
Homomorphism Problems
in Graph Databases

and Automatic Structures

Rémi Morvan

Ph.D. thesis in Computer Science
LaBRI, Université de Bordeaux
To be defended on 3rd July 2025

Composition of the jury:

Mikołaj Bojańczyk Uniwersytet Warszawski reviewer & examiner
Wim Martens Universität Bayreuth “

Antoine Amarilli Inria, Lille examiner
Balder ten Cate Universiteit van Amsterdam “

Bartek Klin University of Oxford “
Anca Muscholl Université de Bordeaux “
Sophie Tison Université de Lille “

Diego Figueira CNRS, Bordeaux supervisor
Nathanaël Fijalkow CNRS, Bordeaux co-supervisor

Version of May 22, 2025.
Licensed under CC BY 4.0.

All M.C. Escher works © 2025 The M.C. Escher Company - the Netherlands. All rights reserved. Used by permission. www.mcescher.com

https://creativecommons.org/licenses/by/4.0/deed.en
www.mcescher.com

Preface

Organization

The chapters of this thesis have been written so that they could mainly be
read independently from one another.

The introduction (Chapter I) is targeted at anyone with a reasonable un-
derstanding of theoretical computer science—corresponding roughly to a
Master’s degree in theoretical computer science. This chapter is not technical
and introduces as few definitions as possible. Its goal is to provide an overview
of the foundational results of the field, the questions we studied in this thesis,
our contributions, and the key open questions that remain unsolved. If you
should only read one chapter of this thesis, let it be Chapter I!

The next chapter presents the general preliminaries (Chapter II): it serves
no other purpose but to make all notions unambiguous. We suggest that
readers skim it initially and return to it as needed.

This thesis is then divided in two independent parts: the first one focuses
on database theory (Part 1), and the second one on automatic structures
(Part 2). Each part starts with a quick survey of the domain (Chapters III
and VII), followed by two chapters presenting our main contributions in this
domain (Chapters IV and V for database theory, and Chapters VIII and IX for
automatic structures). Each part concludes with a discussion (Chapters VI
and X) that highlights open problems and reflects on the techniques we
explored, including those that proved unsuccessful. See Figure P.1 or the
dependency graph of these chapters.

I II

III

IV V

VI

VII

VIII IX

X

Part 1 Part 2

Figure P.1: Dependency graph of the
chapters of this thesis.

A succinct global table of content is presented after this preface, and each
chapter is preceded by a more detailed one.

Knowledge & Knowledge-Clustering

This thesis was written using Thomas Colcombet’s knowledge package,
allowing one to click on a notion (be it textual or symbolic) to go to its
definition: for instance try clicking on ‘automatic structure’, or on the brackets
of ⟦𝜙⟧𝚺∗ ! Most pdf viewers allow you to go back to where you previously
were in document before clicking.

The extensive use of knowledgewas permitted by knowledge-clustering,
a command-line tool I developed to help streamline and scale the use of the

5

https://ctan.org/pkg/knowledge
https://ctan.org/pkg/knowledge
https://github.com/remimorvan/knowledge-clustering/

6

knowledge package in large LaTeX documents. I would like to thank all the
people that provided me with suggestions, feature requests or bug reports,
with a special thought for Thomas Colcombet, Aliaume Lopez and Antonio
Casares. Antonio was the first person to write his thesis with knowledge-

clustering: thanks to him, the tool can handle unreasonably long docu-
ments!

Proofs

For the sake of readability, elementary proofs—which are often the result
of elementary set manipulation or applying the previous propositions—are
sometimes omitted by a nonchalant “it immediately follows that”. Naturally,
we reserve this logical blasphemy to statements that are not harder to prove
than 1 + 1 = 2, see [WR10, ∗ 54.43] to [WR12, ∗ 110.643].

On Black Holes

Figure P.2: Computer scientists tend
to do badly around black holes. Il-
lustration by 852278-MCS, licensed
under CC BY SA 4.0.

Many results of this thesis assume the undecidability of the halting problem:
we hence assume that the reader lives in our usual universe. Should the reader
be in a Malament–Hogarth spacetime [Hog94], we kindly suggest that they
momentarily set aside this thesis and focus on resolving the more pressing
astrophysical situation, see Figure P.2.

Acknowledgements

https://github.com/remimorvan/knowledge-clustering/
https://github.com/remimorvan/knowledge-clustering/
https://commons.wikimedia.org/wiki/File:Black_Hole_Full.png
https://commons.wikimedia.org/wiki/File:Black_Hole_Full.png
https://commons.wikimedia.org/wiki/User:852278-MCS
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/Malament%E2%80%93Hogarth_spacetime

Contents

Preface 5

I Introduction 11

I.1 The Two Sides of the Homomorphism Problem 12

I.2 Existentialism is a Database Theory 16

I.3 Everyone Who Wants to Do Constraint Satisfaction Always Ends Up in Universal Problems 25

II Prolegomena 35

II.1 Set and Functions 36

II.2 Relational Structures 37

II.3 Logic Related Notions 41

II.4 Computability and Complexity 45

Part 1 Querying Graph Databases 49

III Query Languages for Relational and Graph Databases 51

III.1 Relational Databases 53

III.2 Graph Databases 75

IV Minimization of Conjunctive Regular Path Queries 89

IV.1 Introduction 91

IV.2 Necessary & Sufficient Conditions for Minimality 93

IV.3 An Upper Bound for Minimization of CRPQs 100

IV.4 Minimization of UCRPQs via Approximations 104

IV.5 Lower Bounds 110

IV.6 Discussion 120

IV.A Lower Bounds for Variable Minimization 124

7

8

V Semantic Tree-Width and Path-Width of Conjunctive Regular Path Queries 129

V.1 Introduction 131

V.2 Preliminaries 136

V.3 Maximal Under-Approximations 138

V.4 Intermezzo: Tagged Tree Decompositions 143

V.5 Key Lemma: Maximal Under Approximations are Semantically Finite 148

V.6 Semantic Tree-Width for Simple Queries 158

V.7 Acyclic Queries: the Case 𝑘 = 1 163

V.8 Semantic Path-Width 167

V.9 Lower Bounds for Deciding Semantic Tree-Width and Path-Width 172

V.10 Discussion 175

V.A Alternative Upper Bound for Containment of UC2RPQs 181

V.B Path-Width is not Closed under Refinements 181

VI Conclusion & Open Problems 183

VI.1 Minimization Problems 184

VI.2 Profinite Databases 185

VI.A Tree-Like Queries 189

Entracte: What the Hare Said to Patroclus 191

Part 2 The Frontier of Decidability in Automatic Structures 193

VII Finite-Word Relations and Automatic Structures 195

VII.1 The Landscape of Rationality for Relations over Finite Words 197

VII.2 A Logical Excursion 215

VII.3 Automatic Structures 220

VIII A Dichotomy Theorem for Automatic Structures 231

VIII.1 Introduction 233

VIII.2 Preliminaries 237

VIII.3 From Separation to Colouring of Automatic Graphs 246

VIII.4 Undecidability of the Homomorphism Problems 256

VIII.5 Decidability of the Regular Homomorphism Problem 264

VIII.6 Discussion 276

9

IX The Algebras for Automatic Relations 283

IX.1 Introduction 285

IX.2 Preliminaries 288

IX.3 Synchronous Algebras 291

IX.4 The Lifting Theorem & Pseudovarieties 300

IX.5 Discussion 310

IX.A Monads Everywhere! 315

X Conclusion & Open Problems 317

X.1 Separating Automatic Relations by Recognizable Ones 318

X.2 Colouring Problems on Automatic Graphs 319

X.3 An Algebraic Approach Beyond Automatic Relations 319

Bibliography 321

Index 337

Chapter I
Introduction

Abstract

This chapter serves both as an introduction and as an extended abstract of the
thesis. It provides an accessible overview of the broader research area, the specific
questions addressed, and the contributions made in this work. Homomorphism
problems lie at the heart of many foundational questions in logic, database theory
and programming. After exposing the foundational results of these domains in the
framework of homomorphisms, this chapter then summarizes the key contributions
of this thesis.
While this chapter is intended for readers with a background in theoretical computer
science, it avoids formal definitions in favour of intuition and high-level explanations.
Formal definitions can be found in Chapters II, III and VII. When needed, terms
and symbols can be clicked to navigate directly to their definitions elsewhere in the
document.

Contents

I.1 The Two Sides of the Homomorphism Problem 12

I.2 Existentialism is a Database Theory 16

I.2.1 Conjunctive Queries 16

I.2.2 Adding Regular Path Predicates 19

I.2.3 Minimization and Structure of CRPQs 22

I.3 Everyone Who Wants to Do Constraint Satisfaction Always Ends Up
in Universal Problems 25

I.3.1 Constraint Satisfaction Problems 25

I.3.2 Automatic Structures: The Dream Is Not Over Yet 28

I.3.3 Language-Theoretic Properties of Automatic Structures 32

11

i. introduction

I.1 The Two Sides of the Homomorphism Problem

This thesis is devoted to studying variations of the homomorphism problem,
a central concept in theoretical computer science. Homomorphisms capture
the idea of maps preserving relational information between mathematical
structures. They arise naturally across a variety of domains: in logic, as
the mechanism behind model-checking of primitive-positive formulas; in
database theory, as the semantics of conjunctive query evaluation; and in
constraint satisfaction, as the formalization of whether a structure satisfies a
given set of rules. This thesis approaches the homomorphism problem as a
unifying framework, by emphasizing its complementary role in data querying
and constraint solving.

To introduce this problem, we present a range of examples: automata
acceptance, SQL query evaluation, and Sudoku solving that can all be encoded
as homomorphism problems.1 Interestingly, they reveal a dichotomy on how 1 We will see even further examples—

3-colourability and SAT-solving—in
the next sections.

problems are encoded: in some, the query appears on the left-hand side of
the homomorphism, while on others it appears on the right-hand side. The
first type of encoding correspond to what we call existential problems, and are
rooted in the field of database theory: we introduce this domain in Section I.2.
On the other hand, the dual encoding deals with universal problems studied
in the domain of constraint satisfaction: it is the focus of Section I.3. This dual
perspective on the homomorphism problem forms the basis for the two-part
division of this thesis.

Homomorphisms. The simplest mathematical structure is perhaps that of
a (directed) finite graph: it consists of a finite set 𝑉 of vertices (also called
domain), together with a set of edges ℰ ⊆ 𝑉 ×𝑉. A homomorphism between
two graphs is then a function 𝑓 between vertices that preserves the edges, in
the sense that if ⟨𝑢, 𝑣⟩ is an edge, then ⟨𝑓(𝑢), 𝑓(𝑣)⟩ must also be an edge: we
depict an example of graph homomorphism in Figure I.1.

Figure I.1: Two graphs (in black)
and a homomorphism (blue dotted
arrows) from the graph on the left-
hand side to the right one.

To enrich the structure—but also, perhaps more enjoyably, to add a splash of
colour to this thesis—wewill consider more complex structures by allowing for
multiple edge relations, or even relations of higher arity linking the vertices.
The types and arities of relations allowed in a structure are specified by its

12

i.1. the two sides of the homomorphism problem

Figure I.2: A relational structure
with two kinds of binary relations
(represented by simple and double
arrows) and three kinds of unary re-
lations (represented by small red, yel-
low and blue circles next to the ver-
tices).

signature 𝜎. These richer structures are known as 𝜎-structures or relational
structures—see Figure I.2—, and homomorphisms between 𝜎-structures are
asked to preserve all relations in the signature 𝜎.

The Homomorphism Problem over 𝜎
Input : Two finite 𝜎-structures 𝐀 and 𝐁.

Question: Is there a homomorphism from 𝐀 to 𝐁?

In the problem above, we refer to 𝐀 as the source structure and to 𝐁 as the
target structure, and we denote by𝐀 hom−−−→ 𝐁 the existence of a homomorphism
from 𝐀 to 𝐁.

More than a mere decision problem—which is easily seen to lie in NP—,
the homomorphism problem should rather be understood as a framework or
language to formalize many problems arising in computer science.

𝑎 𝑏 𝑎

𝑎, 𝑏

𝑎

𝑎, 𝑏

Figure I.3: Automata acceptance as
a homomorphism problem: struc-
ture representing the finite word 𝑎𝑏𝑎
(above), structure representing the
minimal automaton of (𝑎 + 𝑏)∗𝑎(𝑎 +
𝑏)∗ (below) and a homomorphism
from the former to the latter (blue
dotted arrows). Vertices with a dou-
ble circle (resp. incoming dangling
arrow) represent final (resp. initial)
states.

Example I.1.1 (Non-deterministic automata). A non-deterministic automa-
ton 𝐀 can be seen as a relational structure on the signature with two unary
predicates (one for describing initial states, one for final states), and one bi-
nary predicate for each letter of the alphabet Σ describing the transitions. As
expected, its vertices are its states, and each predicate is naturally interpreted.
Any finite word 𝑢 ∈ Σ ∗ can in turn be seen as a relational structure𝐖𝑢 with
⟦0, |𝑢|⟧ as its domain, where 0 is initial, |𝑢| is final, and for each 𝑖 ∈ ⟦1, |𝑢|⟧,
there is an edge from 𝑖 − 1 to 𝑖 whose type is given by the 𝑖-th letter of 𝑢, see
Figure I.3.. Then, there is a homomorphism from𝐖𝑢 to 𝐀 if, and only if, the
automaton 𝐀 accepts 𝑢.

Note that in Example I.1.1, not only is the existence of a homomorphism
equivalent to the existence of a solution, but the set of homomorphisms
naturally corresponds to the set of solutions: homomorphisms from𝐖𝑢 to 𝐀
exactly correspond to accepting runs of the automaton over 𝑢.

13

i. introduction

Movies

id title length director

197 Eyes Wide Shut 159 Stanley Kubrick
205 J’ai tué ma mère 96 Xavier Dolan
304 Amadeus 161 Miloš Forman
321 120 Battements par minute 143 Robin Campillo

Rooms

id capacity

1 108
2 124
3 96
4 102

Projections

movie_id room_id time

197 2 2025-03-28 14:00
205 3 2025-03-28 14:30
321 4 2025-03-28 14:30
197 1 2025-03-28 17:00

Table I.4: A relational database con-
sisting of three tables, representing
data stored by a cinema.

movie_id

title

length

director

room_id

time

Figure I.5: A SQL query seen as
a relational structure. The yellow
potato represents the single tuple of
the Movies relation, and the blue
potato surrounds the only tuple that
belongs to the Projections relation.

Example I.1.2 (SQL queries). A relational database, such as the one depicted
on Table I.4, can easily be seen as a relational structure whose domain is the
set of elements occurring somewhere in a table, with one relation for each
table.2

2 In fact the only difference between
relational databases and relational
structures precisely lies in the fact
that in the case of the former, the do-
main is implicit, while for the latter
it is explicit. While this difference
alters the theory, the difference is
mostly negligible for the query lan-
guages we will study, see Chapter III.

Consider the following SQL query, which outputs all pairs of movie titles
together with their projection time.

1 SELECT title, time
2 FROM Movies, Projections
3 WHERE Projections.movie_id = Movies.id;

This query 𝛾 can in fact be seen itself as a relational structure 𝐐𝛾: its
domain has six elements, corresponding to the attributes of the Movies
and Projections table, merged on the attribute Projections.movie_id =
Movies.id. Both relations Movies and Projections consist of a single tuple,
and the relation Rooms is empty, as depicted in Figure I.5.

Then, the set of pairs ⟨𝑥, 𝑦⟩ such that there is a homomorphism from𝐐𝛾 to
the relational database, sending title to 𝑥 and time to 𝑦 is exactly the output
set of the SQL query on the database.

We now provide a last example: Sudoku grids. While it is also encoded as
a homomorphism problem, we will see in fact it is of a different nature than
the reductions of Examples I.1.1 and I.1.2.

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Figure I.6: A prefilled Sudoku grid.

Example I.1.3 (Sudoku grids). We represent an empty sudoku grid as the
relational structure whose domain is ⟦1, 9⟧ × ⟦1, 9⟧—corresponding to coor-
dinates in the grid—with three kinds of binary predicates: ℛ, 𝒞 and 𝒮, that
describe when two coordinates are on the same row, column or 3∗3-square,
respectively. To deal with prefilled grids, we add nine unary predicates 𝑃𝑘
(𝑘 ∈ ⟦1, 9⟧), and if coordinate ⟨𝑖, 𝑗⟩ is prefilled with number 𝑘, then predicate
𝑃𝑘 must hold on the element ⟨𝑖, 𝑗⟩. Given a prefilled grid 𝐺, we denote by 𝐒𝐺
the associated relational structure.

We then define the target structure 𝐓 to have ⟦1, 9⟧ as its domain, with
each vertex representing a possible value filling a cell. The binary relations

14

i.1. the two sides of the homomorphism problem

ℛ, 𝒞 and 𝒮 all three consist of all pairs ⟨𝑥, 𝑦⟩ s.t. 𝑥 ≠ 𝑦. This translates the
fact that, if two cells are on the same row, column, or 3∗3 grid, then they must
have different values. Moreover, each unary relation 𝑃𝑘 (𝑘 ∈ ⟦1, 9⟧) is defined
to hold only on {𝑖}.

Then, a prefilled grid 𝐺 can be completed if, and only if, 𝐒𝐺 has a ho-
momorphism to 𝐓.3 More precisely, homomorphisms 𝑓∶ 𝐒𝐺 → 𝐓 exactly 3 In fact, for this example we could

use only one binary predicate in-
stead of three. Note that this encod-
ing is actually quite close to graph
colouring (Example I.3.1) with an ex-
tra trick to force some values. This
trick—formally called marked struc-
ture—will actually prove crucial in
Chapter VIII.

correspond to complete Sudoku grid that extend 𝐺, with 𝑓(⟨𝑖, 𝑗⟩) giving the
number contained in cell ⟨𝑖, 𝑗⟩.

Foundation. The homomorphism problem is a natural framework
in which we can express many logical questions, ranging from database
evaluation to Sudoku solving.

All three problems we presented can actually be seen as instances of model-
checking: part of the input represents some data—or model—and part of it
represents a query—or logical question/specification. However, as depicted in
Table I.7, the encodings of these problems into homomorphism problems can
either be of two types:
• the query is encoded in the source structure, and the data in the target

structure: we denote this family of problems by ‘query hom−−−→? data’;
• in the other cases, the data is encoded in the source structure and the query

is the target structure: we denote these problems by ‘data hom−−−→? query’.

data query hom problem

Ex I.1.1 automata is 𝑢 accepted? query hom−−−→? data
Ex I.1.2 database SQL query query hom−−−→? data
Ex I.1.3 Sudoku grid is solvable? data hom−−−→? query
Ex I.3.1 graph is 𝑘-colourable? data hom−−−→? query
Ex I.3.2 SAT formula is satisfiable? data hom−−−→? query

Table I.7: Summary of the encod-
ings of some natural model-checking
problem into homomorphism prob-
lems. The last column indicates
whether the structure encoding the
data (resp. the query) is on the left-
hand side (i.e. acts as the source
structure) or the right-hand hand
(the target structure) of the homo-
morphism problem. The last two
examples will be described in Sec-
tion I.3.

The two situations are far from symmetric: in model-checking, the size of
the data is usually much larger than query: for instance, when analysing the
documents in the Panama Papers scandal, the data represented 2.9 TB, while
the querieswere a few lines long [Neo]. Hence, we often study problemswhere
the query is fixed: accordingly, not only does this fundamental asymmetry
between data and query roles motivates the structure of this thesis in two
independent parts, it also underlies distinct research domains.

Foundation. Encodings of model-checking problems as homo-
morphism problems are dual by nature, leading to two schools that
developed different techniques to tackle them: database theory and
constraint satisfaction problems.

15

i. introduction

I.2 Existentialism is a Database Theory

Figure I.8: Looking glass room, by
John Tenniel.

I.2.1 Conjunctive Queries

We now turn to the query hom−−−→? data side of the homomorphism problem.
This perspective captures classical database evaluation and highlights how
such queries naturally express existential, monotonic properties. For instance,
if 𝐆 is the graph with two nodes 𝑢 and 𝑣 and a single edge from 𝑢 to 𝑣, then
asking if there is a homomorphism from𝐆 to a graph𝐇 amounts to asking if
there exists at least one edge in 𝐇.

As we would expect for any existential problem, they are monotonic: if
a solution exists, and we add more data, then a solution still exists. More
formally, for any structure 𝐀, 𝐁 and 𝐁′, if 𝐁 is a substructure of 𝐁′ and
𝐀 hom−−−→ 𝐁, then 𝐀 hom−−−→ 𝐁′.

SQL queries (Example I.1.2) actually represent more than a mere exam-
ple: every homomorphism problem 𝐀 hom−−−→ 𝐁 can be seen as a SQL query
evaluation problem where 𝐀 encodes a query in the SELECT-FROM-WHERE

fragment of SQL and 𝐁 is encodes a relational database. This fragment can
also be characterized as the fragment of first-order logic where neither uni-
versal quantification, nor negation nor union is allowed. For instance, the
SQL query of Example I.1.2 can be expressed by the formula

𝜙(title, time) =̂ ∃movie_id. ∃length. ∃director. ∃room_id.

Movies(movie_id, title, length, director)

∧ Projections(movie_id, room_id, time).

movie_id

title

length

director

room_id

time

output: title, time

Figure I.9: A conjunctive query.

Yet another characterization of these queries as conjunctive queries, that
consist of a relational structure together with a tuple of vertices, called “out-
put”—this tuple plays the same role as the SELECT statement in SQL. For
instance, the previous query can be expressed as the conjunctive query of
Figure I.9. The semantics of such a query 𝛾 = ⟨𝐆, �̄�⟩ is defined as follows:
given a relational database, seen as a relational structure𝐃, it returns every
possible tuple ̄𝑑 of elements of𝐃 such that there exists a homomorphism from
𝐆 to𝐃 that sends �̄� to ̄𝑑. Notice how this formalism uses the connection with
homomorphisms described in Example I.1.2 to define a semantics. Overall,
these characterizations show this query language to be quite robust.

Foundation. Problems of the form query hom−−−→? data exactly corre-
spond to the evaluation of conjunctive query. Finite unions of con-
junctive queries can also be described as the SELECT-FROM-WHERE

fragment of SQL, or as the primitive-positive fragment of first-order
logic.

