité temporelle ?

Remarque : Attention à ne pas sous-estimer la difficulté de cet exercice, qui paraît a priori trivial à toute
personne expérimentée, mais qui contient en fait un difficulté conceptuelle : définir un variant dans
ℕ pour une fonction ayant plusieurs paramètres. Il me semble important d’insister sur le fait que ce
variant soit dans ℕ : on pourrait certes démontrer la terminaison à l’aide dans ℕ2 muni de l’ordre
lexicographique, mais la première question sert aussi à mettre sur la bonne voie pour la question de
la complexité.

XXXII. Nombres de Hamming
exercice d'application C piles/files complexité I/O arithmétique

Source : Cours de Jean-Pierre Becirspahic au lycée Louis-le-Grand

Le but de cet exercice est d’implémenter une structure de files en C. Je vous laisse le choix de
l’implémentation (maillons chaînés, tableau circulaire, etc.).

1. Définir un type Queue permettant de stocker des files d’entiers.
2. Définir des fonctions

28

https://info-llg.fr/option-mpsi/pdf/05.piles_et_files.pdf

Queue *queue_create(void);
void queue_enqueue(Queue *, int);
void queue_print(Queue *);
int queue_peek(Queue *);
int queue_dequeue(Queue *);
int queue_is_empty(Queue *);
void queue_free(Queue *);

Chaque fonction devra être testée, et la complexité temporelle de la fonction donnée en commen-
taire. Testez chaque fonction avant d’implémenter la suivante.

3. Application. Une nombre de Hamming est un entier naturel non-nul qui n’est divisible que par 2, 3,
et 5. Les plus petits nombres de Hamming sont 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, etc. On se
propose de générer les nombres de Hamming en utilisant la remarque suivante : tout nombre de
Hamming autre que 1 est le produit d’un nombre de Hamming strictement inférieur avec 2, 3 ou
5. Et réciproquement, le produit d’un nombre de Hamming avec 2, 3 ou 5 est toujours un nombre
de Hamming. On considère l’algorithme suivant : on maintient trois files d’entiers, h2, h3 et h5,
toutes initialisées pour ne contenir qu’une valeur : l’entier 1. Tant qu’on veut produire un nombre
de Hamming, on chosit le plus petit entier n parmi les sommets de h2, h3 et h5, on le défile, on
affiche n, puis on enfile 2 * n à h2, 3 * n à h3 et 5 * n à h5.
Écrire une fonction void hamming(int m) qui affiche tous les entiers de Hamming inférieur à 𝑚.

4. Comparaison avec un algorithme naïf. On considère ici un algorithme plus naïf, qui se contente
d’énumérer les entiers de 1 à 𝑚 − 1 et de tester pour chacun s’il est un nombre de Hamming. Pour
tester si un entier 𝑛 est un nombre de Hamming, on peut par exemple le diviser par 2 tant qu’il
est divisible par 2, puis par 3, puis par 5. Le résultat final est égal à 1 si et seulement si 𝑛 est un
nombre de Hamming.
a. Empiriquement, pour 𝑚 = 109, mon ordinateur met 10s à exécuter l’algorithme naïf, contre

moins de 0.01s pour l’algorithme avec files. Expliquez cette différence.
b. Implémentez cette fonction naïve (et vérifiez qu’elle donne les même résultats que la fonction

précédente). Si le besoin se fait sentir, vous pouvez utiliser les commandes Unix time pour mesurer le
temps d’exécution d’un programme, wc -l pour compter le nombre de lignes d’un fichier et l’opérateur > pour
rediriger la sortie vers un fichier.

XXXIII. Un compteur et sa complexité moyenne
exercice d'application OCaml piles/files terminaison complexité récursivité

On considère la fonction (partielle) suivante, qui transforme une pile de 0 et de 1 en une autre pile
de 0 et de 1.
• initialement, on part d’une pile remplie d’un nombre arbitraire de 1;
• ensuite, on itère la construction suivante sur la pile :
‣ si le sommet de la pile est un 1, on le remplace par un 0.
‣ sinon, on dépile tous les 0 jusqu’à tomber sur le premier 1 ; on remplace ce 1 par un 0, puis on

réempile un 1 pour chaque 0 dépilé.
‣ sinon (càd s’il n’y a que des 0), on s’arrête.

1. Itérez cette fonction sur la pile [1;1;1], jusqu’à ce que l’algorithme termine. Que semble faire cette
fonction ?

2. On souhaite maintenant l’implémenter en OCaml. Comme notre fonction est partielle (sur la pile
remplie de 0, on ne retourne rien), on va utiliser le type option. On rappelle que le type 'a option
permet de représenter soit un objet de type 'a, avec la syntaxe Some (x), soit rien (None). Par
ailleurs on représentera les piles avec des listes.