We now turn to the complexity of evaluating these queries. Aswe have seen,

16

https://commons.wikimedia.org/wiki/File:Aliceroom.jpg

i.2. existentialism is a database theory

conjunctive query evaluation boils down to homomorphism problems
of the form query hom−−−→? data. Assuming that the query if fixed, the naive
algorithm to solve the homomorphism problem—consisting in enumerating
every possible function from 𝐴 to 𝐵 and checking whether some of them
define a homomorphism—works in polynomial time, as there are only |𝐵||𝐴|

such functions. In fact, it is straightforward to devise an algorithm in uniform-

AC0—actually, the depth of the circuit does not even depend on 𝐀: there
is roughly one layer simulating the existential quantifiers, and another one
simulating the conjunctions.

While |𝐵||𝐴| is indeed polynomial when 𝐀 is fixed, recall that 𝐁 represents
a database: even though most theoreticians pretend that polynomial-time
is tractable, a polynomial-time algorithm of degree seven, run over a 2.9 TB
database, will executemore instructions than there are atoms in the observable
universe. This leads to two natural directions:
• optimizing the size of the exponent, i.e. replacing the query with a seman-

tically equivalent one of smaller size,
• studying the parametrized complexity of evaluating SQL queries, when

parametrized by the size of the query. This provides a finer complexity
notion than the classical NP/AC0 approach; our previous remark shows
the result to be slicewise polynomial (XP), which is not as well-behaved in
practice as fixed-parameter tractable (FPT) problems.

Figure I.10: On the left-hand side a
graph, and its core on the right. The
colours are not part of the structure,
but are used to describe a homomor-
phism from the original structure to
its core.

Queryminimization. The problem of optimizing the SELECT-FROM-WHERE

fragment of SQL is well-understood, precisely by using the framework of
conjunctive queries and relational structures. This problem amounts to, given
a finite 𝜎-structure 𝐀, deciding if there exists a strictly smaller 𝜎-structure
𝐀′ s.t.,4 for any finite 𝜎-structure 𝐁, then 4 Here, our size measure is simply the

number of vertices of the structure.

𝐀 hom−−−→ 𝐁 iff 𝐀′ hom−−−→ 𝐁.

The property above is in fact equivalent to

𝐀 hom−−−→ 𝐀′ and 𝐀′ hom−−−→ 𝐀 (I.1)

and is hence decidable. The optimization procedure then goes as follows:
starting from 𝐀, we check for every possible vertex 𝑎 ∈ 𝐴 if 𝐀 ∖ {𝑎} is
equivalent to 𝐀 in the sense of Equation (I.1). If some 𝑎 satisfy the property,
we let 𝐀∖ {𝑎} be our new query and start the process again. Otherwise, we
get a minimal query, called core of 𝐀. This core is unique—which is not
obvious since we defined it with a greedy procedure—and is, by construction,
a substructure of 𝐀, see Figure I.10. In particular, it implies that the core

17

https://complexityzoo.net/Complexity_Zoo:A#ac0
https://complexityzoo.net/Complexity_Zoo:A#ac0
https://complexityzoo.net/Complexity_Zoo:A#ac0

i. introduction

does not only minimize the number of vertices of 𝐀 while being semantically
equivalent: it also minimizes any parameter that is closed under taking
substructures, such as e.g. the number of edges or the tree-width! Therefore,
this notion of core, together with seeing SELECT-FROM-WHERE queries as
relational structures/conjunctive queries provides a remarkably robust tool
for solving most optimization problem on these queries.

Foundation. Conjunctive queries can be minimized by computing
their core. This process minimizes the number of variables/vertices,
but also many other parameters, such as the number of edges, the
path-width, the tree-width, etc.

FPT algorithms. In short, the field of parametrized complexity studies the
computational complexity of decision problems in a finer way than classical
complexity theory: each problem is associated to a parameter—which is
smaller than the size of the whole instance—and the goal is to understand
the influence of the size of this parameter on the complexity of the problem.
Let us mention the parametrized classes FPT and W[1], which are roughly
the parametrized equivalent of P and NP. The problem of whether a graph
contains a 𝑘-clique, when parametrized by 𝑘, is known to be W[1]-complete:
in some sense, it means that this problem is hard, and that this parameter 𝑘
plays a crucial role in the hardness of the problem.

The problem of whether a graph contains a 𝑘-clique easily reduces to a
homomorphism problem where the source structure is fixed—and equal to
the 𝑘-clique. It follows that the homomorphism problem, parametrized in
the size of the source structure is W[1]-hard. Unfortunately, assuming that
W[1] ≠ FPT,5 it follows that there cannot be an FPT (i.e. “efficient”) algorithm 5 This is the parametrized counter-

part of P ≠ NP.for evaluating conjunctive queries. Hence, a quest emerged to find classes of
conjunctive queries with an FPT evaluation. ℛ 𝒮

ℛ
𝒮

𝒯
ℛ

Figure I.11: A tree-shaped conjunc-
tive query over a signature with three
binary relations denoted by 𝑎, 𝑏 and 𝑐.

First, one can notice that if said query is tree-shaped, such as the conjunctive
query of Figure I.11, then the naive bottom-up evaluation algorithm works
in time that is polynomial both in the size of the query and in the size of the
database. Now, assume that 𝛾 is a conjunctive query that is not tree-shaped,
but that is equivalent to a tree-shaped query. This is the same as saying that
the core of 𝛾 is tree-shaped. Hence, to evaluate 𝛾, one can instead:
• first compute its core,6 6 To quote K-Maro: “Donne-moi ton

coeur, baby, ton core, baby...”• then evaluate this core on the database.
The interest of this approach is that, while databases are big and ever-changing,
queries are short and fixed. Hence, spending effort optimizing them can be
beneficial, since it might lead to performance gain for every evaluation of
the query: this is why studying the complexity of the evaluation problem
parametrized by the size of the query is relevant. Formally, the previous

18

i.2. existentialism is a database theory

procedure yields an algorithm that works in time

𝒪(𝑓(|query|) ⋅ poly(|core|, |database|)).

This precisely means that evaluating conjunctive queries that are semantically
equivalent to tree-shaped queries is FPT.

In fact, for this reasoning to work, the notion of “tree-shaped” need not
be as restrictive as what is shown in Figure I.9: for instance, edges could
be reversed. More generally, if the query has tree-width7 at most 𝑘, then 7 Tree-width is a graph-parameter

that measure how far a graph is from
a tree. The notion can be extended
to relational structures.

we still get a polynomial-time evaluation algorithm—where the order of the
polynomial depends on 𝑘. In turns, it means that for every 𝑘 ∈ ℕ>0, evaluating
conjunctive queries that are semantically equivalent to a queries of tree-width
at most 𝑘 is FPT.8 8 In fact, they can even be evaluated

in polynomial time, but the argument
is more involved [CR00].

Remarkably, this is exactly the limit of tractability for these queries: Grohe
showed that a class of conjunctive queries has FPT evaluationwhen parametrized
in the size of the query iff it has bounded “semantic tree-width”—meaning that
there exists 𝑘 ∈ ℕ>0 s.t. every query in the class is semantically equivalent
to a query of tree-width at most 𝑘 [Gro07].9 ,10 9 Technical point: Actually for the

equivalence to hold, the class of
queries needs to be recursively enu-
merable.
10 The same equivalence holds for
polynomial-time evaluation.

Foundation. Conjunctive queries of bounded semantic tree-width
are exactly the classes of conjunctive queries with tractable evaluation.

I.2.2 Adding Regular Path Predicates

person

child

grand_child

output: person, grand_child

Figure I.12: A conjunctive query out-
putting all pairs of people with their
grandchildren.

Overall, the previous result prove that the theory of conjunctive queries is
well-understood. However, even when considering other features from SQL,
such as aggregate functions—COUNT, SUM, etc.—, the query language of
conjunctive queries faces a big limitation: it is intrinsically local. Consider two
structures 𝐀 and 𝐁, and two elements 𝑎 and 𝑎′ of 𝐴. For any homomorphism
𝑓 from 𝐀 to 𝐁, the distance from 𝑓(𝑎) to 𝑓(𝑎′) in 𝐁 is at most the distance
from 𝑎 to 𝑎′ in𝐀.11 Now assume that 𝐁 is a graph, whose vertices are humans, 11 This follows from the definition of

a homomorphism, by using a trivial
induction on the distance.

and whose edges represent the ‘is a child of’ relation. For any 𝑘 ∈ ℕ, it is
easy to build a conjunctive query ⟨𝐀𝑘, ⟨𝑎, 𝑎′⟩⟩ outputting all pairs ⟨𝑏, 𝑏′⟩ s.t.
𝑏′ is a depth-𝑘 descendant of 𝑏—see Figure I.12 for 𝑘 = 2. However, since
homomorphisms contract distances, there is no conjunctive query ⟨𝐀∗, ⟨𝑎, 𝑎′⟩⟩
outputting all pairs ⟨𝑏, 𝑏′⟩ s.t. 𝑏′ is descendant, at any depth, of 𝑏. In other
words, conjunctive queries are not closed under transitive closure.

More generally, human-centered data does not usually go well with rela-
tional databases, as they are not designed to allow graph traversal. To face this
issue, graph databases have been introduced: they can essentially be modelled
as relational structures whose relations are all binary. In other words, they
correspond to edge-labelled graphs, see Figure I.14.12 To illustrate this point,

12 If the reader is familiar with knowl-
edge graphs, everything we are say-
ing about graph databases also ap-
plies to knowledges graphs. While
the two notions are distinct in prac-
tice, their fundamental concept—and
hence our theoretical modelling of
them—is identical: story data as a
graph.we consider Wikidata, which is a graph database containing more than one

hundred million vertices, whose data is used amongst others on Wikipedia.

19

https://www.wikidata.org/

i. introduction

1 SELECT ?workLabel ?authorLabel
2 WHERE
3 {
4 ?work wdt:P31/wdt:P279∗ wd:Q7725634;
5 rdfs:label ?workLabel;
6 wdt:P577 ?date;
7 wdt:P50 ?author.
8 ?author rdfs:label ?authorLabel.
9 FILTER(LANG(?workLabel) = ”fr” && LANG(?authorLabel) = ”fr”).

10 FILTER(CONTAINS(?workLabel, ”exist”)).
11 FILTER(YEAR(?date) <= 1990).
12 }
13 LIMIT 7

1 SELECT ?workLabel ?authorLabel
2 WHERE
3 {
4 ?work ’is instance of’/’is sublcass of’∗ ’literary work’;
5 ’has label’ ?workLabel;
6 ’was published on’ ?date;
7 ’was authored by’ ?author.
8 ?author ’has label’ ?authorLabel.
9 FILTER(LANG(?workLabel) = ”fr” && LANG(?authorLabel) = ”fr”).

10 FILTER(CONTAINS(?workLabel, ”exist”)).
11 FILTER(YEAR(?date) <= 1990).
12 }
13 LIMIT 7

Figure I.13: A SPARQL query
(above), together with a human-
friendly translation (below).
[� Run the query.]

20

https://query.wikidata.org/#SELECT%20DISTINCT%20%3Fwork%20%3FworkLabel%20%3FauthorLabel%0AWHERE%0A%7B%0A%20%20%3Fwork%09wdt%3AP31%2Fwdt%3AP279%2a%20wd%3AQ7725634%3B%0A%20%20%20%20%20%20%20%20rdfs%3Alabel%20%3FworkLabel%3B%0A%20%20%09%09wdt%3AP577%20%3Fdate%3B%0A%20%20%20%20%20%20%20%20wdt%3AP50%20%3Fauthor.%0A%20%20%3Fauthor%20rdfs%3Alabel%20%3FauthorLabel.%0A%20%20FILTER%28LANG%28%3FworkLabel%29%20%3D%20%22fr%22%20%26%26%20LANG%28%3FauthorLabel%29%20%3D%20%22fr%22%29.%0A%20%20FILTER%28CONTAINS%28%3FworkLabel%2C%20%22exist%22%29%29.%0A%20%20FILTER%28YEAR%28%3Fdate%29%20%3C%3D%201990%29.%0A%7D%0ALIMIT%207

i.2. existentialism is a database theory

We would like to obtain all literary works published before 1990 and whose
French title contains the string “exist”. This can be done using the SPARQL
query language, which is roughly the equivalent of SQL for knowledge bases:
the query is represented in Figure I.13. The central notion in knowledge graphs
and SPARQL is the notion of triplets: x R y. refers to an edge of the R-relation
going from x to y. Then x R y; S z. is an abbreviation for the conjunction x R y. x

S z. Hence, the central part (ll. 4–8) of the SPARQL query of Figure I.13 should
be understood as follows: we are looking for variables ?work, ?typeOfWork

(implicit), ?workLabel, ?date and ?authorLabel s.t.:
• there is a path from ?work to ?typeOfWork obtained by taking an edge ‘is

instance of’, and then an arbitrary number of edges of type ‘is subclass of’,
• ?typeOfWork should exactly correspond to the vertex called ‘type of work’,
• ?work and ?author have label ?workLabel and ?authorLabel, respectively,
• ?work was published on ?date, and
• ?work was authored by ?author.
The key feature of query languages for graph databases is illustrated by the
wdt:P31/wdt:P279∗ instruction: this expression does not refer to a single edge of
the knowledge graph, but rather to a regular expression formed from these
edges. These regular expressions are in fact precisely what allows for easy
graph traversal! An example of a match of this expression is provided in red
in Figure I.14. The output of the query of Figure I.13 is provided in Table I.15.

author
date

language

instance of

Statistique des gens de lettres et
des savants existant en France

François-Fortuné
Guyot de Fère

1892

French

biographical
dictionary

biography
dictionary

catalogue

knowledge orga-
nization system

reference work
biographical work

non-fiction work

literary work

Figure I.14: Part of the Wikidata
graph database. Dotted arrows rep-
resent the relation ‘subclass of’. The
red path matches the expression wdt
: P31 / wdt : P279 ∗. For readability,
labels are written next to the ver-
tices rather than as separate vertices
linked with a ‘has label’ relation.

workLabel authorLabel

Statistique des gens de lettres
François-Fortuné Guyot de Fère

et des savants existant en France
Le Chevalier inexistant Italo Calvino
L’existentialisme est un humanisme Jean-Paul Sartre
Ennui existentiel Anton Tchekhov
Les Ennuis de l’existence Anton Tchekhov
La tentation d’exister Emil Cioran
Inexistence David Zindell

Table I.15: Output of the SPARQL
query of Figure I.13.

21

https://www.wikidata.org/wiki/Q112061434
https://www.wikidata.org/wiki/Q112061434
https://www.wikidata.org/wiki/Q66023922
https://www.wikidata.org/wiki/Q66023922
https://www.wikidata.org/wiki/Q150
https://www.wikidata.org/wiki/Q1787111
https://www.wikidata.org/wiki/Q1787111
https://www.wikidata.org/wiki/Q36279
https://www.wikidata.org/wiki/Q23622
https://www.wikidata.org/wiki/Q2352616
https://www.wikidata.org/wiki/Q6423319
https://www.wikidata.org/wiki/Q6423319
https://www.wikidata.org/wiki/Q13136
https://www.wikidata.org/wiki/Q15706467
https://www.wikidata.org/wiki/Q20540385
https://www.wikidata.org/wiki/Q7725634
https://www.wikidata.org/

i. introduction

We formalize the core features of SPARQL as conjunctive regular path
queries: they consist of conjunctive queries, except that their atoms are no
longer of the form 𝑥 ℛ−→ 𝑦 (for some binary relation ℛ ∈ 𝜎), but can be more
generally of the form

𝑥 𝐿−→ 𝑦 for some regular language 𝐿 over 𝜎.

For instance, ll. 1–8 of the SPARQL query of Figure I.13 can be modelled by the
conjunctive regular path query of Figure I.16: notice the regular expression
in red.

instance ⋅ subclass∗

label
date

author

label

work

typeOfWork

workLabel
date

author

authorLabel

output: workLabel, authorLabel

Figure I.16: A conjunctive regular
path query modelling the core part
of Figure I.13.

Foundation. Graph databases/knowledge graphs store information
as edge-labelled graphs. To allow for graph traversal, we extend con-
junctive queries to conjunctive regular path queries by adding regular
expressions.

I.2.3 Minimization and Structure of Conjunctive Regular Path Queries

While conjunctive regular path queries share some enjoyable properties of
conjunctive queries—for instance the decidability of semantical equivalence,
in contrast to e.g. first-order logic—its semantics is more complex: graph-
like phenomena (homomorphisms) intertwine with regular languages. Not
only does this lead to a complexity blow-up—semantical equivalence is NP-
complete for conjunctive queries but ExpSpace-complete for conjunctive
regular path queries—, it also breaks the nice theory of cores.

Figure I.17: Gulliver à Lilliput : Le
réveil sur la plage, by André Devam-
bez.

As a consequence, optimizing conjunctive regular path queries poses a
significant challenge to untwist graph properties from automata-theoretic
ones. This first part of this thesis is dedicated to this problem. After exposing
the basic theory of conjunctive regular path queries in Chapter III, we study
the minimization problem in Chapter IV: given such a query and 𝑘 ∈ ℕ>0,
we can decide if it is equivalent to a query of size at most 𝑘, and if so we can
produce it.

Contribution. Whether a conjunctive regular path query can be
minimized is decidable, and minimization is effective.

We notice that, somewhat unexpectedly, there are some conjunctive regular
path queries that are minimal in the sense above, but that are equivalent to a
finite union—in the semantical sense—of strictly smaller conjunctive regular
path queries.13 We argue that measuring a union of such queries by the

13 This contrasts with the case of con-
junctive queries, where the notion of
core and the order-theoretic proper-
ties of relational structures precisely
prevents this phenomenon from ap-
pearing. In other words, this phe-
nomenon precisely emerges by inter-
lacing the graph structure and the
automata of the query.

maximal size of a query in the union is a sensible thing to do—because the
complexity of evaluating such a union depends mostly on this parameter—,
and prove that given a conjunctive regular path queries and 𝑘 ∈ ℕ, we can

22

https://www.musee-orsay.fr/fr/oeuvres/gulliver-lilliput-le-reveil-sur-la-plage-248152
https://www.musee-orsay.fr/fr/oeuvres/gulliver-lilliput-le-reveil-sur-la-plage-248152

i.2. existentialism is a database theory

decide if it is equivalent to a finite union of queries which are all of size at
most 𝑘.

Contribution. Whether a conjunctive regular path query can
be minimized as a union of strictly smaller queries is decidable, and
minimization is effective.

Both algorithms are essentially brute-force, and the main technical diffi-
culty lies in proving that there are finitely many candidates to test, which
is not trivial because we do not ask for any bound on the size of the regular
languages.14 The idea behind the two algorithms are in fact surprisingly 14 Again, this is motivated by

the complexity of evaluating a
conjunctive regular path queries,
which mostly depends on how many
atoms/edges it has, and not so much
on how complex these languages are.

different:
• in the first case—when union is not allowed—, we prove that if a query is

equivalent to another one with few atoms (but potentially big languages),
then it must be equivalent to a query with few atoms and small languages.
This property is proved by understanding the subtle interactions between
languages and the graph structure;

• in the second case—when union is allowed—, we build a canonical finite
union of queries, corresponding to the maximal under-approximation by
a finite union of small queries: it is the best under-approximation—in the
sense that it logically entails the query—and so, if the original query is
equivalent to a finite union of small ones, then it must be equivalent to
this maximal under-approximation. The difficulty there lies in proving
the existence of maximal under-approximation, or rather that it can be
expressed by a finite union. This construction can essentially be seen as a
smart brute-forcing, obtained by agglomerating all possible smaller queries.
One reason we resolve to using brute-force algorithm is that it is remark-

ably hard to understand when a query cannot be minimized. The case of
conjunctive queries is much simpler: if the core of the query has 𝑘 edges (resp.
tree-width 𝑘), then any conjunctive query semantically equivalent to it must
use at least 𝑘 edges (resp. have tree-width at least 𝑘).

Another of our contributions is to identify a sufficient condition on a
query so that any query that is semantically equivalent to it must contain a
“complex pattern”. The strength of this theorem lies in its general applicability,
as the notion of “complex pattern” is formalized as a “minor-closed class of
graphs”—examples include the class of all graphs with at most 𝑘 atoms, or
the class of all graphs of tree-width at most 𝑘.

Contribution. We introduce the semantical structure theorem,
that provides a way to prove lower bounds on the number of atoms,
or tree-width, or in fact any minor-closed property, that is necessary
to express a query.

This tool proves useful to show minimality of specific examples—i.e. for

23

i. introduction

proofs—, and to prove complexity lower bounds for our problem. However,
this only provides a sufficient condition, that is often not necessary, it fails to
provide a simple algorithm to test minimality—hence our brute-force algo-
rithms.

Then, in Chapter V, we turn to the question of tree-width. Similarly
to conjunctive queries, finite unions of conjunctive regular path queries of
bounded tree-width can be evaluated in polynomial time. It begs the question
of deciding when a query is actually equivalent to a query of small tree-width.

Foundation. Barceló, Romero and Vardi [BRV16] devised an algo-
rithm to test if a conjunctive regular path queries is equivalent to a
finite union of “acyclic”—meaning of tree-width 1—queries.

The general question for tree-width 𝑘 is left open in their paper as the
authors did not know how to extend their technique to this more general
setting. We extend their result, relying again on the notion of maximal under-
approximation:15 we prove the existence and computability of the maximal 15 The paper of Barceló, Romero and

Vardi also relies on maximal under-
approximations, and this notion al-
ready existed for conjunctive queries.

under-approximation by finite unions of queries of tree-width of a given
conjunctive regular path query.

Contribution. Given 𝑘 ∈ ℕ>0 and a conjunctive regular path
queries, we can decide if the latter is semantically equivalent to a finite
union of queries of tree-width (resp. path-width) at most 𝑘.

The proof of existence of this maximal under-approximation is much harder
than in the case minimizing the number of atoms. It needs to deal with two
kinds of information: the structure of the query, i.e. its underlying graph,
and its languages, and so the proof precisely massages the query to preserve
information, at the same time, about the tree decomposition—serving as a
witness of the small tree-width of the query—and about the semantics of the
query.

Amusingly, we originally thought that our proof was not able to capture
the case 𝑘 = 1 that was already handled, and that the constructions of Barceló,
Romero and Vardi and ours were orthogonal. While writing the journal
version of this paper—that was originally published at ICDT ’23—, we wanted
to extend the results to path-width,16 but part of our construction broke.

16 The main motivation behind this
is that the evaluation of queries of
bounded path-width is not only poly-
nomial but even NL!

Introducing the technical tool to fix it17 actually leads to a unified solution, 17 See the notions of contractions and
contracted path-width.that handles both the case of tree-width 𝑘 (including 𝑘 = 1) and path-width.18
18 The order of presentation of these
results does not follow the timeline of
their discovery: our work on seman-
tic tree-width was done in 2022–23
and published at ICDT ’23, while the
one on minimization was done in
2024–25 and published at PODS ’25.

Lastly, all these algorithms rely on testing the equivalence of conjunctive
regular path queries, which is ExpSpace-complete. It leads to resource-hungry
algorithms—although it has to be noted that it is worth running exponential
algorithms on smallish queries in order to optimize their evaluation on huge
databases!—which leads to a natural quest for identifying subclasses of queries
that admit more efficient algorithms.

24

i.3. everyone who wants to do constraint satisfaction always ends up in universal problems

As witnessed by the example of Figure I.13, the regular expressions used in
practice are often much simpler than the one required to obtain the ExpSpace-
hardness of the equivalence problem. Fortunately, conjunctive regular path
queries over simple regular expression, where the regular languages allowed
are restricted to be concatenations of edge labels and reflexive-transitive
closure (a.k.a. Kleene star) of edge labels, were already known to have a more
efficient algorithm for testing semantical equivalence.

Contribution. We prove that the problem of minimizing the num-
ber of atoms (resp. tree-width) of conjunctive regular path queries
over simple regular expressions lies in the polynomial hierarchy.

A consequence of our work on tree-width is that, given a conjunctive
regular path query that is promised to be equivalent to a query of tree-width
𝑘, we can first compute said equivalent query of small tree-width by using
our algorithm, and then evaluate it on any database. This proves that the
evaluation problem for conjunctive regular path queries of bounded semantic
tree-width is FPT when parametrized by the size of the query.19 19 This result was in fact already

known—but proven differently, with
an incomparable complexity (better
preprocessing but worst polynomial
exponent)—by Romero, Barceló and
Vardi [RBV17].

Whether the converse holds remains a mystery: many attempts have been
tried to extend Grohe’s proof for conjunctive queries to this setting, but all
failed, precisely because of the difficulty posed by the intertwining of the
graph structure and the automata. We conclude this part of the thesis by a
discussion of this problem, as well as whimsical ideas related to conjunctive
regular path queries in Chapter VI.

Open Problem. Characterize the classes of CRPQs with FPT evalua-
tion when parametrized by the size of the query.

To summarize, the query hom−−−→? data formulation of the homomorphism
problem provides a robust foundation for classical database theory. The first
part of this thesis extends this framework to a richer context: graph databases
and queries extended with regular path predicates.

I.3 Everyone Who Wants to Do Constraint Satisfaction Al-
ways Ends Up in Universal Problems

I.3.1 Constraint Satisfaction Problems

This second part explores the complexity of the homomorphism problem
when the data is fixed and the query varies, focusing on constraint satisfaction
problems and automatic structures.

Figure I.18: Looking glass room, by
John Tenniel.Constraint Satisfaction Problems. Going to the other side, encodings of model-

checking problems as homomorphism problems of the form data hom−−−→? query

25

https://commons.wikimedia.org/wiki/File:Aliceroom2.jpg

i. introduction

can be thought of as “universal problems”—here “universal” does not refer to
some form of completeness, but simply to universal quantification. Notice e.g.
that they are anti-monotonic with respect to the data: for all structures 𝐀, 𝐀′

and 𝐁, if 𝐀 hom−−−→ 𝐁 and 𝐀′ is a substructure of 𝐀 then 𝐀′ hom−−−→ 𝐁. Moreover,
while problems of the form query hom−−−→? data can be solved locally—whether
a vertex of the data is part of a solution (a homomorphism) only depends on
vertices at a bounded distance—, problems of type data hom−−−→? query cannot.

Figure I.19: The 3-clique 𝐊3.

Figure I.20: A 3-colouring of some
beetle-shaped graph.

Example I.3.1 (Graph colouring). Let 𝑘 ∈ ℕ>0. We let the 𝑘-clique, denoted
by 𝐊𝑘, to be the graph whose vertices are ⟦1, 𝑘⟧, and with an edge from 𝑖 to
𝑗 (with 𝑖, 𝑗 ∈ ⟦1, 𝑘⟧) iff 𝑖 ≠ 𝑗, see Figure I.19. The classical graph-theoretical
notion of 𝑘-colouring of a graph 𝐆 consists of a map from vertices of 𝐆 to
⟦1, 𝑘⟧ s.t. no two adjacent vertices are sent on the same colour/number. We
then say that a graph is 𝑘-colourable when it admits at least one 𝑘-colouring.
In other words, a 𝑘-colouring corresponds precisely to a homomorphism
from 𝐆 to 𝐊𝑘, where colours correspond to the vertices of the clique, see
e.g. Figure I.20. Hence, a graph is 𝑘-colourable if, and only if, there is a
homomorphism from 𝐆 to 𝐊𝑘.

For instance, 3-colourability is a global property of a graph and cannot
be solved by gluing local solutions, or with greedy algorithms. In particu-
lar, this implies that fixing the query does not necessarily result in a drop
in the complexity: the 3-colourability problem—which takes as input a
finite graph and asks whether it is 3-colourable—is already NP-complete!
The next example shows that, even when the target structure is fixed, the
homomorphism problem provides a flexible framework to encode problems.

Example I.3.2 (SAT solving). We consider a 3-SAT instance, namely a finite
conjunction of disjunctions of three literals, say

𝜙 =̂
𝑛
�
𝑖=1
ℓ𝑖,1 ∨ ℓ𝑖,2 ∨ ℓ𝑖,3,

where each ℓ𝑖,𝑗 is either a variable, or the negation of a variable. We assume
w.l.o.g. that in each clause, positive variables appear before negative ones: this
of course can be achieved by a simple syntactical rewriting of each clause.20 20 Meaning e.g. that 𝑥∨¬𝑦∨ 𝑧 is not

allowed, contrary to 𝑥 ∨ 𝑧 ∨ ¬𝑦.We let 𝐁 be the structure whose domain has two elements {0, 1}, equipped
with four ternary relations ℛ0 through ℛ3, where ℛ𝑗 encodes clauses with
exactly 𝑗 negated literals. They are formally defined as

ℛ0 =̂ {0, 1}3 ∖ {⟨0, 0, 0⟩}, ℛ1 =̂ {0, 1}3 ∖ {⟨1, 0, 0⟩},

ℛ2 =̂ {0, 1}3 ∖ {⟨1, 1, 0⟩} and ℛ3 =̂ {0, 1}3 ∖ {⟨1, 1, 1⟩}.

We then encode 𝜙 into the relational structure 𝐅𝜙 whose domain is the set of
variables of 𝜙, and for every 𝑖 ∈ ⟦1, 𝑛⟧, ℛ𝑗 (𝑗 ∈ ⟦0, 3⟧) consists of all triplets
of variables ⟨𝑥, 𝑦, 𝑧⟩ s.t. there is a clause of 𝜙 containing variables 𝑥, 𝑦 and
𝑧 (with multiplicity), and exactly 𝑗 of these variables occur negatively. For

26

i.3. everyone who wants to do constraint satisfaction always ends up in universal problems

instance, ⟨𝑥, 𝑦, ¬𝑥⟩ ∈ ℛ1, and ⟨¬𝑥, ¬𝑦, ¬𝑧⟩ ∈ ℛ3. A function 𝑓 from the
domain of 𝐅𝜙 to the domain of 𝐁 amounts to picking a Boolean valuation
of the variables occurring in 𝜙. Observe that, by definition of the relations
ℛ𝑗, given a clause 𝜓 containing variables 𝑥, 𝑦, 𝑧, 𝑓 is a homomorphism from
𝐅𝜓 to 𝐁 iff 𝑓, seen as a valuation, satisfies 𝜓.21 By taking conjunction, the 21 For instance, if all variables are pos-

itive, then all valuations except the
one putting all variables to false sat-
isfy the formula. This is why ℛ0 is
defined on 𝐁 as {0, 1}3 ∖ {⟨0, 0, 0⟩}.

conclusion follows: homomorphisms from 𝐅𝜙 to 𝐁 exactly correspond to
valuations satisfying 𝜙. In particular, there is a homomorphism from 𝐅𝜙 to 𝐁
iff 𝜙 is satisfiable.22

22 Note that this example can be eas-
ily generalized to 𝑘-SAT for any 𝑘 ∈
ℕ>0. However, the signature de-
pends on 𝑘.

However, contrary to 3-colourability and SAT solving, not all of these
problems are NP-hard. For example, 2-colourability is not only polynomial-
time, but can be solved using a greedy algorithm. This begs the question of
understanding what makes a relational structure hard for the homomorphism
problem when it is used as the target structure. This question is not only
motivated by theory: constraint logic programming has emerged in the 1980s
with Prolog II and III; and modern programming languages such as answer-set
programming provide an efficient way of doing constraint solving.

1 x(1..9). % abscissa
2 y(1..9). % ordinate
3 n(1..9). % value
4
5 {sudoku(X,Y,N): n(N)}=1 :- x(X), y(Y).
6
7 subgrid(X,Y,A,B) :- x(X), x(A), y(Y), y(B), (X−1)/3 == (A−1)/3, (Y−1)/3 == (B−1)/3.
8
9 :- sudoku(X,Y,N), sudoku(A,Y,N), X != A.

10 :- sudoku(X,Y,N), sudoku(X,B,N), Y != B.
11 :- sudoku(X,Y,V), sudoku(A,B,V), subgrid(X,Y,A,B), X != A, Y != B.
12
13 #show sudoku/3.

Figure I.21: A Clingo program
(answer-set programming) to solve
Sudoku grids. Written by En-
rico Höschler [source]. Try run-
ning it on https://potassco.org/

clingo/run/!

Answer-set programming can be thought of, albeit caricaturally, as a
human-readable SAT-solver. It deals with variables, relations between these
variables, and logical rules between these variables. These rules take the
form ‘A :- B’, which can be understood as ‘if 𝐵, then 𝐴’. The right-hand side is
parsed conjunctively while the left-hand side is parsed disjunctively: ‘A, B :- C,

D’ should be understood as ‘if 𝐶 and 𝐷, then 𝐴 or 𝐵’. Figure I.21 provides an
example of a Clingo program for solving Sudoku grids:
• it starts by declaring three types of variables: abscissa 𝑥, ordinates 𝑦 and

values 𝑛 (representing a value in the grid), as well as their range;
• it introduces a sudoku ternary relation, where sudoku(𝑥, 𝑦, 𝑛) represents

the fact that entry (𝑥, 𝑦) of the grid has value 𝑛, and it says that there
should be exactly one value per entry;

• it introduces a subgrid relation, saying when two entries belong to the
same 3∗3-square;

• finally, it says that any two values on the same column, row or subgrid

27

https://ddmler.github.io/asp/2018/07/10/answer-set-programming-sudoku-solver.html
https://potassco.org/clingo/run/
https://potassco.org/clingo/run/

i. introduction

must be different.23 23 Recall that the left-hand side of
rules is understood disjunctively, and
hence ‘:- A, B’ reads as ‘if 𝐴 and 𝐵,
then false’.

To solve a specific grid using the program of Figure I.21, it suffices to add
declarations of the form ‘sudoku(4,1,5).’, where ‘A.’ is a shorthand for ‘A :-.’. This
specifies that the cell at position (4, 1) has value 5.

Contrary to more classical programming languages, this paradigm does
not explain how things should be computed, but what constraints the memo-
ry/solution should satisfy. In homomorphism problems, the target structure
precisely plays this role of encoding constraints. For instance, the only con-
straint for a graph 3-colouring is that adjacent vertices must be mapped to
distinct colours: this constraint is reflected in 𝐊3 by the fact that the edges of
𝐊3 are exactly the pairs of distinct colours.

The field of constraint satisfaction problems precisely aims at classifying
the structures 𝐁 w.r.t. to the complexity of the homomorphism problem
when the target structure is 𝐁. One of the earliest and most impactful re-
sult of the domain was found by Schaefer [Sch78], who proved that such
problems are either in P or NP-complete when the domain of 𝐁 has two
elements—this already captures the example of SAT-solving (Example I.3.2)
from earlier. A decade later, Hell and Nešetřil [HN90] proved a similar result
for undirected graphs. Moreover, in both cases, these dichotomies are effec-
tive: given a structure, we can decide if its homomorphism problem is in P

or is NP-complete. These results, together with the importance of constraint
satisfaction in computer science led Feder and Vardi at the end of the 1990s to
state their celebrated dichotomy conjecture: “for any finite structure 𝐁, the
homomorphism problem with target structure 𝐁 is either P or NP-complete”
[FV98]. Despite receiving lots of attention, the conjecture remained wide
open for two decades, until Bulatov [Bul17] and Zhuk [Zhu20] independently
showed the conjecture to be true.24

24 Both papers have in fact been first
published in 2017 in the same confer-
ence: [Zhu20] refers to Zhuk’s later
journal version.

However not all problems in P are complete for this class: some are even
simpler and are complete forNL or L, or even FOfin—i.e. when it is a first-order
definable class of finite structures. One result that will be of major impor-
tance in this thesis is a dichotomy theorem by Larose and Tesson separating
structures in FOfin from those that are L-hard [LT09].

Foundation. The field of constraint satisfaction problems classifies
target structures depending on the complexity of their homomorphism
problem.

I.3.2 Automatic Structures: The Dream Is Not Over Yet

Figure I.22: Flowers for Algernon, by
Marshall P Baron. Licensed under
CC BY SA 4.0.

The second part of this thesis is dedicated to pushing these results to their limit.
The structures handled by the homomorphism problem, likemost problems in
computer science, are usually assumed to be finite. We discuss in this section
the generalization of the problem to infinite structures. This motivated by
two facts: not only infinite structures naturally arise as from computational

28

https://commons.wikimedia.org/wiki/File:Flowers_for_Algernon.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

i.3. everyone who wants to do constraint satisfaction always ends up in universal problems

models—the runs of a machine usually form an infinite structure—, they can
also model ‘mathematical universes’.

Von Neumann would have said “It’s all over”25 after hearing Gödel expose 25 This quote is mentioned as histor-
ically accurate by [DPPDP09], how-
ever this claim seems undocumented
[Man11].

his infamous incompleteness theorem in 1930: any effective (recursively enu-
merable) consistent theory that is expressive enough to express the arithmetic
is incomplete—i.e. it contains statements that are neither valid (true in all
models), nor unsatisfiable (false is all models). In other words, there is no
reasonable set of axioms to capture all mathematics: some statements must
necessarily fall outside the scope of the theory.

Completeness is perhaps best understood as follows: if a theory (a set of
axioms) is consistent—i.e. it has at least one model—and complete, then pick
any of its models. A statement is then valid in the theory if and only if it is
true in this model. Dually, if you are given a theory for which there exists a
model with this property (a statement is valid in the theory iff it is true in the
model), then the theory is complete. In essence, not only does Gödel’s result
put a dent in Hilbert’s dream (“Wir müssen wissen. Wir werden wissen.”26) of 26 “We must know. We will know.”

building solid foundations for mathematics: in fact, it shatters the Platonistic
idea of an unequivocal and universal mathematical world, or at the very least
of one that can be captured by axioms. “Another case of men devoting their

lives to studying more and more
about less and less.” —Daniel Keyes,
Flowers for Algernon.

Ironically, what makes Gödel’s incompleteness theorem a proper abomi-
nation for computer scientists is probably another theorem of Gödel, known
as Gödel’s completeness theorem and that he proved only a year earlier in
his Ph.D. dissertation: first-order logic admits a complete proof system. Or,
said differently, what is valid—that is, true on every model satisfying the
axioms—is exactly what can be proven. Hence, the Gödel of 1929 could have
dreamt of a complete theory for mathematics. If a such theory existed, to
determine if a statement 𝜙 was valid, it would suffice to enumerate in parallel
all possible proofs of 𝜙 and of ¬𝜙. By completeness, this procedure would
always stop, and either conclude that 𝜙 is valid, or that ¬𝜙 is valid. Are
there cardinals strictly between ℵ0 and the continuum? Start Turing’s nifty
device—invented in 1936—, and you would (eventually) get an answer! In this
strange world, automatic theorem proving would be a reality, and this thesis
would probably look very different.

Sadly for the Gödel of 1929, the Gödel of 1930 came, and so… “It’s all over”!
Since then, theories—such has Zermelo–Fraenkel set theory plus the axiom
of choice—have been developed, and while not being complete, they manage
to capture most of the parts of mathematics we are interested in.27

27 For the sake of sanity, we assume
throughout this introduction that the
pronoun ‘we’ excludes set theorists.

𝜏∨¬∈�𝐴′∈�𝐴″

Figure I.23: The first-order sentence
∃𝑥. (𝑥 ∉ 𝐴′) ∨ (𝑥 ∈ 𝐴″) as written
by Bourbaki in [Bou06, § 1].

𝔵 𝑥 ∈ 𝐴″

𝑥 ∈ 𝐴′

Figure I.24: The first-order sentence
of Figure I.23 written using Frege’s
notations (1879).

Yet, after half a century of efforts to build solid foundations, the incom-
pleteness of this consolation prize is actually frustrating, and mathematicians
still often resort to denial.

“On foundations we believe in the reality of mathematics, but of course when

philosophers attack us with their paradoxes we rush to hide behind formalism

and say: “Mathematics is just a combination of meaningless symbols,” and

then we bring out Chapters 1 and 2 on set theory. Finally we are left in peace

29

https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del%27s_completeness_theorem
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

i. introduction

to go back to our mathematics and do it as we have always done, with the

feeling each mathematician has that he is working with something real. This

sensation is probably an illusion, but is very convenient. That is Bourbaki’s

attitude towards foundations.” —Jean Dieudonné [Die70].

For the reader intrigued by what could possibly frighten philosophers in Bour-
baki’s first volume, we refer them to the formula of Figure I.23—interestingly,
this is not the most frightening way to write formulas, see Figure I.24!

However, not all hope is lost: while the Platonistic mathematical world
might not be understood, some of it restrictions might be axiomatized. In
1929, Presburger proved that a natural set of axioms for doing arithmetic with
only addition is also both complete and decidable—the formulas that are valid
in this theory exactly correspond to the sentences that are true on ⟨ℕ, +⟩.
Around the same time, Tarski formalized Euclide’s geometry as a first-order
theory, and proved that is was complete and decidable, see [TG99].

Hence, logic is not completely useless at capturing complex infinite struc-
tures! Interestingly, generalizing the idea behind the decidability of Pres-
burger’s arithmetic, mathematicians and computer scientists kept rediscov-
ering the notion of automatic structures during the second half of the XXth
century.28 This notion captures the idea on why ⟨ℕ, +⟩ can be simply axioma- 28 It should be noted that while the

most common way of proving the de-
cidability of Presburger’s arithmetic
today is by using automata, this is
not Presburger’s original proof, who
relies on quantifier elimination.

tized: in this sense automatic structures salvage the shards of mathematicians’
shattered dreams. Given an automatic structure and a first-order sentence,
we can decide whether it holds on this structure. These structures can be
infinite, but are, by definition, describable by finite-state automata—which is
what makes decidability possible.

Foundation. The first-order theory of every automatic structure is
decidable.

Unsurprisingly, the foremost example of an automatic structure is ⟨ℕ, +⟩.29 29 See Example VII.3.1.

On the other hand, it should be noted that Peano’s arithmetic, namely natural
number with addition and multiplication ⟨ℕ, +, ⋅⟩ is not automatic, as it is al-
ready undecidable. While automatic structures cannot express “mathematical
universes” serving as foundations for a universal mathematical theory, they
are surprisingly adequate to express infinite structures arising from computa-
tional models. For instance, the graph of runs of a finite-state automaton is
automatic, since the unfolding of any finite graph is automatic. Even more
generally, the configuration graph of any Turing machine is automatic...30 30 See Example VII.3.13.

Hence, in Chapter VIII, we naturally study the homomorphism problem
when the source structure is allowed to be any automatic structure. Surpris-
ingly, very little was known about this problem: the only known result by
Köcher states that whether an automatic graph is 2-colourable is undecidable
[Köc14]. Said otherwise, it is undecidable whether an automatic graph admits
a homomorphism to the 2-clique. This led us to conjecture that actually most
homomorphism problems on automatic structures should be undecidable,

30

i.3. everyone who wants to do constraint satisfaction always ends up in universal problems

since 𝐊2 is actually somewhat “simple”.
While the homomorphism problem seems quite natural at first glance, a

homomorphism 𝑓 from an automatic structure 𝐀 to a finite one 𝐁 does not
live in the same world as 𝐀 and 𝐁, in the sense that it might not be finitely
presentable—its domain is infinite and so, a priori require infinite information
to be described. We introduce the notion of regular homomorphisms, that
corresponds to homomorphisms that are finitely presentable in the same
fashion as automatic structures, and show that this notion differs from the
notion of homomorphism, see Figure VIII.15 and Example VIII.3.9.

Figure I.25: The 3-transitive tourna-
ment 𝐓3.

Our first contribution is to show that whether a graph admits a regular
2-colouring is undecidable. We then notice that a particular type of ho-
momorphism problem is decidable: for instance, if the target structure is a
transitive tournament. This is best understood on an example: consider the
3-transitive tournament depicted in Figure I.25. A homomorphism 𝑓 from a
graph𝐆 to 𝐓3 amounts to a function from the set of vertices of𝐆 to ⟦0, 3⟧ s.t.
for any vertices 𝑢 and 𝑣, if there is an edge from 𝑢 to 𝑣, then 𝑓(𝑢) < 𝑓(𝑣). It is
clear that the existence of such a mapping is in fact equivalent to asking that
there is no path of length 4 in𝐆. In turn, this property can be expressed by a
first-order formula, and is hence decidable on automatic graphs. More gener-
ally, this property can be extended to any target structure 𝐁with the property
that the class of (finite or infinite) structures𝐀 that admit a homomorphism to
𝐁 is first-order definable. Luckily for us, this class has been well-studied, and
is known as the class of structures with finite duality [Ats08]. In particular, let
us cite the result of Larose and Tesson who proved that any homomorphism
problem whose target structure does not have finite duality must be L-hard
[LT09].