29

a. Écrire une fonction
next_stack: int list -> int list option qui prend une pile et retourne soit Some(p) où p
est la pile obtenue par la fonction décrite dans l’énoncé, soit None s’il n’y a rien à retourner.

b. Écrire une fonction récursive
countdown: int list option -> unit
qui ne fait rien sur None, et sur Some(p) applique récursivement la fonction next_stack à p en
affichant l’état de la pile à chaque étape.

3. Donnez un variant permettant de montrer que la fonction countdown termine.
4. Quelle est la complexité temporelle moyenne de la fonction next_stack ?

XXXIV. Numération de Zeckendorf
exercice d'approfondissement C arithmétique tableaux complexité

Vous connaissez l’écriture en base 10, en base 2, et plus généralement en base 𝑏 ∈ ℕ>0, où la séquence
(𝑥0, 𝑥1, 𝑥2, …, 𝑥𝑛−1) (avec 𝑛 ∈ ℕ et 𝑥𝑖 ∈ ⟦0, 𝑏 − 1⟧ pour tout 𝑖 < 𝑛) représente l’entier ∑𝑛−1

𝑖=0 𝑥𝑖𝑏𝑖.
On s’intéresse ici à système de numération plus excentrique : le système de numération de Zecken-
dorf. Dans ce système, on représente un nombre en le décomposant comme la somme de nombres
appartenant à la suite de Fibonacci. Pour rappel, la suite de Fibonacci est définie récursivement par
𝑓0 = 1, 𝑓1 = 2 et 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1 pour 𝑛 ∈ ℕ : ses premiers termes sont donc 1, 2, 3, 5, 8, 13, etc.⁸
Par exemple, on peut écrire 6 comme 5 + 1 et 17 comme 13 + 3 + 1. On remarque vite que cette
écriture n’est pas unique : 5 peut s’écrire comme 5 (c’est un nombre de Fibonacci) mais aussi comme
2 + 3. Par suite, on peut écrire 6 comme 5 + 1, mais aussi 2 + 3 + 1. Le théorème de Zeckendorf,
énoncé et démontré par le médecin belge Édouard Zeckendorf dans les années 1950, montre que tout
entier peut s’écrire de façon unique comme la somme de nombres de Fibonacci distincts et tels que
deux nombres de Fibonacci consécutifs ne puissent apparaître dans cette somme. C’est-à-dire que,
par exemple, on s’interdit d’utiliser à la fois 3 et 5 (on utilisera à la place leur somme, 8, qui par un
heureux miracle est aussi un nombre de Fibonacci). On admet ici ce théorème : étant donné un entier
𝑛 ∈ ℕ, l’unique suite (𝑥𝑖)𝑖∈ℕ ∈ {0, 1}ℕ telle que 𝑛 = ∑+∞

𝑖=0 𝑥𝑖𝑓𝑖, et ∀𝑖 ∈ ℕ, ¬(𝑥𝑖 = 1 ∧ 𝑥𝑖+1 = 1),
est appelée écriture de Zeckendorf (ou représentation de Zeckendorf) de 𝑛.
1. Calculez à la main l’écriture de Zeckendorf des entiers 10, 20 et 30.
2. Proposez une description haut-niveau de quelques lignes, en français (pas de pseudo-code !), d’un

algorithme permettant de calculer l’écriture de Zeckendorf d’un nombre.

Dans le reste de cet exercice, on va manipuler ce système de numération en C. Sans surprise, le calcul
des nombres de la suite de Fibonacci va donc jouer un rôle crucial. Pour des raisons de performance,⁹
nous souhaitons éviter de répéter ces calculs. Pour ce faire, on va utiliser la mémoïzation, c’est-à-
dire qu’on va stocker dans une structure de données les valeurs de la suite qui ont déjà été calculées.
Naturellement, on veut une structure qui permette d’accéder à tout élément en temps constant, mais
aussi qui soit redimensionnable. On va donc utiliser des… tableaux redimensionnables !
3. a. Définir un type resizable_array permettant de représenter un tableau redimensionnable

contenant des entiers positifs.
b. Définir des fonctions

resizable_array *rar_create();
int rar_get_elem(resizable_array *rar, int i);
void rar_set_elem(resizable_array *rar, int i, int x);

⁸Il est plus commun de choisir comme premiers termes 0 et 1, ou même 1 et 1, mais le choix de 𝑓0 = 1 et 𝑓1 = 2 est
important pour cet exercice : nous avons besoin que tous les entiers de la suite soient distincts.

⁹(Et pour coller au programme de colle.)