The homomorphism problem on automatic structures is undecidable when
the target structure is a finite clique. Yet, it becomes decidable when the
target is a finite transitive tournament. This contrast leads to conjecture that
finite duality represents the frontier of decidability for automatic structures.
In Chapter VIII, we manage to prove this result, and extend it to regular
homomorphisms.

Contribution. We provide a dichotomy theorem for automatic
structures: for any finite structure 𝐁, the homomorphism problems
with target structure 𝐁 is either in NL or is undecidable. The same
holds for regular homomorphisms. Moreover, in both cases, these two
problems are decidable precisely when 𝐁 has finite duality.

Part of the proof, namely the ‘undecidability’ part, are proven by generaliz-
ing Larose and Tesson’s reduction, although proving that the ‘base problem’
of the reduction is undecidable is non-trivial. For proving the decidability of
regular homomorphisms when 𝐁 has finite duality, we provide two alterna-
tive proofs: a logical-one—which is quite abstract but somewhat short—and a

31

i. introduction

graph-theoretical one—the algorithm is much more concrete, but the proof of
correctness is quite long. This last proof actually provides new hindsights
on an existing algorithm from the literature, called hyperedge consistency
algorithm.

Since the configuration graph of any Turing machine is an automatic graph,
it follows that this dichotomy theorem31 can be understood as a variation 31 See Theorem VIII.4.1 for a formal

statement.on Rice’s theorem, that states that any non-trivial semantical property of a
Turing machine is undecidable. Our dichotomy theorem hence implies the
following result.

Contribution. Any non-trivial—i.e. non-first-order defin-
able—property on the configuration graph of a Turing machine is
undecidable, provided that this property can be expressed as a homo-
morphism problem.

One of our motivations for studying this problem was actually originating
in the Aut/Rec-separability problem, which takes as input two automatic
relations—namely are binary relations over finite words described by syn-
chronous automata—and asks if they can be separated by a recognizable
relation, i.e. a finite union ⋃𝑖 𝐾𝑖 × 𝐿𝑖 of Cartesian products of regular lan-
guages. We prove this problem to be equivalent to the one taking an automatic
graph and asks if it has a finite regular colouring, which amounts to testing if
there exists some 𝑘 ∈ ℕ>0 for which the graph admits a regular homomor-
phism to 𝐊𝑘. We still don’t know whether this problem is decidable, even
if the results of Chapter VIII hints at its undecidability. Our undecidability
result for regular homomorphisms actually yield, when translated back to
the vocabulary of separability, that it is undecidable whether two automatic
relations are separable by a recognizable relation that can be written as a
finite union of 𝑘 Cartesian products, whenever 𝑘 ≥ 2 is fixed.

I.3.3 Language-Theoretic Properties of Automatic Structures

When dealing with regular languages, separability problems are quite com-
mon: given a class 𝒞 of regular languages, understanding when two regular
languages can be separated by a language from 𝒞 usually requires a much
deeper understanding of the class 𝒞 than solving the membership problem for
𝒞. In some sense, solving this latter problem only requires a qualitative under-
standing of 𝒞, while the separability problem requires quantitative knowledge
on the class. A remarkably efficient tool to prove them decidable is algebraic
language theory: this theory associates to every language a canonical algebra,
called syntactic monoid, with the property that it is finite if, and only if, the
language is regular. Moreover, the language-theoretic and logical properties
of the language can be translated to algebraic properties of this monoid: more
formally, there is a natural bijection between classes of finite monoids and
classes of regular languages under mild closure assumptions.

32

https://en.wikipedia.org/wiki/Rice%27s_theorem

i.3. everyone who wants to do constraint satisfaction always ends up in universal problems

Foundation. Algebraic properties of finite monoids correspond to
language-theoretic and logical properties of regular languages.

In Chapter IX, motivated by the Aut/Rec-separability problem, we
introduce an algebraic theory for automatic relations: these algebras are called
synchronous algebras. We prove that each finite-word relation32 admits a 32 A finite-word relation is simply a

subset ℛ ⊆ Σ∗ × Σ∗ for some finite
alphabet Σ.

syntactic synchronous algebra, and that this algebra is finite if, and only if,
the relation is automatic.

We then prove that classes formed of these algebras are in bijection with
the classes of automatic relations, under some mild closure assumptions.

Contribution. We extend algebraic language theory to handle
relations of finite words rather than only languages of finite words.

Furthermore, we show that this algebraic theory is relevant, in the following
sense. A synchronous automaton encodes a pair (from a binary relation) as a
finite word. This encoding is injective, but not surjective: not all finite words
correspond to encodings of pairs. Hence, the semantics of a synchronous
automaton can be precisely seen as the semantics of a classical automaton,
together with the promise that it will be only fed inputs that corresponds
to valid encodings. In other words, the behaviour of such an automaton on
words that do not correspond to a valid encoding plays no role whatsoever in
its semantics, see Figure I.26.

Figure I.26: Semantics of a syn-
chronous automaton.

This approach is ubiquitous in mathematics, and especially in logics: for
instance, first-order logic over finite structures is precisely defined as first-
order logic over all structures, restricted to finite structures! While being
natural and ubiquitous, this construction fails to preserve most properties
of the logics: for instance, first-order logic over all structures admits a com-
plete proof system, but does not when restricted to finite structures. The
model-checking problem is coRE-complete over all structures, but goes to RE-
complete—an incomparable complexity class—for finite structures. Proving a
meta-theorem on such a restriction that explains how some property behaves
in the restricted universe simply by knowing how it behaves on the larger
universe is hence somewhat unexpected but very welcomed!

Contribution. We prove that, for any class of regular languages
satisfying mild closure properties, assuming we can decide if a lan-
guage belongs to this class, then we can decide if an automatic relation
can be written as the restriction of a regular language in this class to
the set of all valid encodings of pairs of words.

Let us point out that actually, to arrive at this result the notion of syn-
chronous algebras is somewhat intricate. While a more naive definition exists

33

i. introduction

and makes sense, we show that such a result cannot be proven using this
simpler notion.

This algebraic theory could provide an interesting framework to study the
Aut/Rec-separability problem. While the class of recognizable relations
has some desirable closure properties we need, it lacks others: unfortunately,
it implies that proving the decidability of the Aut/Rec-separability problem
via this framework would be highly non-trivial.

Open Problem. Can we decide, given two automatic relations, if
they are separable by a recognizable relation?

In summary, this thesis explores two fundamental perspectives on ho-
momorphism problems: the first extends the theory of conjunctive queries
in database theory by adding regular path predicates, to capture natural
query languages for human-centered graph-shaped data. It focuses on the
problem of query minimization, both in terms of its total number of atoms,
or its tree-width, which is a relevant parameter to capture the complexity
of its evaluation. The second part focuses on the complexity of problems
related to constraint satisfaction over automatic structures. We show that
most structural problems, probing the shape of the infinite object at hand,
are undecidable. In contrast, language-theoretic problems, dealing with how
these infinite structures are represented—or rather how easy it is to represent
them—, remain decidable.

34

Chapter II
Prolegomena

Abstract

We introduce the basic definitions and notations used throughout this thesis. Rather
than reading it linearly, we recommand to skim it to get an idea of what it contains,
and to only go back to this chapter only when needed, using the numerous internal
hyperlinks.

Contents

II.1 Set and Functions 36

II.2 Relational Structures 37

II.2.1 Basic Notions on Structures 37

II.2.2 Constructions on Structures 38

II.2.3 Adjacencies 38

II.2.4 Undirected Paths 39

II.2.5 Graphs 39

II.2.6 Homomorphisms 39

II.2.7 Cores 40

II.3 Logic Related Notions 41

II.3.1 First-Order Logic and Beyond 41

II.3.2 Automata Theory 43

II.3.3 Monoids 43

II.4 Computability and Complexity 45

II.4.1 Turing Machines 45

II.4.2 Elements of Complexity Theory 45

II.4.3 Parametrized Complexity 46

35

ii. prolegomena

Notations. We try to use notations that syntactically reflect their type: for
instance, given a set 𝑋, we use Roman lowercases (𝑥, 𝑦, 𝑧, …) to denote ele-
ments of 𝑋, Roman uppercases for its subsets (𝐴,𝐵, 𝐶,…), and cursive letters
(𝒳, …) for sets of subsets of 𝑋. Functions are denoted by 𝑓, 𝑔, ℎ, etc. and
relations by uppercase cursive letters (ℛ,𝒮, …).

Tuples ⟨𝑥1, … , 𝑥𝑘⟩ are sometimes denoted by �̄�. Machines (Turingmachines,
automata, etc.) are also denoted with uppercase cursive letters (𝒯, 𝒜, …).
On the other hand, Greek letters are used to either denote queries (𝛾, 𝛿, …),
formulas (𝜙, 𝜒, 𝜓,…) or monoid morphisms (𝜙, 𝜒, 𝜓, 𝜂). When possible, we
try to use the letter to recall the semantics of the object: for instance in
Chapter V,𝛾will be used to denote a base query, 𝛼 for one of its approximation,
𝜌 for a refinements and 𝜒 for an expansion. We reserve boldface letters for
‘complex objects’ (e.g. a relational structure 𝐀 or a monad 𝐒), and blackboard
bold for canonical objects (e.g. the natural numbers ℕ) or pseudovarieties.

We will use 𝔸,𝔹, … to denote alphabets in Part 1 and Σ, Γ,… to denote
them in Part 2.1 Lastly, decision problems are typesetted in small caps (e.g. 1 Pobody’s nerfect…

finite regular colourability), complexity classes and categories in sans-
serif (coNP, ExpSpace, Set, Pos).

II.1 Set and Functions

We denote by ℕ, ℕ>0 and ℤ the sets of natural numbers—that naturally con-
tains zero—, of strictly positive natural numbers, and of integers, respectively.
For any 𝑛 ∈ ℕ>0, ℤ/𝑘ℤ denotes the set of integers modulo 𝑘, and for any
𝑖, 𝑗 ∈ ℤ, ⟦𝑖, 𝑗⟧ is the set of integers from 𝑖 to 𝑗, bounds included.

The powerset—i.e. the set of all subsets—of a set 𝑋 is denoted by 𝔓(𝑋),
and 𝔓+(𝑋) is defined analogously except that subsets are required to be
non-empty. The disjoint union of two sets is denoted by ⊔.

While a function 𝑓 from set 𝑋 to set 𝑌 is denoted by 𝑓∶ 𝑋 → 𝑌, we reserve
⇀ and↠ for partial functions and surjections, respectively. The restriction
of a function 𝑓 to a subset 𝐴 of its domain is denoted by 𝑓|𝐴, and the identity
function 𝑥 ↦ 𝑥 over a set 𝑋 is denoted by id𝑋. The domain of a function, be it
either total or partial, is denoted by dom(𝑓). Given a function 𝑓∶ 𝑋 → 𝑌 and
a subset 𝐴 ⊆ 𝑋, we denote by 𝑓[𝐴] the direct image of 𝐴 by 𝑓.2 Similarly, 2 In the literature, 𝑓[𝐴] is often abu-

sively denoted by 𝑓(𝐴), although this
gives rise to an ambiguity between
function application and direct im-
ages, when there exists an element
𝐴 ∈ 𝑋 s.t. 𝐴 ⊆ 𝑋: this happens for
instance when dealing with von Neu-
mann’s ordinals.

given a subset 𝐵 ⊆ 𝑌, 𝑓−1[𝐵] denotes the inverse image of 𝐵 by 𝑓, and when
𝐵 is a singleton {𝑏}, we will write 𝑓−1[𝑏] instead.

A binary relation ℛ over sets 𝑋 and 𝑌—i.e. a subset ℛ ⊆ 𝑋 ×𝑌— is said
to be functional when for every 𝑥, there exists at most one 𝑦 s.t. ⟨𝑥, 𝑦⟩ ∈ ℛ.
When moreover 𝑋 = 𝑌, we say that it is:
• reflexive when ⟨𝑥, 𝑥⟩ ∈ ℛ for all 𝑥;
• symmetric when ⟨𝑥, 𝑦⟩ ∈ ℛ iff ⟨𝑦, 𝑥⟩ ∈ ℛ for all 𝑥, 𝑦;
• transitive when ⟨𝑥, 𝑦⟩ ∈ ℛ and ⟨𝑦, 𝑧⟩ ∈ ℛ imply ⟨𝑥, 𝑧⟩ ∈ ℛ for all 𝑥, 𝑦, 𝑧.
An equivalence relation over 𝑋 is any binary relation satisfying the three
previous axioms. Given an equivalence class ∼ over a set 𝑋 and an element

36

ii.2. relational structures

𝑥 ∈ 𝑋, we denote by [𝑥]∼ the equivalence class of 𝑥 under ∼. Lastly, =̂ denotes
the definition symbol: 𝑥 =̂ 𝑦 means that 𝑥 is defined as 𝑦.

II.2 Relational Structures

II.2.1 Basic Notions on Structures

Relational structures generalize the concept of graphs by allowing (1) mul-
tiple kinds of relations and (2) relations of higher arity. This data is made
explicit in the signature—also called vocabulary or even schema. We start
by defining a purely relational signature, which consists in a set of elements,
called predicates,3 together with, for each of these elements, a strictly positive 3 We do not assume this set to be fi-

nite.natural number, called arity. We denote by ℛ(𝑘) ∈ 𝜎 the fact that predicate ℛ,
of arity 𝑘, is part of signature 𝜎. Then, a relational signature, or signature for
short, consists of a purely relational signature together with a set of constant
symbols.4 4 Usually the notion of signature also

allows for function symbols beyond
the degenerate case of constants.
However all the signatures consid-
ered in the thesis will be relational,
justifying the abuse of terminology.

Then, given a signature 𝜎, a 𝜎-structure 𝐀 consists of:
• a set 𝐴, called domain,
• for each predicate ℛ(𝑘) ∈ 𝜎, a 𝑘-ary relation ℛ(𝐀) ⊆ 𝐴𝑘, and
• for each constant 𝑐 ∈ 𝜎, an element 𝑐(𝐀) ∈ 𝐴.
We call ℛ(𝐀) (resp. 𝑐(𝐀)) the interpretation of predicate ℛ(𝑘) (resp. constant 𝑐)
in𝐀. By analogy with graphs, elements of the domain are sometimes referred
to as vertices. See Figure I.2 for an example of 𝜎-structure.

The graph signature is a purely relational signature consisting of a single
binary predicate, either written ℰ in prefix notation or −→ in infix notation.
Then, the 𝜎-structures over this signature exactly consists of directed graphs.

An element of ℛ(𝑘)(𝐀) is called an ℛ-tuple of structure 𝐀. We also use the
terminology edge in place of tuple for binary predicates. An hyperedge of 𝐀
will designate any of its ℛ-tuples, indifferently of the predicate ℛ.

A 𝜎-structure 𝐀 is said to be finite when its both its domain and its set
of hyperedges are finite. In particular, note that this last condition amounts
to asking that (1) for every predicate ℛ(𝑘) ∈ 𝜎, the relation ℛ(𝑘)(𝐀) is finite,
and (2) there exists only finitely many predicates ℛ(𝑘) ∈ 𝜎 s.t. ℛ(𝑘)(𝐀) is
non-empty.

A substructure of a 𝜎-structure 𝐀 is another 𝜎-structure 𝐀′ s.t.:
• the domain 𝐴′ of 𝐀′ is a subset of 𝐴,
• each interpretation of a predicate in 𝐀′ is a subset of its interpretation in
𝐀, and

• every constant of 𝐀 belongs to 𝐴′, and the interpretation of the constants
in both structures coincide.

A proper substructure is a substructure for which at least one of the inclusions
in the first two points above is strict: in other words, such a substructure
should miss at least one element, or one hyperedge. Given a subset 𝑋 of the
domain 𝐴 of a 𝜎-structure 𝐀, the substructure of 𝐀 induced by 𝑋 is:

37

ii. prolegomena

• undefined if not all constants of 𝐀 belong to 𝑋,
• otherwise, it is obtained from 𝐀 by restricting its domain to 𝑋, and by

intersecting its 𝑘-ary relations with 𝑋𝑘.
The roles played by constants and predicates are obviously not symmetric.

For this reason we will often rather deal with pointed structures. Formally,
given a purely relational signature 𝜎, a pointed 𝜎-structures consists of a 𝜎-
structure together with a tuple of elements of its domain. Note that pointed
𝜎-structures with tuples of size 𝑘 ∈ ℕ are in natural bijection with the set of
𝜎′-structures, where 𝜎′ is obtained from 𝜎 by adding a set of 𝑘 constants.

II.2.2 Constructions on Structures

The disjoint union of two structures over a purely relational signature is
obtained by taking the disjoint union of their domain and of their predicate
interpretations, and is denoted by ⊎. Over other signatures, we same apply
construction but then identify the constants in both structures.5 5 Hence this union is not entirely dis-

joint, however we keep the name for
uniformity. As we will see in Sec-
tion III.1.3, this construction actually
satisfies the universal property of co-
products.

Figure II.1: Two graphs (above and
left) and their Cartesian product (be-
low right).

Figure II.2: Two graphs (above and
left) and their block product (below
right).

Let again 𝜎 to be any signature. Given two 𝜎-structures 𝐀 and 𝐁, their
Cartesian product 𝐀×𝐁 is defined by taking the Cartesian product of their
domain, of their predicate interpretations and of their interpretations of
constants. Their block product has the same domain and constants, but now
the interpretation of predicate ℛ(𝑘) in the block product consists of all tuples

⟨⟨𝑎1, 𝑏1⟩, … , ⟨𝑎𝑘, 𝑏𝑘⟩⟩ s.t.

• either ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀) and 𝑏1 = … = 𝑏𝑘, or
• 𝑎1 = … = 𝑎𝑘 and ⟨𝑏1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁).
See Figures II.1 and II.2 for examples. The 𝑘-fold iteration of 𝐀 is denoted by
𝐀𝑘 and is defined as

𝐀×…×𝐀�������������
𝑘 times

.

Note that by construction, the disjoint union, Cartesian product and block
product of two structures over a signature yields a structure over the same
signature.6

6 This is what motivated the some-
what strange definition of disjoint
union for structures over signatures
that are not purely relational.

II.2.3 Adjacencies

Given a 𝜎-structure 𝐀 and 𝑎 ∈ 𝐴, we define the adjacency7 of 𝑎 in 𝐀 to be the

7 We do not use the terminology
neighbourhood since it usually refers
to a set of elements, namely the set of
elements occurring in the adjacency.

tuple of sets

𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎) =̂ �⟨𝑎1, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑘⟩ ∈ 𝐴𝑘−1

∣ ⟨𝑎1, … , 𝑎𝑖−1, 𝑎, 𝑎𝑖+1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀)�,

when ℛ ranges over predicate of arity 𝑘 of 𝜎 and 𝑖 ∈ ⟦1, 𝑘⟧. For graphs, the
adjacency of a vertex corresponds to its set of predecessors and its set of
successors.

38

ii.2. relational structures

II.2.4 Undirected Paths

An undirected path in a 𝜎-structure 𝐀 consists of a sequence

�𝑎0, ℎ̄0, 𝑎1, … , ℎ̄𝑛−1, 𝑎𝑛�, with 𝑛 ∈ ℕ,

where 𝑎𝑖 ∈ 𝐴 and each ℎ̄𝑖 is a hyperedge of 𝐀 s.t. both 𝑎𝑖 and 𝑎𝑖+1 occur in ℎ̄𝑖.
When such an undirected path exists, we say that there is an undirected path
between 𝑎0 and 𝑎𝑛, or equivalently that 𝑎0 and 𝑎𝑛 are connected.8 A connected 8 Note that this defines an equiva-

lence relation.component of 𝐀 consists of an equivalence class under this relation.
An undirected graph consists of a domain, together with a set of (unordered)

pairs of elements of the domain. The incidence graph of a 𝜎-structure, for
some signature 𝜎, is the following undirected graph:
• its domain is the disjoint union of 𝐴 and the hyperedges of 𝐀;
• there is an edge between two vertices iff one of them is a vertex 𝑎 of 𝐀,

and the other is an hyperedge ℎ̄ of 𝐀, with the property that 𝑎 ∈ ℎ̄.
The distance between two vertices of a 𝜎-structure is defined as half of their

distance in the incidence graph.9 The diameter of a structure is the maximum 9 By construction the incidence
graph is bipartite and hence the
distance between two vertices of the
structure is even.

over 𝑢 of the minimum over 𝑣 of the distance between vertices 𝑢 and 𝑣.
The ball ℬ𝑚

𝐀(𝑎) centred at vertex 𝑎 ∈ 𝐴 and of radium 𝑟 ∈ ℕ of a 𝜎-structure
𝐀 is the substructure of 𝐀 induced by all vertices at distance at most 𝑟. A
structure is said to be locally finite when every ball of finite radius is finite.

A simple path in a 𝜎-structure is a simple path in its incidence graph—in
other words, such a path should alternate between vertices and hyperedges,
and visit each of them at most once.

II.2.5 Graphs

A directed cycle in a graph consists of a non-empty directed path from a vertex
to itself. A directed acyclic graph, or DAG for short, is any graph that contains
no directed cycle.

Figure II.3: A directed tree.
A directed tree is a non-empty graph s.t. there exists a vertex 𝑟 with the

property that for every vertex 𝑣, there exists exactly one directed path from 𝑟
to 𝑣: see Figure II.3.

The chromatic number of a graph is the least cardinal 𝑘 s.t. it is 𝑘-colourable.
We say that a graph is finitely colourable when its chromatic number is finite.

II.2.6 Homomorphisms

A homomorphism from a 𝜎-structure 𝐀 to to a 𝜎-structure 𝐁 consists of a
function 𝑓 from 𝐴 to 𝐵, s.t. for every ℛ(𝑘) ∈ 𝜎, for every ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀),
we have ⟨𝑓(𝑎1), … , 𝑓(𝑎𝑘)⟩ ∈ ℛ(𝐁). Moreover, for every constant 𝑐 ∈ 𝜎, we
must have 𝑓(𝑐(𝐀)) = 𝑐(𝐁).

An embedding is an injective homomorphism, whereas a strong onto ho-
momorphism is a homomorphism that is both surjective on the domain and
on the hyperedges. The existence of a strong onto homomorphism from a

39

ii. prolegomena

structure 𝐀 to a structure 𝐁 is denoted by 𝐀 hom−−−→→ 𝐁, and we say that 𝐁 is a
homomorphic image of 𝐀.

An isomorphism from 𝐀 to 𝐁 is a homomorphism 𝑓∶ 𝐀 → 𝐁 s.t. there
exists another homomorphism 𝑔∶ 𝐁 → 𝐀 with the property that 𝑔 ∘ 𝑓 = id𝐴
and 𝑓 ∘ 𝑔 = id𝐵. Equivalently, it is a strong onto homomorphism that is also
an embedding. Two structures are isomorphic, denoted by ≅, if there is an
isomorphism between them, and an automorphism is an isomorphism from a
structure to itself.

Figure II.4: 2 motifs system VI(b) vari-
ant 1, M. C. Escher, © TheM.C. Escher
Company.

Given structures 𝐀1, … ,𝐀𝑘 sharing the same signature, the 𝑖-th projection
from the Cartesian product 𝐀1 ×…×𝐀𝑘 to 𝐀𝑖, defined by ⟨𝑎1, … , 𝑎𝑘⟩ ↦ 𝑎𝑖
(𝑖 ∈ ⟦1, 𝑘⟧), is a homomorphism, and is denoted by 𝜋𝑖.

Given a 𝜎-structure 𝐀, a congruence on 𝐀 is an equivalence class ∼ of 𝐴 s.t.
for every ℛ(𝑘) ∈ 𝜎, for every ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀), for any tuple ⟨𝑎′1, … , 𝑎′𝑘⟩ ∈
𝐴𝑘 s.t. 𝑎𝑖 ∼ 𝑎′𝑖 for each 𝑖 ∈ ⟦1, 𝑘⟧, then ⟨𝑎′1, … , 𝑎′𝑘⟩ ∈ ℛ(𝐀). The quotient
structure defined by a congruence ∼ on a structure 𝐀 has the equivalence
classes of ∼ as its domain, and natural interpretation of the predicates and
constants.

Given a homomorphism 𝑓∶ 𝐀 → 𝐁, the congruence induced by 𝑓, and
denoted by ker𝑓 is defined by 𝑎 ker𝑓 𝑎′ iff 𝑓(𝑎) = 𝑓(𝑎′) for all 𝑎, 𝑎′ ∈ 𝐴. It is
routine to check that it is indeed a congruence on 𝐀.

We will often implicitly use Noether’s first isomorphism theorem: the
substructure of𝐁 induced by the image 𝑓[𝐴] of𝐴 is isomorphic to the quotient
of 𝐀 by ker𝑓.

II.2.7 Cores

Two 𝜎-structures 𝐀 and 𝐁 are homomorphically equivalent if 𝐀 hom−−−→ 𝐁 and
𝐁 hom−−−→ 𝐀.

A retraction of𝐀 is a substructure𝐀′ of𝐀 together with a homomorphism
from 𝐀 to 𝐀′ with the property that any vertex of 𝐴′ is sent on itself.

Proposition II.2.1. Any finite 𝜎-structure 𝐀 admits a unique minimal (in the
number of vertices) retraction.

Figure II.5: On the left-hand side a
graph, and its core on the right. The
colours are not part of the structure,
but are used to describe the retrac-
tion of the original structure onto its
core. (Replica of Figure I.10.)Proof. The existence is trivial. For the uniqueness, consider two retractions

𝑓1 ∶ 𝐀
hom−−−→ 𝐁1 and 𝑓2 ∶ 𝐀

hom−−−→ 𝐁2. We want to prove that 𝐁1 and 𝐁2 are
isomorphic. Since 𝐁1 is a substructure of 𝐀, consider 𝑓2|𝐵1 ∶ 𝐁1

hom−−−→ 𝐁2. By
minimality of 𝐁2, this homomorphism must be surjective. By symmetry,
𝑓1|𝐵2 ∶ 𝐁2

hom−−−→ 𝐁1 is also a surjective homomorphism. By composition, we
obtain surjective homomorphism from 𝐁1 to itself and from 𝐁2 to itself. By
finiteness, these surjective homomorphisms must actually be automorphisms.

40

https://ncatlab.org/nlab/show/isomorphism
https://ncatlab.org/nlab/show/isomorphism
https://ncatlab.org/nlab/show/isomorphism
https://mcescher.com/gallery/symmetry/#iLightbox[gallery_image_1]/44
https://mcescher.com/gallery/symmetry/#iLightbox[gallery_image_1]/44

ii.3. logic related notions

Hence, it follows that 𝑓2|𝐵1 and 𝑓1|𝐵2 are isomorphisms, and hence 𝐁1 is
isomorphic to 𝐁2.

This unique minimal retraction of 𝐀 is called core of 𝐀 and is denoted
by �̌�. By construction, the core of 𝐀 is a substructure of 𝐀 to which it
is homomorphically equivalent, see Figure II.5. In general, a core is any
𝜎-structure such that is the core of some structure—or equivalently of itself.

Proposition II.2.2. A finite 𝜎-structure 𝐂 is a core if, and only if, every
homomorphism from 𝐂 to itself is an automorphism.

Proof. For the left-to-right implication, we let 𝑓∶ 𝐂 → 𝐂 be a homomorphism.
Then 𝑓[𝐂] must be isomorphic to 𝐂, otherwise we would obtain a strictly
smaller retraction. Hence, 𝑓 is a strong onto homomorphism from 𝐂 to itself,
and hence is an automorphism.

Conversely, assuming that any homomorphism from 𝐂 to itself is an auto-
morphism we get in particular that any retraction must be an automorphism,
and hence that 𝐂 is isomorphic to �̌�.

Proposition II.2.3. Two finite structures are homomorphically equivalent if,
and only if, their core are isomorphic.

Proof. The right-to-left implication is trivial. For the converse one, denote
the two structures by 𝐀1 and 𝐀2, and suppose that 𝐀1 is homomorphically
equivalent to 𝐀2. Using the homomorphical equivalence of 𝐀1 and 𝐀2, we
get retractions of 𝐀2 onto �̌�1 and of 𝐀1 onto �̌�2. It follows that we have
surjective homomorphisms from �̌�1 to �̌�2 and conversely. Hence, �̌�1 and
�̌�2 are isomorphic.

Proposition II.2.4. Given a 𝜎-structure 𝐁, if 𝐁 is a core, then two elements
𝑏1 and 𝑏2 of 𝐁 have the same adjacency iff 𝑏1 = 𝑏2.

Proof. The right-to-left implication is trivial. For the converse one, consider
the homomorphism from 𝐁 to itself which maps 𝑏2 to 𝑏1, and all elements
of 𝐵∖ {𝑏2} to themselves. Since we assumed that 𝑏1 and 𝑏2 have the same
adjacency, this is indeed a homomorphism, which is clearly not bijective, and
𝐁 is not a core.

II.3 Logic Related Notions

II.3.1 First-Order Logic and Beyond

We fix a purely relational signature 𝜎. A Boolean (semantical) query is any
subclass of the class of all 𝜎-structures. More generally, a 𝑘-ary query is a
function that maps any 𝜎-structure to a (potentially empty) set of 𝑘-tuples of
vertices. We now turn to more syntactical definitions of queries.

41

https://ncatlab.org/nlab/show/isomorphism

ii. prolegomena

We assume that we are given a countable infinite set of variables. A first-
order formula is any formula generated by the grammar

𝜙 ∶∶= ℛ(𝑥1, … , 𝑥𝑘) ∣ ¬𝜙 ∣ 𝜙 ∨𝜙 ∣ 𝜙 ∧𝜙 ∣ ∃𝑥. 𝜙 ∣ ∀𝑥. 𝜙,

where the 𝑥𝑖’s ranges over the set of variables and ℛ(𝑘) over the signature 𝜎.

Hypothesis. We assume that, even when not mentioned explicitly,
the signature contains a binary predicate = that is interpreted over all
structures as equality.

A first-order sentence is any first-order formula with no free variable. Given
a first-order formula 𝜙 with free variables �̄�, denoted by 𝜙(�̄�), and a pointed
𝜎-structure ⟨𝐀, �̄�⟩ where the arity of �̄� coincide with the one of �̄�, we denote
by ⟨𝐀, �̄�⟩ ⊨ 𝜙(�̄�) the fact that ⟨𝐀, �̄�⟩ is a model of 𝜙(�̄�): this can be defined by
a trivial induction on the formula, by interpreting:
• the free variable 𝑥𝑖 as 𝑎𝑖,
• the predicates ℛ as the relation ℛ(𝐀),
• ¬, ∨, ∧, ∃ and ∀ as the Boolean operators of negation, disjunction and

conjunction, and as the existential and universal quantifiers, respectively.
Given a 𝜎-structure 𝐀, we then denote by ⟦𝜙(�̄�)⟧𝐀 the set of tuples �̄� s.t.
⟨𝐀, �̄�⟩ ⊨ 𝜙(�̄�).

Remark II.3.1. Strictly speaking, the data 𝜙(�̄�) is richer than just a formula,
however we will abusively still call this pair a formula.

We now define the classes Π𝑛 and Σ𝑛 (𝑛 ∈ ℕ) of first-order formulas as
least fixpoints, with the property that Σ0 ⊆ Σ1 ⊆ … and dually for Π𝑛. We
let Σ0 = Π0 be the set of quantifier-free formulas. Then for all 𝑛 ∈ ℕ, we
consider the following rules:

𝜙 ∈ Σ𝑛
¬𝜙 ∈ Π𝑛

and
𝜙 ∈ Π𝑛
¬𝜙 ∈ Σ𝑛

,

moreover Π𝑛 ⊆ Σ𝑛+1 and Σ𝑛+1 is closed under disjunction, conjunction
and existential quantification, and dually Σ𝑛 ⊆ Π𝑛+1 and Π𝑛+1 is closed
under disjunction, conjunction and universal quantification. Formally, the
hierarchies

Σ0 ⊆ Σ1 ⊆ ⋯ and Π0 ⊆ Π1 ⊆ ⋯

are defined as the smallest sets of formulas satisfying these rules. Then, the
quantifier alternation rank of a formula𝜙(�̄�) is the least 𝑛 ∈ ℕ s.t. 𝜙(�̄�) belongs
to either Σ𝑛 or Π𝑛. Formulas from Σ1 are called existential formulas, and
we define a few important fragments of this logic in Table II.6 by restricting
which operators are allowed to build formulas.

For instance,∃𝑥. ∃𝑦. ¬ℛ(𝑥, 𝑦) is an existential formula but is not existential-
positive. On the other hand, ∃𝑥. ∃𝑦.ℛ(𝑥, 𝑦) is primitive-positive, and hence

42

ii.3. logic related notions

Fragment of existential FO Operators allowed

existential-positive formulas ∃, ∧, ∨
primitive-positive formulas ∃, ∧

positive quantifier-free formulas ∧

Table II.6: A few fragments of exis-
tential formulas defined by restrict-
ing the operators that are allowed.

also existential-positive.
A relation over a 𝜎-structure𝐀 is said to be first-order definable when it can

be written as ⟦𝜙(�̄�)⟧𝐀 for some first-order formula 𝜙(�̄�). Moreover, a class of
𝜎-structures is said to be first-order definable, when there exists a first-order
sentence 𝜙 s.t. the class of structures 𝐀 s.t. 𝐀 ⊨ 𝜙 is precisely the class itself.

First-order logic simply consists of the syntax of first-order formulas to-
gether with their semantics. Lastly, monadic second-order logic (resp. second-
order logic) is obtained from first-order logic by also allowing quantifications
over subsets of the structure (resp. relations of arbitrary arity over the struc-
ture).

II.3.2 Automata Theory

Given a set 𝑋, we denote by 𝑋∗ and 𝑋+ the set of finite words over 𝑋, and of
non-empty finite words over 𝑋, respectively. The empty word is denoted by
𝜀. An alphabet is nothing else but a finite set, and we denote by 𝟚 the binary
alphabet {0, 1}.

In an automaton 𝒜, we denote by 𝑝 𝑎−→ 𝑞 ∈ 𝒜 the fact that there is an
𝑎-labelled transition from 𝑝 to 𝑞. A regular language is any language—i.e.
subset of Σ ∗ for some alphabet Σ—that can be recognized by a finite-state
automaton.

The signature of words over Σ has a binary predicate ⪯ as well as a unary
predicate 𝑎 for each 𝑎 ∈ Σ. A word 𝑤0⋯𝑤𝑛−1 of length 𝑛 can be seen as a
structure over the signature of Σ-words by taking ⟦0, 𝑛 − 1⟧ as its domain,
interpreting ⪯ naturally, and interpreting 𝑎 ∈ Σ as the set of 𝑖 ∈ ⟦0, 𝑛 − 1⟧
s.t. 𝑤𝑖 = 𝑎. It is well-known10 that a language is regular if, and only if, it 10 See Section VII.1.1 for details.

is definable in monadic second-order logic. When Σ = 𝟚, the signature of
Σ-words is also called the signature of binary strings.

II.3.3 Monoids

We refer the reader to Pin’s seminal lecture notes [Pin22] for an introduction
to algebraic language theory.

A monoid 𝐌 = ⟨𝑀, ⋅, 1⟩ is a set 𝑀 together with an associative binary
operator ⋅ called product, and an element 1 ∈ 𝑀, called unit, s.t. 𝑥 ⋅ 1 = 𝑥 = 1 ⋅ 𝑥
for all 𝑥 ∈ 𝑀. Amonoidmorphism is a function betweenmonoids that preserve
the product and unit.

Monoids—or rather monoid morphisms—can be used to recognize lan-
guages as Σ ∗ is itself a monoid under concatenation—actually, it is the free
monoid over Σ. A language 𝐿 is regular if, and only if, there exists a finite

43

ii. prolegomena

monoid𝐌, and subset Acc ⊆ 𝑀 (called accepting elements), and a monoid
morphism 𝜙∶ Σ ∗ → 𝑀 s.t. 𝐿 = 𝜙−1[Acc]. Another way of thinking of the
pair ⟨𝜙,𝑀⟩ is as follows: a deterministic complete semiautomaton can be
described as a set 𝑄 together with a monoid right action of Σ ∗ over 𝑄. On
the other hand, a surjective monoid morphism 𝜙∶ Σ ∗ ↠𝑀 consists of both
a monoid left action and a monoid right action of Σ ∗ over a set𝑀, with the
property that 𝑢 ⋅ (𝑥 ⋅ 𝑣) = (𝑢 ⋅ 𝑥) ⋅ 𝑣 for all 𝑥 ∈ 𝑀 and 𝑢, 𝑣 ∈ Σ ∗. In other
words, while automata states represent some information on the word that is
updatable by appending letters on the right, monoid elements represent an
information on the word that is updatable both by appending letters on the
left or the right.

Unsurprisingly, there is a notion of “minimal information” required to rec-
ognize a monoid, giving rise to the notions of syntactic monoids and syntactic
morphisms, see e.g. [Boj20, Theorem 1.7].

Submonoids and quotient structures are defined analogously to substruc-
tures and quotient structures for relational structures. We say that a monoid
divides another one if it is a submonoid of one of its quotients. A pseudovariety
of monoids 𝕍consists in a set of finite monoids closed under finite Cartesian
products and monoid division.11 For more details on these, see [Pin22, §XI.1, 11 “Pseudovariety of foo” and “variety

of finite foo” are used interchange-
ably in the literature.

p. 189] under the name “variety”. On the other hand, a ∗-pseudovariety of reg-
ular languages consists of stream, i.e. a function 𝒱 ∶ Σ ↦ 𝒱Σ from alphabets
to languages over this alphabet, with the following properties:12 12 See also [Pin22, §XIII.3, p. 226].

• it is closed under Boolean operators;
• it is closed under preimages by monoid morphisms, in the sense that for

every monoid morphism 𝜙∶ Γ ∗ → Σ ∗, for any 𝐿 ∈ 𝒱Σ, then 𝜙—1[𝐿] ∈ 𝒱Γ,
and

• it is closed under residuals, in the sense that for any 𝐿 ∈ 𝒱Σ, for any 𝑢 ∈ Σ ∗,
then 𝑢−1𝐿 =̂ {𝑣 ∈ Σ ∗ ∣ 𝑢𝑣 ∈ 𝐿} and 𝐿𝑢−1 =̂ {𝑣 ∈ Σ ∗ ∣ 𝑣𝑢 ∈ 𝐿} both belong
to 𝒱Σ.

A seminal result by Eilenberg shows that, mapping a pseudovariety of monoids
𝕍 to the stream associating to Σ the set of languages over Σ that are rec-
ognized by a monoid from 𝕍 yields a ∗-pseudovariety of regular languages,
and moreover, this operation is a bijection! This result generalizes Schützen-
berger’s infamous theorem, showing that star-free languages are exactly those
recognized by aperiodic monoids: for this reason, this bijection is called the
Eilenberg-Schützenberger correspondence.13 13 See [Pin22, Theorem XIII.4.10,

p. 228] for more details.Lastly, given a stream of regular languages 𝒱, the 𝒱-membership problem
takes as input an alphabetΣ and a regular language 𝐿 ⊆ Σ ∗, and asks if 𝐿 ∈ 𝒱Σ.
When 𝒱 is a pseudovariety of regular languages, a powerful technique to solve
this problem is to prove that the membership problem of the corresponding
pseudovariety of monoids is decidable.

44

ii.4. computability and complexity

II.4 Computability and Complexity

II.4.1 Turing Machines
“Mais dans ce sandwich absurde en-
tre mon initialisation et ma terminai-
son, que m’aura-t-il vraiment man-
qué ? Peut-être un corps… un corps
qui ressent et tutti quanti !” —Gilles
Dowek, Laurence Devillers & Serge
Abiteboul, Qui a hacké Garoutzia.

We assume that the reader is familiar with Turing machines, see e.g. [AB09,
§ 1]. Unless stated otherwise, a Turing machine is assumed to have a single
tape, which is bounded on the left but not on the right. The configuration
of a Turing machine consists of the content of the tape at a given point,
the position of the machine’s head, at well as its current state. It can be
summarized by a triple ⟨𝑢, 𝑞, 𝑣⟩, where 𝑞 denotes the current state, 𝑢 is the
word written strictly on the left of the head, and 𝑣 is the word written to
the right of the head (head included). The initial configuration of a Turing
machine ℳ refers to the configuration ⟨𝜀, 𝑞0, 𝜀⟩where 𝑞0 is the initial state of
ℳ. A configuration is reachable whenever it can be obtained from the initial
configurations by applying a finite sequence of transitions of the machine.

II.4.2 Elements of Complexity Theory

We assume familiarity with basic complexity classes, see e.g. [AB09, §§ 2–5].
We say that two decision problems are computationally equivalent when there
are many-one reductions between them.

Complexity Classes. Here are the most important classes that appear in
this document—the other ones will all point to their respective entry in the
Complexity Zoo:
• FOfin refers to first-order definable classes, see Section VII.2.2 for the defi-

nition;
• L and NL refer to problems solvable in deterministic and non-deterministic

logarithmic space; for hardness we usually consider first-order reductions;
• P (resp. PSpace) refers to problems solvable in deterministic polyno-

mial time (resp. polyomial space); hardness is usually considered under
logarithmic-space reductions;

• NP and coNP refer to the first level of the polynomial-time hierarchy [AB09,
§ 2], and Σ𝑝

2 ,Π
𝑝
2 to its second level, see e.g. [AB09, § 5]; hardness is usually

considered under logarithmic-space reductions;
• 𝑘-ExpTime and 𝑘-ExpSpace are the problems solvable in time and space

𝑛 ↦ 22 ⋱ 2
poly(𝑛)

���������
𝑘 times

,

respectively; hardness is considered under polynomial-time reductions;
• Tower is the class of problems that can be solved in time 𝑛 ↦ tower(𝑓(𝑛))

for some elementary function 𝑓,14 where tower(𝑛) =̂ 𝑡(𝑛, 𝑛) and 𝑡 is the 14 Recall that an function is said to be
elementary when it is bounded by a
tower of exponentials of fixed height.

function defined recursively by 𝑡(𝑝, 𝑞) =̂ 2𝑡(𝑝−1,𝑞) and 𝑡(0, 𝑞) =̂ 𝑞: in other
words tower(𝑛) it is a tower of exponentials whose height is given by the
input; hardness is defined under elementary reductions, see [Sch16] for

45

https://complexityzoo.net/Complexity_Zoo

ii. prolegomena

more details on this class.

Computability Classes. We now turn to undecidable classes: all hardness
result are considered up to many-one reductions, i.e. instance-preserving
computable functions. We denote by RE and coRE the classes of recursively
enumerable and co-recursively enumerable problems, respectively. The next
levels Σ0

𝑛 and Π0
𝑛 of the arithmetical hierarchy can be defined as the classes

of sets that are definable by a first-order formula from the fragments Σ𝑛 and
Π𝑛, respectively, in the structure ⟨ℕ, +, ⋅⟩. It can be shown that Σ0

0 = Π0
0

corresponds to the class of all decidable problems, and Σ0
1 = RE and Π0

1 =
coRE. The only other levels that will be of interest to us will be Σ0

2 and Π0
2 .

The analytical hierarchy is defined analogously, by replacing first-order logic
with second-order logic.

Decision Problems. Connectivity in Finite Graphs is the decision problem
that takes as input a graph and two vertices 𝑠 and 𝑡, and asks if they are
connected. Reachability in Finite Graphs is defined analogously, but
asks rather if there is a directed path from 𝑠 to 𝑡. Surprisingly, despite their
resemblance, these two problems have a distinct complexity: Reachability
in finite graphs is NL-complete, see e.g. [AB09, Theorem 4.18], while
Connectivity in finite graphs is only in L by Reingold’s theorem, see e.g.
[AB09, Theorem 21.21]. In fact, the problem is L-complete: Etessami even
proved that the problem was L-hard under first-order reductions even if the
graph is restricted to be a directed path [Ete97, Theorem 3.2]!

II.4.3 Parametrized Complexity

A parametrized language is any subset 𝐿 ⊆ Σ ∗ ×ℕ: the first component
represents an instance, and the second a parameter. We define FPT as the class
of fixed-parameter tractable problems, for which there is a Turing machine
ℳ s.t.

ℳ accepts ⟨𝑥, 𝑘⟩ iff ⟨𝑥, 𝑘⟩ ∈ 𝐿,

input parameter

and, moreover, ℳ runs in time 𝒪(𝑓(𝑘) ⋅ |𝑥|𝑐), for constant 𝑐 that does not
depend on 𝑥 nor 𝑘, and where 𝑓∶ ℕ → ℕ is a computable function.