30

void rar_print(resizable_array *rar);
void rar_free(resizable_array *rar);

La fonction rar_get_elem devra toujours retourner quelque chose : on retournera une valeur
par défaut, par exemple −1, si l’élément n’a pas été initialisé. La fonction rar_set_elem changera
la valeur d’un élément du tableau : bien sûr, si le tableau n’est pas assez grand, on l’aggrandira
auparavant. Vous vous assurerez que votre implémentation a une complexité amortie raison-
nable; je ne vous demande cependant pas de le justifier par écrit.

c. Écrire une fonction int fib(int n), qui :
• vérifie dans une variable globale stockant un pointeur vers un resizable_array si on y a

stocké le 𝑛-ème élément de la suite de Fibonacci, et
• le retourne si c’est le cas,
• sinon, le calcule, l’y stocke, puis le retourne.

d. Quelle est la complexité temporelle dans le pire cas de fib(n); en fonction de 𝑛, sos l’hypothèse
qu’on a déjà calculé 𝑓𝑖 pour 𝑖 < 𝑛 ?
Et de for (int i = 0; i < n; i++) { fib(i); }, sous l’hypothèse que l’on n’a encore calculé
aucune valeur ?

4. On se propose de représenter une écriture de Zeckendorf (𝑥𝑖)𝑖∈ℕ comme un array contenant les
valeurs {𝑥0, 𝑥1, …, 𝑥𝑘−1, −1} où 𝑘 un entier tel que 𝑥𝑛 = 0 pour tout 𝑛 ≥ 𝑘.
a. Écrire une fonction void print_zeck_repr(int repr[]) qui affiche une telle représentation

(on n’affichera pas le −1 final, celui-ci ne sert qu’à marquer la fin du tableau).
b. Écrire une fonction int int_of_zeck_repr(int repr[]) qui prend un array représentant

(𝑥𝑖)𝑖∈ℕ, et retourne ∑+∞
𝑖=0 𝑥𝑖 ⋅ 𝑓𝑖.

c. Écrire une fonction int *zeck_repr_of_int(int n) qui retourne l’écriture de Zeckendorf de
son entrée.

5. Bonus (difficile). Déterminez un algorithme pour additionner des nombres écrits sous leur
écriture de Zeckendorf. On s’interdira de calculer les entiers qu’ils représentent : on souhaite
trouver un algorithme qui travaille directement sur les écritures de Zeckendorf. Implémentez
cet algorithme en une fonction int *add_zeck_repr(int x[], int y[]). Indice : Commencez
par additionner naïvement (𝑥𝑖)𝑖∈ℕ et (𝑦𝑖)𝑖∈ℕ, ce qui nous donne la représentation (𝑧𝑖)𝑖∈ℕ =
(𝑥𝑖 + 𝑦𝑖)𝑖∈ℕ. Elle ne satisfait les règles de Zeckendorf (càd que z_i in {0,1} et qu’il ne peut y avoir
de 𝑖 tel que 𝑧𝑖 = 1 et 𝑧𝑖+1 = 1) : trouvez des règles de réécriture à appliquer à (𝑧𝑖)𝑖∈ℕ pour lui faire
respecter les contraintes souhaitées.

31

	Organisation
	Consignes
	Sommaire par langage et difficulté
	Exercices en OCaml
	Exercices en C
	Exercices théoriques

	Sommaire par thème
	I/O
	Arbres
	Arithmétique
	Complexité
	Correction
	Dictionnaires
	Float
	Listes chaînées
	Mémoire
	Piles/files
	Récursivité
	Tableaux
	Terminaison
	Tri
	Types

	Arbres binaires
	Types sommes et produits
	Un problème de mémoire
	Min-max d'un tableau
	Retournement de chaîne
	Types enregistrement
	Uno à une joueuse
	Nombre de voyelles
	Fusion de tableaux triés
	Un brin de génétique
	Tri d'un tableau 0/1 en place
	Un peu de géométrie du plan
	Le cycle des quintes
	Recherche dichotomique
	Exponentiation rapide
	Tri d'un tableau borné
	Couplage de Cantor
	Arbres de décision
	Pour la culture : Arbres de décision & apprentissage

	Triangle de Sierpiński
	Tri fusion
	Télégraphe de Chappe en milieu montagneux
	Notation polonaise inversée
	Crible d'Ératosthène
	Anagrammes
	Correction et terminaison d'une somme sur un tableaux
	Correction d'une boucle while
	Correction d'un calcul récursif de la factorielle
	Correction d'un calcul de Fibonacci
	Correction d'un calcul d'une somme d'entiers
	Complexité d'une fonction sur des listes
	Complexité d'une drôle de fonction récursive
	Nombres de Hamming
	Un compteur et sa complexité moyenne
	Numération de Zeckendorf