XP is the class of slicewise polynomial-time problems 𝐿 ⊆ Σ ∗ ×ℕ: s.t., for
every bounded value of the parameter, then the resulting language must be
in P. Formally, for each 𝑘 ∈ ℕ, we ask that the (classical) problem

{𝑢 ∈ Σ ∗ ∣ ⟨𝑢, 𝑘⟩ ∈ 𝐿}

belongs to 𝑃.
Note that FPT is, by construction, included in XP. However, an algorithm

that runs in time 𝒪(|𝑥|𝑘) is a typical example of algorithm that is XP but not

46

ii.4. computability and complexity

FPT.
The classW[1], which we will not formally define here, can roughly be seen

as the equivalent of NP. See [Cyg+15] for a formal definitions. Some problems
in XP belong to FPT, and are considered to be tractable, i.e. efficiently solvable
in practical. On the other hand, others problems, such as the 𝑘-clique problem,
when parametrized by 𝑘, are in XP but are W[1]-hard, and hence conjectured
not be in FPT. We think of these problems as non-tractable.

47

Part 1

Querying Graph Databases

49

Chapter III
Query Languages for Relational and Graph Databases

Abstract

This preliminary chapter briefly surveys the literature on the notion of conjunctive
queries, conjunctive regular path queries and related notions. We start by presenting
the notion of duality for conjunctive queries, and how it can be used for the static
analysis of this language. We then turn to the more complex language of conjunctive
regular path queries designed for graph databases, which will be the focus of the rest
of this part of the thesis.

Acknowledgements

Parts Section III.2 come from [FM25; FMR25]—mostly from the introductions and
preliminaries.

51

Contents

III.1 Relational Databases 53

III.1.1 SQL and First-Order Logic 53

III.1.2 Conjunctive Queries to the Rescue 56

III.1.3 The Preordered Set of Conjunctive Queries 59

III.1.4 Static Analysis of Conjunctive Queries 65

III.1.5 Conjunctive Queries of Small Tree-Width 68

III.1.6 Unions of Conjunctive Queries 73

III.2 Graph Databases 75

III.2.1 Conjunctive Regular Path Queries 75

III.2.2 Deciding Equivalence of Conjunctive Regular Path Queries 80

III.2.3 Queries Over Simple Languages 86

III.2.4 Static Analysis 86

52

iii.1. relational databases

III.1 Relational Databases

We assume familiarity with basic SQL and the concept of tables—however a
very high-level understanding of these notions should be more than enough
to follow this chapter.

III.1.1 SQL and First-Order Logic

The most common model of databases is by far that of relational databases,
in which data is stored in tables: an example is depicted in Table III.1.

Movies

id title length director

197 Eyes Wide Shut 159 Stanley Kubrick
205 J’ai tué ma mère 96 Xavier Dolan
304 Amadeus 161 Miloš Forman
321 120 Battements par minute 143 Robin Campillo

Rooms

id capacity

1 108
2 124
3 96
4 102

Projections

movie_id room_id time

197 2 2025-03-28 14:00
205 3 2025-03-28 14:30
321 4 2025-03-28 14:30
197 1 2025-03-28 17:00

Table III.1: A relational database con-
sisting of three tables, representing
data stored by a cinema. (Replica of
Table I.4.)

Formally, a pointed relational database ⟨𝐃, ̄𝑑⟩ over a purely relational sig-
nature 𝜎 consists of, for each predicate ℛ of arity 𝑘 in 𝜎, a finite 𝑘-ary relation
ℛ(𝑘)(𝐃), as well as a tuple ̄𝑑 of elements, called constants. A relational database
is a pointed relational database whose tuple is empty.1 The data consisting of 1 It is often asked that at least one

ℛ(𝑘)(𝐃) is non-empty. Whether this
condition is imposed does change the
theory—for instance the first-order
sentences that are valid over all non-
empty structures is a strict supset of
those valid over all (possibly empty)
structures. However, this condition
is mostly required for historical rea-
sons, and whether the databases are
allowed to be non-empty will be of
little importance for the query lan-
guages we will consider.

a tuple occurring in some relation ℛ(𝑘)(𝐃), together with its predicate ℛ(𝑘),
is called a fact. From a practical perspective, relations model the tables, while
each fact corresponds to some row: for instance the database of Table III.1
has three relations, twelve facts and no constants.2

2 Many variations on the defini-
tion above exists: for instance the
columns of the table are often given
a name (called attribute), see e.g.
[AHV95, §§ 3.1–3.2]. This is usually
done to make the syntax of relational
algebra easier on the eye, however
this is only syntactic sugar [AHV95,
Proposition 5.1.2].

Naturally, each pointed relational database yields a 𝜎-structure whose
domain is the set of elements occurring in some fact of the database or as a
constant. This structure has the property that each vertex either belongs to
some hyperedge or is a constant: in other words, it has no isolated vertices.
This mapping is in fact one-to-one: pointed relational databases over 𝜎 are in
bijection with pointed 𝜎-structures with no isolated vertices.

Hypothesis/Notation. We identify (pointed) relational databases
with (pointed) relational structures with no isolated vertices.

As mentioned in Chapter I, from a theoretical perspective, a very natural
way of querying these structures is via first-order logic. Remarkably, it is

53

iii. query languages for relational and graph databases

exactly as expressive as the fragment of 𝑘-ary SQL queries generated by

𝜙(𝑘) ∶∶= SELECT DISTINCT attribute1, … , attribute𝑘
FROM 𝜙(𝑖1), … , 𝜙(𝑖𝑛)
WHERE some condition (III.1)

∣ some table of arity 𝑘

∣ 𝜙(𝑘) UNION 𝜙(𝑘) ∣ 𝜙(𝑘) EXCEPT 𝜙(𝑘) ∣ 𝜙(𝑘) INTERSECT 𝜙(𝑘),

where 𝑖1 + … + 𝑖𝑛 = 𝑘 and the condition after WHERE is a conjunction of
equalities between attributes and/or constants. Dealing with the arity 𝑘 ∈ ℕ
is required to ensure e.g. that the union is homogeneous—i.e. that all facts in
the union have the same arity.3 3 Also, the DISTINCT keyword is only

necessary because SQL has a multi-
set semantics rather than a set-based
semantics…

Proposition III.1.1 (Codd’s theorem [Cod72, § 4]).4 First-order logic over 𝜎-

4 Codd’s theorem actually deals with
relational algebra rather than SQL.
The equivalence between relational
algebra and the fragment (III.1) of
SQL is however straightforward. See
also [AHV95, Theorem 5.4.6].

structures with no isolated vertices is equally expressive to the SQL fragment
defined in (III.1). Moreover, this equivalence is effective.

Proof sketch. Warning: dealing with all the subtleties of the proof is actually
somewhat tedious. Hence, we provide an informal proof, which prioritizes
intuition over formalism.

X From SQL to FO. Expressing a SQL query as a first-order formula is
intuitive, by generalizing the idea given in Section I.2.1:
• UNION, EXCEPT AND INTERSECT are interpreted as the union, set dif-

ference (i.e. − ∧ (¬−)) and intersection;
• a table of arity 𝑘, modelled as a relation ℛ(𝑘), is encoded as the atomic

formula
𝜙(𝑘)(𝑥1, … , 𝑥𝑘) =̂ ℛ(𝑘)(𝑥1, … , 𝑥𝑘)

with 𝑘 free variables which are all fresh;
• a query

SELECT DISTINCT attribute1, … , attribute𝑘
FROM 𝜙1(𝑖1), … , 𝜙

𝑛
(𝑖𝑛)

WHERE 𝜃

is encoded as

𝜓(𝑦1, … , 𝑦𝑘) =̂ ∃�̄�. �̃�1(𝑖1)(𝑥
1
1, … , 𝑥1𝑖1) ∧ …∧ �̃�

𝑛
(𝑖𝑛)
(𝑥𝑛1 , … , 𝑥𝑛𝑖𝑛) ∧ 𝜃,

with 𝑦1, … , 𝑦𝑘 being the variables associated to the attributes—e.g. if
attribute1 is the third attribute of 𝜙2, then 𝑦1 =̂ 𝑥23— and �̄� is the tuple of all
variables of the form 𝑥𝑖𝑗 that are distinct from the 𝑦𝑖’s. Moreover, each �̃�𝑖

and ̃𝜃 denotes the encodings of 𝜙𝑖 and 𝜃, which can be defined recursively
for 𝜙𝑖 and trivially for 𝜃.
X From FO to SQL. The converse encoding, i.e. from first-order logic to

SQL queries, is a little more tricky:

54

iii.1. relational databases

• union is encoded with UNION, intersection and existential quantification
with SELECT DISTINCT-FROM-WHERE;

• we encode negation using EXCEPT and a SQL query that outputs every
𝑘-tuple of vertices of the structure—this query can be written as a big union
of SELECT DISTINCT-FROM queries;

• lastly, universal quantification can then be obtained using the tautology

∀𝑥. 𝜙(𝑥) ≡ ¬∃𝑥. ¬𝜙(𝑥).

A crucial ingredient that ensures the correctness of these encodings is actu-
ally the fact that relational databases are encoded as relational structures with
no isolated variables.5 Take for instance the first-order formula ¬Room(𝑥, 𝑦): 5 The restriction of first-order logic to

relational databases is usually called
relational calculus.

we translated it to the SQL query

All pairs EXCEPT (SELECT DISTINCT 𝑥, 𝑦 FROM Room)

where ‘All pairs’ is a query outputting all pairs in the database. This latter
query can actually be expressed as a union of SELECT DISTINCT-FROM

queries precisely thanks to the lack of isolated vertices in the structure: for
more details, we refer the reader to the term “active domain” in [AHV95].6 6 The query¬Room(𝑥, 𝑦) is actually a

good example of why there is no built-
in negation in SQL, even though it
would not change its expressiveness:
it is actually very hard to imagine a
situation where knowing that ‘Xavier
Dolan’ is not the id of a room with
capacity ‘2025-03-28 14:00’ would be
useful…

The expressiveness of this fragment of SQL however comes to the cost of
computational efficiency.

Proposition III.1.2 (Folklore). Given a first-order formula 𝜙(�̄�), a relational
structure 𝐃 with no isolated vertices, and a tuple ̄𝑑, deciding if ̄𝑑 ∈ ⟦𝜙(�̄�)⟧𝐃

is PSpace-complete.

Proof sketch. The upper bound can be proven by considering the naïve algo-
rithm that recurses on the formula. The lower bound follows from a trivial
reduction from the quantified Boolean formula problem.

Even worse, when turning to the static analysis of these queries, the prob-
lems become undecidable. Given two (semantical) queries 𝜙 and 𝜓, we
say that they are semantically equivalent—implicitly over finite relational
databases—when for every finite relational databases 𝐃, we have𝐃 ∈ 𝜙 iff
𝐃 ∈ 𝜙′. This fact is denoted by 𝜙 ≡ 𝜙′.

Proposition III.1.3 (Trakhtenbrot, see e.g. [AHV95, Theorem 6.3.1 & Corol-
lary 6.3.2]).7 It is undecidable whether a first-order formula is satisfiable over 7 Stricto sensu Trakhtenbrot’s theo-

rem deals with all relational struc-
tures, and the notion of semantical
equivalence differs when considered
over relational databases or all rela-
tional structures. But the proof of
undecidability in the two settings do
not differ substentially.

finite relational databases. In turn, validity and semantical equivalence are
also undecidable.

In turn, it means that there is no hope to optimize a SQL query from the
fragment (III.1), in the sense of Section I.2.

Corollary III.1.4 (Folklore (but not often mentionned), see e.g. [AW12,
Remark 5.3]). Given a first-order formula 𝜙 and 𝑘 ∈ ℕ, it is undecidable
whether 𝜙 is semantically equivalent to a formula with at most 𝑘 variables.

55

https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
https://en.wikipedia.org/wiki/Trakhtenbrot%27s_theorem
https://en.wikipedia.org/wiki/Trakhtenbrot%27s_theorem

iii. query languages for relational and graph databases

III.1.2 Conjunctive Queries to the Rescue

The undecidability results of Proposition III.1.3 and Corollary III.1.4, together
with the fact that queries occurring in practice—see Section I.2.1—are much
simpler than the formulas occurring in the undecidability proofs motivate
the study of well-behaved query fragments. We will focus on conjunctive
queries, which arise from the grammar

𝜙(𝑘) ∶∶= SELECT DISTINCT attribute1, … , attribute𝑘
FROM 𝜙(𝑖1), … , 𝜙(𝑖𝑛) (III.2)

WHERE some condition

∣ some table of arity 𝑘

of SQL, where, once again, 𝑖1 +…+ 𝑖𝑛 = 𝑘 and the condition after WHERE

is a conjunction of equalities between attributes. From the proof of Proposi-
tion III.1.1 it actually follows that this fragment is exactly as expressive as the
fragment of first-order logic, restricted to relational databases, generated by

𝜙 ∶∶= ℛ(𝑘)(𝑥1, … , 𝑥𝑘) ∣ 𝜙 ∧ 𝜙 ∣ ∃𝑥. 𝜙, (III.3)

where ℛ(𝑘) ranges over the signature.
Now observe that, when dealing with the fragment (III.3), the first-order

formula (∃𝑥. 𝜙(𝑥, �̄�)) ∧ 𝜓(�̄�) is equivalent to ∃𝑥′. (𝜙(𝑥′, �̄�) ∧ 𝜓(�̄�)) where 𝑥′

is any variable that occurs neither in �̄� nor in �̄�. For instance, we have

(∃𝑥.𝒫(𝑥)) ∧ (∃𝑥. ∃𝑦.ℛ(𝑥, 𝑦)) ≡ ∃𝑧. ∃𝑥. ∃𝑦.𝒫(𝑧) ∧ℛ(𝑥, 𝑦).

This leads to a simple rewriting system that puts every formula from (III.3) in
so-called prenex form.

Proposition III.1.5 (Prenex form). Every formula from (III.3) can be written
in the form

∃�̄�.
𝑛
�
𝑖=1

ℛ𝑖
(𝑘𝑖)
(𝑦𝑖1, … , 𝑦𝑖𝑘𝑖). (III.4)

Translating back the formulas in prenex form to SQL queries, it implies that
the fragment (III.2) is no more expressive than its induction-free fragment

𝜙(𝑘) ∶∶= SELECT DISTINCT attribute1, … , attribute𝑘
FROM table(𝑖1), … , table(𝑖𝑛) (III.5)

WHERE some condition.

Hence, we define a conjunctive query to be any first-order formula in
prenex form—see Equation (III.4). Recall that, as mentioned in Remark II.3.1,
we assume that formulas come with a tuple of variables, containing all free
variables. Hence, a 𝑘-ary conjunctive query over a purely relational signature

56

iii.1. relational databases

𝜎, or CQ for short, amounts to a finite set of atomic formulas of the form
ℛ(𝑘)(𝑥1, … , 𝑥𝑘), called atoms, with ℛ(𝑘) ∈ 𝜎, together with tuple of 𝑘 variables
�̄�, called free variables or output variables.8 The set of atoms is denoted 8 A 𝑘-ary CQ over a purely relational

signature is equivalent to a Boolean
CQ over a relational signature with
𝑘 constants.

conjunctively. So, an example of conjunctive query is

𝛾(title, time) =̂ Movies(movie_id, title, length, director)

∧ Projections(movie_id, room_id, time).

Semantically, it is interpreted as the first-order formula in prenex form in
which every variable that is not an output variable is quantified existentially,
giving in our case

∃movie_id. ∃length. ∃director. ∃room_id.

Movies(movie_id, title, length, director)

∧ Projections(movie_id, room_id, time).

Interestingly, the semantics of conjunctive queries can be described using
homomorphisms, via the theory of duality@@CQ: this was first noticed by
Chandra and Merlin in their seminal 1977 paper [CM77].

Definition III.1.6. The canonical database associated to a conjunctive query

𝛾(�̄�) =
𝑛
�
𝑖=1

ℛ𝑖
(𝑘𝑖)
(𝑦𝑖1, … , 𝑦𝑖𝑘𝑖)

over the purely relational signature 𝜎 is the pointed relational database over
𝜎 with tuple �̄� and whose facts are ℛ𝑖

(𝑘𝑖)
(𝑦𝑖1, … , 𝑦𝑖𝑘𝑖) for 𝑖 ∈ ⟦1, 𝑛⟧.

𝑥 𝑦

𝑥′ 𝑦′

𝑏

𝑎 𝑎

Figure III.2: The canonical database
of 𝛾() =̂ 𝑥 𝑎−→ 𝑥′ ∧ 𝑥 𝑏−→ 𝑦∧ 𝑦 𝑎−→ 𝑦′.

Since it is somewhat impractical to graphically depict 𝑘-ary relations for 𝑘 ≥
3, and since signatures that consist only of unary predicates are a degenerate
case, we will often consider examples in which all relations are binary. We will
denote these relations by 𝑎−→, where 𝑎 ranges over some alphabet 𝔸: moreover,
we will often not make the effort to precise what alphabet we are using, as any
alphabet containing all letters occuring in the example will do. For instance,
the canonical database of the conjunctive query

𝛾() =̂ 𝑥 𝑎−→ 𝑥′ ∧ 𝑥 𝑏−→ 𝑦∧ 𝑦 𝑎−→ 𝑦′

is the pointed relational database of Figure III.2.
Naturally, Boolean queries are denoted by 𝛾(). In this case, its canonical

database is not only a pointed relational database but in fact a relational
database. We will sometimes denote some queries (either Boolean or not) by
𝛾 (with no brackets): this is simply to ease the notations when no ambiguity
can arise—we will often explicitly mention the tuple of output variables when
introducing the query, and then simply the notation in a second time.

Proposition III.1.7 (Duality). Let 𝛾(�̄�) be a conjunctive query, and let ⟨𝐆, �̄�⟩
denote its canonical database.9 For any pointed relational database ⟨𝐃, ̄𝑑⟩, 9 By convention, we denote the

canonical database using the Roman
uppercase associated with the Greek
letter used to denote the query.57

iii. query languages for relational and graph databases

we have
̄𝑑 ∈ ⟦𝛾(�̄�)⟧𝐃 iff ⟨𝐆, �̄�⟩ hom−−−→ ⟨𝐃, ̄𝑑⟩.

Proof. This follows from the definition of homomorphisms and the semantics
of first-order logic. 𝑏 𝑎

𝑎

𝑢 𝑣 𝑤

Figure III.3: A relational database
satisfying the conjunctive query of
Figure III.2.

For instance, consider the relational database of Figure III.3. It satisfies the
Boolean query

𝛾() =̂ 𝑥 𝑎−→ 𝑥′ ∧ 𝑥 𝑏−→ 𝑦∧ 𝑦 𝑎−→ 𝑦′

asking if there is a 𝑏-edge (𝑥 𝑏−→ 𝑦) whose extremities have outgoing 𝑎-edges
(𝑥 𝑎−→ 𝑥′ and 𝑦 𝑎−→ 𝑦′): indeed, there is a 𝑏-edge from 𝑢 to 𝑣, and both 𝑢
and 𝑣 have outgoing 𝑎-edges. In terms of duality, this is witnessed by the
homomorphism from the canonical database of Figure III.2 to the database of
Figure III.3, that sends 𝑥 and 𝑥′ onto 𝑢, 𝑦 onto 𝑣 and 𝑦′ onto 𝑤. As witnessed
by this example, the homomorphism 𝐆 → 𝐃 actually has a natural meaning
when thinking about model checking. For this reason, such a homomorphism
is also called an evaluation map—or even abusively homomorphism—from 𝛾
to 𝐃.

Duality has many consequences. The first one is that the following evalua-
tion problem lies in NP, as it can be encoded into a homomorphism problem.

Conjunctive Query Evaluation
Input : A purely relational signature 𝜎, a conjunctive query 𝛾(�̄�)

over 𝜎, and a pointed relational 𝜎-database ⟨𝐃, ̄𝑑⟩.
Question: Does ̄𝑑 ∈ ⟦𝛾(�̄�)⟧𝐃?

For Boolean conjunctive queries, both tuples are empty, and so this amounts
to asking whether the query is true on the database.10 It is fact NP-complete 10 Indeed, for Boolean CQs, ⟦𝛾()⟧𝐃

is either empty (that we interpret as
false), or equal to the singleton con-
sisting of the empty tuple (that we
interpret as true).

[CM77, Theorem 7]. More importantly, duality has the consequence that se-
mantical equivalence, as well as the finer notion of containment, are decidable
for CQs.

Given two queries 𝛾(�̄�) and 𝛾′(�̄�′), we say that 𝛾(�̄�) is contained in 𝛾′(�̄�′)
whenever (1) �̄� and �̄�′ have the same arity, and (2) ⟦𝛾(�̄�)⟧𝐃 ⊆ ⟦𝛾′(�̄�′)⟧𝐃 for
every finite relational database 𝐃. This is denoted by 𝛾(�̄�) ⫅ 𝛾′(�̄�′); the
notion of containment is also known as entailment or logical implication.
Clearly, semantical equivalence can be obtained as the symmetric closure of
containment.

Proposition III.1.8.11 Let 𝛾(�̄�) and 𝛾′(�̄�′) be two conjunctive queries. The 11 In fact, another consequence of du-
ality is that the quantification over
finite relational databases in the def-
inition of containment can be equiv-
alently replaced by a quantification
over finite structures, or even over all
structures!

following are equivalent:
1. 𝛾(�̄�) ⫅ 𝛾′(�̄�′);
2. ⟨𝐆, �̄�⟩ ⊨ 𝛾′(�̄�′);
3. ⟨𝐆′, �̄�′⟩ hom−−−→ ⟨𝐆, �̄�⟩,
where ⟨𝐆, �̄�⟩ and ⟨𝐆′, �̄�′⟩ are the canonical database of 𝛾(�̄�) and 𝛾′(�̄�′), re-
spectively.

58

iii.1. relational databases

Proof. X (1)⇒ (2). By duality, ⟨𝐆, �̄�⟩ is a model of 𝛾(�̄�), and so, since this
query is contained in 𝛾′(�̄�′), it follows that ⟨𝐆, �̄�⟩ ⊨ 𝛾′(�̄�′).

X (2)⇒ (3). By duality.
X (3) ⇒ (1). Assume that ⟨𝐆′, �̄�′⟩ hom−−−→ ⟨𝐆, �̄�⟩, and let us prove that

𝛾(�̄�) ⫅ 𝛾′(�̄�′). Let ⟨𝐃, ̄𝑑⟩ be a pointed relational database, and assume that
⟨𝐃, ̄𝑑⟩ ⊨ 𝛾(�̄�). By duality, we get ⟨𝐆, �̄�⟩ hom−−−→ ⟨𝐃, ̄𝑑⟩, and by precomposing
with any homomorphism witnessing that ⟨𝐆′, �̄�′⟩ hom−−−→ ⟨𝐆, �̄�⟩, we get that
⟨𝐆′, �̄�⟩ hom−−−→ ⟨𝐃, ̄𝑑⟩. Once again, by duality, this amounts to ⟨𝐃, ̄𝑑⟩ ⊨ 𝛾′(�̄�′),
which concludes the proof that 𝛾(�̄�) ⫅ 𝛾′(�̄�′).

Corollary III.1.9. Containment (and hence semantical equivalence) of con-
junctive queries is decidable, and in fact is NP-complete.

III.1.3 The Preordered Set of Conjunctive Queries

Figure III.4: Bond of Union, M. C. Es-
cher, © The M.C. Escher Company.

Duality takes its name from the fact that Proposition III.1.8 can be simply
rephrased as “the preordered set of conjunctive queries over 𝜎 under contain-
ment is dually isomorphic to the preordered set of relational databases over 𝜎
under the homomorphism ordering.” Symbolically:

⟨CQ𝜎, ⫅⟩ ≅ ⟨RelDb𝜎,
hom←−−−⟩.

Naturally, to go from relational databases to conjunctive queries, we associate
to any pointed relational database ⟨𝐆, �̄�⟩ a canonical conjunctive query 𝛾(�̄�)
with one atomℛ(𝑘)(𝑥1, … , 𝑥𝑘) for every hyperedge ⟨𝑥1, … , 𝑥𝑘⟩ ∈ ℛ(𝑘)(𝐆). This
map is precisely the inverse of the construction defining canonical database.

This dual isomorphism has many consequences: essentially every the-
ory that deals with relational databases can be applied to study conjunctive
queries!

Corollary III.1.10 (of duality and Proposition II.2.3). Two conjunctive queries
are semantically equivalent iff the core of their canonical database are iso-
morphic.

Graphical depiction of the preordered set of relational databases. Note that for
each conjunctive query 𝛾(�̄�), the class of pointed relational databases ⟨𝐃, ̄𝑑⟩
satisfying the query is closed under homomorphisms, i.e.

if ⟨𝐃, ̄𝑑⟩ ⊨ 𝛾(�̄�) and ⟨𝐃, ̄𝑑⟩ hom−−−→ ⟨𝐃′, ̄𝑑′⟩ then ⟨𝐃′, ̄𝑑′⟩ ⊨ 𝛾(�̄�).

We represent the preordered set of relational databases ordered by hom−−−→ as
follows: each equivalence class of homomorphically equivalent relational
databases is represented by a single point. In other words, points are in one-to-
one correspondence with cores. Then, we represent a point �̌� below another
point �̌� whenever �̌� hom−−−→ �̌�. For Boolean queries, this ordering12 admits 12 Formally, from the preordering

over relational databases we ob-
tained a partial order over the quo-
tient of relational databases by the
equivalence class induced by hom−−−−→,
which happens to be the poset of
cores. Hence, we will interchange-
ably use to terms preordering and
(partial) ordering.

a unique minimal element, which is the empty database. For non-Boolean
queries, there is also a minimal relational database with no facts, but that has

59

https://mcescher.com/gallery/most-popular/#iLightbox[gallery_image_1]/23

iii. query languages for relational and graph databases

constants. Similarly, there is always a unique maximal element: the database
with a unique vertex 𝑥 and such that ℛ(𝑘)(𝑥, … , 𝑥) holds for every ℛ(𝑘) ∈ 𝜎,
and all constants are interpreted as 𝑥. We now prove that this poset has a
non-trivial structure, provided that the signature is itself non-trivial.

Proposition III.1.11. Assume that 𝜎 contains at least one symbol of arity
at least 2. The poset of relational databases admits infinite chains, infinite
co-chains and infinite antichains.

Figure III.5: The graphs 𝐂6 (left)
and 𝐂3 (right) and a homomorphism
from the former to the latter, de-
scribed by colour coding.

Proof. For the sake of simplicity, we assume that we actually have a binary
predicate: this assumption is w.l.o.g. since we can encode the binary relation
used in these constructions into any 𝑘-ary relation provided that 𝑘 ≥ 2 by
encoding ℰ(𝑥, 𝑦) as ℛ(𝑘)(𝑥, 𝑦, … , 𝑦).

Clearly, directed paths provide an infinite chain

𝐏1
hom−−−→ 𝐏2

hom−−−→ ⋯ hom−−−→ 𝐏𝑛
hom−−−→ 𝐏𝑛+1

hom−−−→ ⋯.

We now let 𝐂𝑛 (𝑛 ∈ ℕ>0) denote the directed cycle with domain ℤ/𝑛ℤ and
with an edge from 𝑖 to 𝑗 iff 𝑖 + 1 = 𝑗, see Figure III.5. It is then routine to
check that for 𝑛,𝑚 ∈ ℕ>0, we have 𝐂𝑛

hom−−−→ 𝐂𝑚 iff 𝑛 is a multiple of 𝑚. In
particular,13 we have 13 In fact, we obtain a projective sys-

tem. We will discuss projective limits
in Chapter VI.𝐂1

hom←−−− 𝐂2
hom←−−− 𝐂4

hom←−−− ⋯ hom←−−− 𝐂2𝑛
hom←−−− 𝐂2𝑛+1

hom←−−− ⋯ .

Finally, ⟨𝐂𝑝⟩𝑝 prime is an infinite antichain.

Based on Proposition III.1.11, we provide an illustration of the ordered
set of relational databases in Figure III.6. Notice that, since the semantics of
conjunctive queries is closed under homomorphisms, they are represented by
upper-closed sets. Moreover, this set has a unique minimum, corresponding
to its canonical database. Notice how this representation naturally represents
the concept of duality:
• points of the poset (i.e. relational databases) are in natural bijection with

upper-closed sets that admit a minimum (i.e. conjunctive queries);
• a conjunctive query is contained in another iff the canonical database of

the first is below that of the second in Figure III.6.

60

iii.1. relational databases

𝐂1
𝐂2
𝐂4

⋮

𝐂2𝑛
𝐂2𝑛+1

⋮

∅
𝐏1

𝐏2

⋮

𝐏𝑛
𝐏𝑛+1

⋮

canonical database 𝐆 of a
Boolean conjunctive query 𝛾

semantics of 𝛾

Figure III.6: The poset of relational
databases over a signature contain-
ing at single binary predicate, where
homomorphisms go from bottom to
top. An infinite chain is represented
in red, and an infinite co-chain in
blue. A large yellow dot represents
the canonical database of a conjunc-
tive query, while the semantics of
this conjunctive query is represented
with normal-size yellow dots. This
picture only depicts some of the com-
plexity of this lattice: for instance
there might also be infinitely many
minimal elements just above one ele-
ment.

𝛾

𝛿

Figure III.7: A more abstract view of
the poset of relational databases: we
represent two conjunctive queries 𝛾
(in red) and 𝛿 (in blue). The seman-
tics of each query is represented by
a filled diamond, and its canonical
database by a large dot.

For the sake of simplicity—and compilation time of this document!—, we
abstract the picture of Figure III.6 into Figure III.7.

Remark III.1.12. À propos relational databases vs. relational structures,
these posets are actually isomorphic since a relational structure is always
homomorphically equivalent to the structure in which we removed isolated
vertices.

The Distributive Lattice of Relational Databases. Proposition III.1.11 shows
that the poset of relational databases has a somewhat complex structure, in
the sense that it has infinite height, co-height and width. However, we next
show that it has a rich algebraic structure. ⟨𝐃1, ̄𝑑1⟩ ⟨𝐃2, ̄𝑑2⟩

⟨𝐃1, ̄𝑑1⟩ × ⟨𝐃2, ̄𝑑2⟩

⟨𝐔, �̄�⟩

𝜋1 𝜋2

𝑔

𝑓1 𝑓2

Figure III.8: Universal property sat-
isfied by the Cartesian product.

In light of Remark III.1.12, the Cartesian product of two relational databases
⟨𝐃1, ̄𝑑1⟩ and ⟨𝐃2, ̄𝑑2⟩ whose tuples have the same arity is well-defined: we
consider their product ⟨𝐃1, ̄𝑑1⟩× ⟨𝐃2, ̄𝑑2⟩ as relational structures, and remove
all isolated vertices. We slightly abuse the notation and still denote this
product by ×. It is routine to check that this Cartesian product in indeed a
Cartesian product in the categorical sense, i.e. that it satisfies the universal
property that it has homomorphisms 𝜋1 and 𝜋2 to both ⟨𝐃1, ̄𝑑1⟩ and ⟨𝐃2, ̄𝑑2⟩,
and that moreover it is the smallest object satisfying this property, in the sense
that for every relational database ⟨𝐔, �̄�⟩ with homomorphisms 𝑓1 and 𝑓2 to

61

iii. query languages for relational and graph databases

⟨𝐃1, ̄𝑑1⟩ and ⟨𝐃2, ̄𝑑2⟩, then there exists a unique homomorphism 𝐆 from
⟨𝐔, �̄�⟩ to ⟨𝐃1, ̄𝑑1⟩ × ⟨𝐃2, ̄𝑑2⟩ such that the diagram of Figure III.8 commutes:
this homomorphism𝐆 is actually 𝑓1 ×𝑓2 ∶ 𝑢 ↦ ⟨𝑓1(𝑢), 𝑓2(𝑢)⟩. Going back to
the poset structure, this implies that any pair of points must have an infimum.

Fact III.1.13. Given two finite relational databases, their Cartesian product
is their greatest lower bound in the poset of relational databases ordered by
hom−−−→.

𝐃1 𝐃2

𝐃1 ×𝐃2

𝐃1 ⊎𝐃2

Figure III.9: The distributive lattice
structure of relational databases: we
represent two structures, as well as
their least upper bound and greatest
lower bound.

Similarly, the disjoint union satisfies the property dual to Figure III.8.

Fact III.1.14. Given two finite relational databases, their disjoint union is
their least upper bound in the poset of relational databases ordered by hom−−−→.

Figure III.10: Two databases (left
and right), their Cartesian product
(below) and disjoint union (above).

Put together, these facts imply that the poset of relational databases is
actually a bounded lattice, as depicted in Figures III.9 and III.10. It is moreover
distributive since the isomorphism (and hence homomorphic equivalence)

𝐀× (𝐁 ⊎𝐂) ≅ (𝐀 ×𝐁) ⊎ (𝐀 ×𝐂)

holds for any databases 𝐀, 𝐁 and 𝐂. Then, by duality, we get that the poset
of conjunctive queries under containment is also a distributive lattice! We
shall see that the greatest lower bound and least upper bound have a natural
logical interpretation, and that moreover this structure of distributive lattice
will help us deal with CQs: and in particular solve the synthesis problem.

The Distributive Lattice of Conjunctive Queries. Given two CQs 𝛾(�̄�) and
𝛿(�̄�), where �̄� and �̄� have the same arity, we define their disjoint conjunction,
denoted by 𝛾(�̄�) ∧○ 𝛿(�̄�), to be the CQs obtained by taking the disjoint union
of atoms of the CQs and then identifying the elements of �̄� and �̄� pointwise.
For instance, letting 𝛾(𝑥) =̂ 𝑥 𝑎−→ 𝑦 be the query asking for all elements with
an outgoing 𝑎-edge, and 𝛿(𝑥) =̂ 𝑥 𝑏−→ 𝑦 be the query asking for all elements

62

iii.1. relational databases

with an outgoing 𝑏-edge, then their disjoint conjunction 𝛾(𝑥) ∧○ 𝛿(𝑥) is

𝛼(𝑥) =̂ 𝑥 𝑎−→ 𝑦∧ 𝑥 𝑏−→ 𝑦′,

which outputs all elements with both an outgoing 𝑎-edge and an outgoing
𝑏-edge.14 14 As for disjoint union, the name dis-

joint conjunction is slightly abusive
but justified by its universal property.Fact III.1.15. The canonical database of the disjoint conjunction equals the

disjoint union of the canonical database. By duality, it follows that the disjoint
conjunction is the greatest lower bound of two CQs.15 15 Careful: duality is precisely a dual

isomorphism, i.e. it reverses the or-
der. Hence, a least upper bound (dis-
joint union) becomes a greatest lower
bound (disjoint conjunction).

The other operator (the dual of Cartesian product) does not have such a
nice intuitive interpretation—however it does not mean that it will be less
useful, on the contrary! While conjunctive queries are not closed under
semantical union—we will see this in Section III.1.6—, this operator acts as
the best approximation of it.

Definition III.1.16. We define the weak union ∨○ of two CQs with the same
number of output variables as the canonical CQ of the Cartesian product of
their canonical database.

By construction, it is their greatest upper bound, in the sense that 𝛾(�̄�) ⫅
𝛾(�̄�) ∨○𝛿(�̄�), 𝛿(�̄�) ⫅ 𝛾(�̄�) ∨○𝛿(�̄�), and 𝛾(�̄�) ∨○𝛿(�̄�) is the smallest CQ satisfying
this property.

For instance, if 𝛾() =̂ 𝑥 𝑎−→ 𝑦 asks for the existence of an 𝑎-edge and
𝛿() =̂ 𝑥 𝑏−→ 𝑦 asks for a 𝑏-edge, then 𝛾() ∨○𝛿() is the empty CQ, i.e. the CQ that
always true: knowing that a database contains either an 𝑎-edge or a 𝑏-edge is
as good as knowing nothing in terms of CQ expressivity. On the other hand,
if 𝛾(𝑥) =̂ 𝑥 𝑎−→ 𝑦 𝑏−→ 𝑧 outputs the source of all 𝑎𝑏-paths and 𝛿(𝑥) =̂ 𝑥 𝑎−→ 𝑦 𝑐−→ 𝑧
outputs the source of all 𝑎𝑐-paths, then 𝛾(𝑥) ∨○ 𝛿(𝑥) will be homomorphically
equivalent to 𝜐(𝑥) =̂ 𝑥 𝑎−→ 𝑦 which outputs all sources of 𝑎-edges.

𝛾1 𝛾2

𝛾1 ∨○𝛾2

𝛾1 ∧○𝛾2

Figure III.11: The distributive lat-
tice structure of Boolean conjunctive
queries: we represent two structures,
as well as their least upper bound and
greatest lower bound, and the natural
homomorphism they come equipped
with (projections and canonical em-
beddings).

The distributive lattice structure of conjunctive queries is depicted in Fig-
ure III.11. Observe how this choice of representation makes obvious the fact
that (1) the disjoint conjunction of two CQs is actually its conjunction in
the semantical sense, but (2) their weak union is strictly bigger than their
semantical union, unless we are in a degenerate case.

We summarize the properties of the two distributive lattices in Table III.12.
Note that all notions occurring in this table, be it the orders or the binary
operators, require the CQs to have the same number of output variables, and
the (pointed) relational databases to have tuples of the same size, and so in
fact we obtain two lattices for every possible arity/tuple size.

Amongst bounded distributive lattices, the better behaved are the Boolean
algebras, in which every element has a complement. In our case, this would
be an operator ¬ s.t. for every database 𝐃, then 𝐃×¬𝐃 would be homo-
morphically equivalent to the empty database and 𝐃⊎¬𝐃 to the greatest
database, consisting of a single vertex and all possible hyperedges over it.

Proposition III.1.17. The distributive lattice of databases (and hence of

63

iii. query languages for relational and graph databases

Conjunctive Queries Relational Databases

preorder containment ⫅ existence of
homomorphisms hom−−−→

least upper bound weak union ∨○ disjoint union ⊎
greatest lower bound disjoint conjunction ∧○ Cartesian product ×

greatest element “true” (empty CQ)
single vertex

will all hyperedges

least element
single variable

empty database
will all hyperedges

Table III.12: The distributive lattices
of conjunctive queries and relational
databases. By duality, one can go
from one lattice to the opposite of the
other by taking canonical database
or canonical conjunctive queries.

conjunctive queries) does not admit complementation.

Proof. Assume that the signature is non-trivial and let 𝐃 be a non-trivial
database, i.e. neither the least nor greatest element of the lattice. To ensure
that𝐃⊎¬𝐃 is homomorphical equivalent to the greatest database, ¬𝐃 must
actually be homomorphical equivalent to the greatest database itself, but then
𝐃×¬𝐃 would be non-empty. Hence, ¬𝐃 cannot exist.

However, conjunctive queries still have a bit more structure: we shall see
that they form a Heyting algebra, namely that it is a bounded distributive
lattice with the extra property that for every 𝛾(�̄�) and 𝛿(�̄�), where �̄� and �̄�
have the same arity, then there exists a greatest element 𝜒(�̄�) s.t.

𝛾(�̄�) ∧○𝜒(�̄�) ⫅ 𝛿(�̄�).

This greatest element 𝜒(�̄�) is denoted by 𝛾(�̄�)⇒ 𝛿(�̄�), and is called implica-
tion.16 16 Heyting algebras were introduced

to model intuitionistic logic. It is not
hard to see that the implication 𝜙 ⇒
𝜓 does satisfy the property that it
is the greatest formula 𝜒 s.t. 𝜙 ∧ 𝜒
entails 𝜓.

Proposition III.1.18.17 The bounded distributive lattice of conjunctive queries

17 The fact that relational databases
and conjunctive queries form a
bounded distributive lattice is folk-
lore.

is actually a Heyting algebra.

Proof. We use duality to prove this and show that relational databases form
a “co-Heyting algebra”, in the sense that for any database ⟨𝐆, �̄�⟩ and ⟨𝐃, ̄𝑑⟩,
there exists a least element ⟨𝐗, �̄�⟩ s.t.

⟨𝐆, �̄�⟩ ⊎ ⟨𝐗, �̄�⟩ hom←−−− ⟨𝐃, ̄𝑑⟩ ∶

⟨𝐗, �̄�⟩ is actually obtained by taking the disjoint union of all connected com-
ponents of ⟨𝐃, ̄𝑑⟩ that cannot be mapped homomorphically to ⟨𝐆, �̄�⟩. The
operator⇒ can then be explicitly constructed by duality.

By construction of ⇒, it comes naturally equipped with some form of
Currying, in the sense that

⟨𝐀, �̄�⟩ ⊨ 𝛾(�̄�)⇒ 𝛿(�̄�) iff ⟨𝐀, �̄�⟩ ⊎ ⟨𝐆, �̄�⟩ ⊨ 𝛿(�̄�),

for any CQs 𝛾(�̄�) and 𝛿(�̄�) and any relational database ⟨𝐀, �̄�⟩, where ⟨𝐆, �̄�⟩

64

iii.1. relational databases

denotes the canonical database of 𝛾(�̄�). Similarly, as expected, we have

𝛾(�̄�) ∧○ (𝛾(�̄�)⇒ 𝛿(�̄�)) ≡ 𝛿(�̄�).

In Sections III.1.4 and III.1.6, we will apply some of the theory we developed
here to better understand the expressivity of conjunctive queries.

III.1.4 Static Analysis of Conjunctive Queries

Minimization. As we have already seen, the first consequence of duality is
that containment and semantical equivalence are both decidable, see Corol-
lary III.1.9. We shall now see that the rich theory of relational structures, and
in particular the concept of cores trivializes the question of minimization.

Fix a relational signature 𝜎. A subquery of 𝛾(�̄�) is any CQ over 𝜎 obtained
by removing variable and/or atoms from 𝛾: to ensure that we still obtain
a CQ over 𝜎, output variables cannot be removed. In terms of duality, this
amounts to taking the canonical conjunctive query of a substructure of the
canonical database.18 We then say that a class 𝒞 of conjunctive queries over 18 Careful: if 𝛾′ is a subquery of 𝛾,

then 𝛾 ⫅ 𝛾′! The fewer constraints
there is, the easier it is to satisfy
them…

𝜎 is monotone if for any CQ 𝛾(�̄�) ∈ 𝒞, for any subquery 𝛾′(�̄�) of 𝛾(�̄�), we
must have 𝛾′(�̄�) ∈ 𝒞. Monotone classes of CQs naturally model the notion of
“simplicity”, in the sense that a CQ is “simple”w.r.t. 𝒞 whenever it belongs to 𝒞.
The monotonicity assumption precisely ensures that the class formalizes an
idea of “simplicity” and not “the CQ has exactly fourteen atoms, two ternary
hyperedges, three legs, a moustache and a mustard watch.” Typical examples
of monotone classes of CQs include:
• CQs with at most 𝑘 ∈ ℕ atoms,
• CQs with at most 𝑘 variables,
• CQs of tree-width at most 𝑘 (defined in Section III.1.5),
• CQs of path-width at most 𝑘,
• CQs in which all cliques are of size at most 𝑘, etc.

We define the core of a conjunctive query, still denoted by −̌, to be the
canonical conjunctive query of the core of its canonical database.

Proposition III.1.19. Let 𝛾(�̄�) be a conjunctive query and 𝒞 be a monotone
class of CQs. Then 𝛾(�̄�) is semantically equivalent to a CQ in 𝒞 if, and only
if, its core �̌�(�̄�) belongs to 𝒞.

Proof. This follows from Proposition II.2.3 and the fact that the core of a
structure is always a substructure of it.

Not only does this imply that we can solve the 𝒞-minimization problem,
but actually that all these problems can be solved simultaneously, in the sense
that if a solution exists to each problem, then a common solution exists!

CQ minimization problem over 𝒞
Input : A conjunctive query.

Question: Is it semantically equivalent to a CQ of 𝒞?

65

iii. query languages for relational and graph databases

Corollary III.1.20. For each monotone class of CQs 𝒞, assumed to be de-
scribed as an oracle, the CQ minimization problem over 𝒞 is NP. Further-
more, it is NP-hard for some classes 𝒞.

Proof. X Upper bound. A naïve algorithm would be to first compute the
core, and using the oracle to test if it belongs to 𝒞. However, computing the
core is not in NP: intuitively, we first need to guess a substructure that is
homomorphically equivalent to the whole—which is NP—, and then check
that no strictly smaller structure satisfies the property—which is coNP.19 19 In fact, deciding if a structure is a

core is actually coNP-complete, even
for undirected graphs, [HN92, Theo-
rem 7].

So, let us not be naïve! We start with a conjunctive query 𝛾(�̄�), guess a
subquery 𝛾′(�̄�), and then check if (1)20 𝛾′(�̄�) ≡ 𝛾(�̄�) and if (2) 𝛾′(�̄�) ∈ 𝒞. The

20 In fact 𝛾 ⫅ 𝛾′ always holds so it
suffices to check that 𝛾′ ⫅ 𝛾′.

algorithm is clearly in NP, and moreover it is correct by Proposition II.2.3 and
monotonicity.

X Lower bound. We prove that the minimization problem is NP-hard
for the class 𝒞 of conjunctive queries with at most 3 variables. In fact, by
duality, we rather prove that the problem of, given a structure, deciding if it is
homomorphically equivalent to a structure with at most 3 vertices is NP-hard.
We reduce 3-colourability to this latter problem. Given an instance 𝐆 of
3-colourability, we reduce it to the instance:
• 𝐆⊎𝐊3 if 𝐆 does not contain any self-loop;
• any negative instance otherwise, e.g. 𝐊4.
If 𝐆 is 3-colourable, then it has no self-loop and moreover𝐆⊎𝐊3

hom−−−→ 𝐊3
and hence 𝐆 ⊎ 𝐊3

hom−−−→ 𝐊3, from which we get that 𝐆 ⊎ 𝐊3 ≡ 𝐊3, and
hence𝐆⊎𝐊3 is semantically equivalent to a structure with at most 3 vertices.
Conversely, assume that the right-hand side of the reduction is semantically
equivalent to a structure with at most 3 vertices. Then𝐆 does not contain any
self-loop and moreover, we get that 𝐆⊎𝐊3 is homomorphically equivalent
to a structure with 3 vertices. In particular, we get a homomorphism from
𝐆 to a structure with 3 vertices, and from the assumption that 𝐆 does not
contain any self-loop, we actually get a homomorphism from 𝐆 to 𝐊3. This
concludes the reduction.21 21 The trick used for the lower bound,

namely that of reducing a homo-
morphism/containment problem to a
minimization problem via a disjoint
union, will be used in a much trick-
ier way in Chapter IV to prove Ex-
pSpace lower bounds on the mini-
mization problem for CRPQs, see
Sections IV.A and IV.5.

𝐃+
1 𝐃+

2

𝛾

𝐃−
1

𝐃−
2

𝐃−
3

Figure III.13: An instance of the syn-
thesis problem for CQs, as well as
one valid solution for this instance.

We now turn to the synthesis problem, also called passive learning, reverse
engineering. The idea behind the problem is to infer a query from examples:
these examples take the form of models, taking the form of pointed relational
databases, together with the knowledge of whether this model should be part
of the query (positive examples) or not (negative examples), see Figure III.13.22

22 For the sake of readability, we use
the notations for Boolean queries and
non-pointed databases. However, all
results extend trivially to the non-
Boolean case.

Synthesis Problem for CQs
Input : Integers 𝑛, 𝑝 ∈ ℕ>0, and pointed relational databases

𝐃+
1 , … , 𝐃+

𝑝 , 𝐃−
1 , … , 𝐃−

𝑛 .
Question: Is there a conjunctive query𝛾 s.t. 𝐃+

𝑖 ⊨ 𝛾 for all 𝑖 ∈ ⟦1, 𝑝⟧
and 𝐃−

𝑗 ⊭ 𝛾 for all 𝑗 ∈ ⟦1, 𝑛⟧?

Proposition III.1.21. The synthesis problem for CQs is coNExp.

66

https://complexityzoo.net/Complexity_Zoo:C#conexp

iii.1. relational databases

Proof. We denote by 𝛿+1 , … , 𝛿+𝑝 the canonical conjunctive queries of 𝐃+
1 , … ,

𝐃+
𝑝 . We now consider their weak union

𝜐 =̂ 𝛿+1 ∨○⋯ ∨○𝛿+𝑝 .

We then test for each 𝑗 ∈ ⟦1, 𝑛⟧ if 𝐃−
𝑗 ⊭ 𝜐: the conjunction of these tests will

be the output of our algorithm!
First, each test 𝐃−

𝑗 ⊭ 𝜐 can be done in coNP in the size of 𝐃−
𝑗 and of 𝜐.

Since the size of 𝜐 is the product of the sizes of the 𝛿+𝑖 ’s, it is exponential, and
hence we obtain a coNExp algorithm. Then, we prove—or rather notice—its
correctness: by construction, the weak union is the least upper bound of CQs,
see Figure III.14! Voilà.

𝛿+1 𝛿+2 𝛿+3

𝜐

𝐃−
1

𝐃−
2

Figure III.14: A negative instance of
the synthesis problem and the con-
struction done in the proof of Propo-
sition III.1.21.

In fact there is a matching lower-bound, even if the signature is fixed, but
the proof is far from trivial. Willard proved the coNExp-hardness in [Wil10,
Theorem 3] when the signature is part of the input23, and ten Cate and Dalmau 23 The result is actually phrased for

constraint satisfaction problems.proved the same lower bound for some fixed signature [CD15, Theorem 2].24
24 They refer to the synthesis prob-
lem as the “CQ-definability prob-
lem”.

In both cases, the reduction is from an exponential tiling problem.

Active learning. Active learning, a.k.a. Angluin-style learning is a setting
where two players interact (a priori adversarially): Student tries to lean a
query that only Teacher knows. To achieve this, they can ask two kinds of
questions.25 25 “Questions” are usually called

“queries” but we avoid this terminol-
ogy here for obvious reasons.

• Membership questions: they provide a model and asks if it satisfies the
query;

• Equivalence questions: they provide a query and ask Teacher if it is se-
mantically equivalent to theirs; if yes, the game stops, otherwise Teachers
provides a counter-example in the form of a model satisfying one query
but not the other.

Of course, Student always has a winning strategy: enumerate all queries and
ask for equivalence… The difficult and hence interesting question is that of
efficient learning.

Ten Cate, Dalmau and Kolaitis proved that the class of all conjunctive
queries could be learned with polynomially many questions [CDK13, Theo-

67

https://complexityzoo.net/Complexity_Zoo:C#conexp
https://complexityzoo.net/Complexity_Zoo:C#conexp

iii. query languages for relational and graph databases

rem A], but not with polynomially many questions of a given kind provided
that the signature is non-trivial [CDK13, Theorem B]—i.e. both kinds of
questions are necessary to be able to learn efficiently! By relying on the
distributive lattice structure of relational databases, ten Cate and Dalmau
then exhibited a subclass of conjunctive queries, known as “𝑐-acylic”, that can
be learned with polynomially many membership queries and no equivalence
query [CD21, Theorem 5.2].

III.1.5 Conjunctive Queries of Small Tree-Width

Recall that, by duality, conjunctive query evaluation is NP-complete:
this begs the question of finding classes of CQs with faster evaluation. We
will see that queries whose underlying structure looks like a tree—formally,
queries of bounded tree-width—can be evaluated in polynomial time.

Tree-Width. Tree-width is a measure of how much a graph differs from a
tree—the notion was introduced and rediscovered numerous times in the 1970
and 1980s; however the first paper that seems tomake a substantial connection
between tree-width and tractability seems to be the work of Arnborg and
Proskurowski [AP89]. For a gentle but thorough introduction to tree-width,
we also refer the reader to [NM12, § 3.6].

Formally, a tree decomposition of an undirected graph 𝐆 is a pair ⟨𝐓, v⟩
where 𝐓 is a tree and v ∶ 𝑉(𝐓) → 𝔓(𝑉(𝐆)) is a function that associates to
each node of 𝐓, called bag, a set of vertices of 𝐆. When 𝑥 ∈ v(𝑏) we shall say
that the bag 𝑏 ∈ 𝑉(𝐓) contains vertex 𝑣. Further, it must satisfy the following
three properties:
• each vertex 𝑣 of 𝐆 is contained in at least one bag of 𝐓,
• for each edge {𝑢, 𝑣} of𝐆, there is at least one bag of 𝐓 that contains both
𝑢 and 𝑣, and

• for every vertex 𝑣 of 𝐆, the set of bags of 𝐓 containing 𝑣 is a connected
subset of 𝑉(𝐓).

(a) “Full” representation of ⟨𝐓, v⟩. (b) “Concise” representa-
tion of ⟨𝐓, v⟩

Figure III.15: Two different repre-
sentations of the same tree decom-
position ⟨𝐓, v⟩ of a directed graph𝐆
with six vertices. The underlying tree
is a path with four nodes and each
bag contains 3 vertices—hence the de-
composition has width 2.

We give an example of tree decomposition in Figure III.15:
• In Figure III.15a, we give the “full” representation of the decomposition: we

draw 𝐓, and inside each of the four bags 𝑏 of 𝐓 we represent a copy of 𝐆.

68

iii.1. relational databases

Nodes of 𝐆 belonging to 𝑏 are highlighted, while the others are dimmed.
Sometimes, we will only write the name of the nodes contained in the bag,
instead of drawing the graph.

• In Figure III.15b, we give a “concise” representation: we draw over 𝐆 a
coloured shape for each bag of 𝐓. This representation is ambiguous—the
structure of 𝐓 is not made explicit—and will only be used for the most
simple cases.
The width of a tree decomposition ⟨𝐓, v⟩ is the maximum size of a bag

minus one, i.e. max {|v(𝑏)| − 1 ∣ 𝑏 ∈ 𝑇}. The tree-width of𝐆 is the minimum
of the width of all tree decompositions of 𝐆. The notion can be directly
generalized to arbitrary relational structures: instead of asking that every
edge {𝑢, 𝑣} is contained in some bag, we require that for every hyperedge
⟨𝑥1, … , 𝑥𝑘⟩, there exists a bag than contains all 𝑥𝑖’s. The tree-width of a CQ is
naturally defined as the tree-width of its canonical database. The undirected
graphs of tree-width at most 1 are exactly the forests, i.e. the disjoint unions
of trees. On the other hand, the graph of Figure III.15 has tree-width 2. The
𝑘-clique has tree-width exactly 𝑘 − 1 since any tree decomposition of𝐊𝑘 must
actually contain a bag that contains all vertices of 𝐊𝑘.

Proposition III.1.22 ([CR00, Theorem 3]).26 27 For any fixed signature 𝜎, for 26 Theorem 3 talks about query con-
tainment of CQs, which is in fact
equivalent to the evaluation prob-
lem for CQs. Moreover, the theorem
deals with “query width”, but this pa-
rameter is equivalent up to a multi-
plicative constant to the tree-width
[CR00, Lemma 2] assuming that the
signature is fixed.
27 An equivalent result was in fact
proven a decade ealier by Freuder
[Fre90, Theorem 3] using the vocab-
ulary of constraint satisfaction prob-
lems.

every 𝑘 ∈ ℕ, conjunctive query evaluation can be solved in polynomial
time when restricted to CQs of tree-width at most 𝑘.

Proposition III.1.22, as most algorithms on structures of bounded tree-width
actually relies on the ability to compute a tree decomposition.

Proposition III.1.23 (Bodlaender’s algorithm [Bod96, Theorem 1.1]).28 For

28 The fact that 𝑘 is fixed is crucial: if
it is also part of the input, the prob-
lem becomes NP-complete [ACP87,
Theorem 3.3]

every fixed 𝑘 ∈ ℕ>0, there is a linear-time algorithm which takes as input a
finite structure and decides if it has tree-width at most 𝑘, in which case it also
outputs a witness of the form of a tree decomposition of width at most 𝑘.

Proof sketch of Proposition III.1.22. We are given as input a CQ 𝛾(�̄�) of tree-
width at most 𝑘, and a pointed relational database ⟨𝐃, ̄𝑑⟩, and need to decide
if ⟨𝐃, ̄𝑑⟩ ⊨ 𝛾(�̄�). W.l.o.g., using Bodlaender’s algorithm (Proposition III.1.23),
we assume that we also have a tree decomposition ⟨𝐓, v⟩ of the canonical
database ⟨𝐆, �̄�⟩ of 𝛾(�̄�).

We do a bottom-up algorithm on the tree 𝐓, which maintains a set ℋ
of partial homomorphisms from ⟨𝐆, �̄�⟩ to ⟨𝐃, ̄𝑑⟩. In light of Figure III.15a,
the idea is to compute for each bag where the variables it contains could
be mapped on the databases. Formally, we want this procedure to satisfy
the following invariant: when dealing with bag 𝑏, a partial homomorphism
𝑓∶ ⟨𝐆, �̄�⟩ ⇀ ⟨𝐃, ̄𝑑⟩ belongs to ℋ𝑏 if, and only if,
• the domain of 𝑓 is v(𝑏), and
• 𝑓 can be extended into a partial homomorphism ̃𝑓 ∶ ⟨𝐆, �̄�⟩ ⇀ ⟨𝐃, ̄𝑑⟩ de-

fined exactly on the union of v(𝑏′) where 𝑏′ ranges over vertices that are
below 𝑏 in the tree 𝐓.

69

iii. query languages for relational and graph databases

For leaves 𝑏, the procedure is easy: we enumerate every possible map from
v(𝑏) to𝐃, and only keep those that define a partial homomorphism ⟨𝐆, �̄�⟩ ⇀
⟨𝐃, ̄𝑑⟩: this yields a set ℋ𝑏 of partial homomorphisms. Then, when dealing
with a node 𝑏whose children are 𝑏1, … , 𝑏𝑘, again we enumerate every possible
map 𝑓 from v(𝑏) to 𝐃, but then only keep those that (1) define a partial
homomorphism ⟨𝐆, �̄�⟩ ⇀ ⟨𝐃, ̄𝑑⟩, and (2) agree with the children bags, in the
sense that there must exist partial homomorphisms 𝑓1 ∈ ℋ𝑏1 , … , 𝑓𝑘 ∈ ℋ𝑏𝑘
s.t. 𝑓 and 𝑓𝑖 agree on their common vertices, i.e. 𝑓|v(𝑏)∩v(𝑏𝑖) = 𝑓𝑖|v(𝑏)∩v(𝑏𝑖) for
all 𝑖 ∈ ⟦1, 𝑘⟧.

The correctness of this procedure follows from the assumption that, in a
tree decomposition, the set of bags containing any node must be a connected
subset: in some sense this is what allows us to make consistent choices. Then,
to decide if ⟨𝐃, ̄𝑑⟩ ⊨ 𝛾(�̄�), we check if the set of partial homomorphisms
associated to the root is non-empty. If so, since every vertex must appear in
some bag, the invariant yields the existence of a homomorphism from ⟨𝐆, �̄�⟩
to ⟨𝐃, ̄𝑑⟩. Otherwise, there is no such homomorphism. Correctness follows
by duality.

Lastly, concerning the complexity, observe that the tree decomposition
has width at most 𝑘, so there at most |𝐷|𝑘+1 maps from any fixed bag to
𝐃: we can enumerate them all in polynomial time since 𝑘 is fixed! To com-
pute the partial homomorphisms 𝑓 that agree with some partial homomor-
phisms from ℋ𝑏1 , … , ℋ𝑏𝑘 , we can first sort each table ℋ𝑏𝑖 according to
their value on v(𝑏), and then use a dichotomy search. Sorting can be done
in 𝒪(|𝐷|𝑘+1 log(|𝐷|𝑘+1)) = 𝒪(|𝐷|𝑘+1 log(|𝐷|)), and the dichotomy search—
one for each partial homomorphisms that is a candidate for ℋ𝑏—runs in
𝒪(log(|𝐷|𝑘+1)) = 𝒪(log(|𝐷|)). Overall, we get an algorithm that runs in time

𝒪(|𝑇| ⋅ |𝐷|𝑘+1) = 𝒪(|vars(𝛾)| ⋅ |𝐷|𝑘+1),

up to logarithmic factors.

Note also that, given a tree decomposition of a structure 𝐀, and a substruc-
ture 𝐁 of 𝐀, by intersecting each bag with 𝐵, we obtain a tree decomposition
of 𝐁. It follows that the tree-width of a substructure is always upper bounded
by the tree-width of the full structure. In other words, conjunctive queries of
tree-width at most 𝑘 ∈ ℕ form a monotone class of CQs.

Grohe, Schwentick and Segoufin proved that there are no graph property
other than tree-width that ensures polynomial time evaluation [GSS01, Corol-
lary 19]. Importantly, this statement deals with graph properties, i.e. with
classes of CQs defined by restricting their underlying structure. We will see
next that actually there are other classes of CQs with tractable evaluation.

Bounded Semantic Tree-Width. Asmentioned in Section I.2, Proposition III.1.22
together with the notion of core actually yields a tractability result for a larger
class of queries than those of bounded tree-width.

70

iii.1. relational databases

Proposition III.1.24. For any 𝑘 ∈ ℕ, the CQ evaluation problem, restricted
to conjunctive queries that are semantically equivalent to a CQ of tree-width
at most 𝑘 is fixed-parameter tractable when parametrized by the size of the
query.

Proof. The algorithm goes as follows: we start by computing the core �̌�(�̄�) of
the CQ 𝛾(�̄�), and then instead of evaluating 𝛾(�̄�) on the database, we instead
evaluate �̌�(�̄�), using the polynomial-time algorithm of Proposition III.1.22.
Overall, the algorithm runs in time

𝒪(𝑓(‖𝛾‖) ⋅ |vars(𝛾)| ⋅ |𝐷|𝑘+1),

up to logarithmic factors, and where 𝑓(‖𝛾‖) is the time required to compute
the core of 𝛾.29 Hence, the problem is FPT when parametrized by ‖𝛾‖. 29 This can be done in exponential

time.

In fact, Dalmau, Kolaitis and Vardi improved this result: in a surprising
twist, one does not need to explicitly construct the core to efficiently eval-
uate a CQ that is semantically equivalent to one of small tree-width. They
proved that this class could actually be evaluated in polynomial time [DKV02,
Corollary 5]—importantly, this is a promise problem: we work under the
assumption that the input does have bounded tree-width but we do not need
to verify this claim. Remarkably, Grohe then proved the converse implication:
these are the only classes of CQs that are tractable!

Proposition III.1.25 (Grohe’s theorem [Gro07, Theorem 1.1]). Let 𝜎 be a fixed
signature. Assuming that W[1] ≠ FPT, for any recursively enumerable class
of CQs over 𝜎, the following are equivalent:
1. there exists 𝑘 ∈ ℕ s.t. the tree-width of the cores of the queries in the class

is bounded by 𝑘;
2. its evaluation problem is fixed-parameter tractable when parametrized by

the size of the query;
3. its evaluation problem can be solved in polynomial time.

Figure III.16: E 133, M. C. Escher,
© The M.C. Escher Company.

The difficult implication in this theorem is (3)⇒ (1). Grohe proves it by
contraposition, by generalizing the ideas of [GSS01]: in short, given a class
whose cores have unbounded tree-width, using the Excluded Minor Theorem
[RS86, ∗ (1.5)] one can find an query in the class whose core contains an
arbitrarily large grid. In turn, the clique problem, which is W[1]-hard, is then
reduced to the evaluation problem for these queries with big grids.

Grohe’s theorem deals with fixed signatures: it was later generalized
[CGLP20, Theorem 1] for characterizing FPT evaluation when the signa-
ture is also part. This is done by replacing the notion of tree-width with that
of “submodular width”, introduced by Marx in [Mar13].

Bounded Path-Width. We now focus on path-width, which is a parameter
upper-bounded by the tree-width. So, if a class of CQs has bounded path-
width, then it has bounded tree-width and so by Proposition III.1.22 it can be

71

https://mcescher.com/gallery/watercolor/#iLightbox[gallery_image_1]/3

iii. query languages for relational and graph databases

<latexit sha1_base64="WMbuGjoTQ3R1/nnaG3Rh8zpbics=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRKpj2XBTZcV7QNqKcl0WgfTJCQTpRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhyIVDrOa86am19YXMovF1ZW19Y3iptbzTTKEsYbLAqipO17KQ9EyBtSyIC344R7Iz/gLf/mTMVbtzxJRRReynHMuyNvGIqBYJ4k6sLvVXrFklN29LJngWtACWbVo+ILrtBHBIYMI3CEkIQDeEjp6cCFg5i4LibEJYSEjnPco0DajLI4ZXjE3tB3SLuOYUPaK89UqxmdEtCbkNLGPmkiyksIq9NsHc+0s2J/855oT3W3Mf194zUiVuKa2L9008z/6lQtEgOc6hoE1RRrRlXHjEumu6Jubn+pSpJDTJzCfYonhJlWTvtsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMWNA/L7nH56LxSqu6ZUeexg10c0DxPUEUNdTTIe4hHPOHZqlmhlVl3n6lWzmi28W1ZDx/a6o/6</latexit>

b4

<latexit sha1_base64="dpP0eyKkmPlDe79slgOUrNdQ5jE=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRKx6rLgpsuK9gG1lGQ6rYNpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wln9zpuKtW56kIgov5Tjm3ZE3DMVAME8SdeH3Kr1iySk7etmzwDWgBLPqUfEFV+gjAkOGEThCSMIBPKT0dODCQUxcFxPiEkJCxznuUSBtRlmcMjxib+g7pF3HsCHtlWeq1YxOCehNSGljnzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiQFOdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hPsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmodl97hcOT8qVffMqPPYwS4OaJ4nqKKGOhrkPcQjnvBs1azQyqy7z1QrZzTb+Lashw/dSo/7</latexit>

b5

<latexit sha1_base64="hqF/iGibGSb309o7d+eyPGAcaYY=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRLR6rLgpsuK9gG1lGQ6rYNpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wln9zpuKtW56kIgov5Tjm3ZE3DMVAME8SdeH3Kr1iySk7etmzwDWgBLPqUfEFV+gjAkOGEThCSMIBPKT0dODCQUxcFxPiEkJCxznuUSBtRlmcMjxib+g7pF3HsCHtlWeq1YxOCehNSGljnzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiQFOdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hPsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmodlt1I+Pj8qVffMqPPYwS4OaJ4nqKKGOhrkPcQjnvBs1azQyqy7z1QrZzTb+Lashw/fqo/8</latexit>

b6

(a) Partial homomorphism computed at the fourth step of
the algorithm.

<latexit sha1_base64="WMbuGjoTQ3R1/nnaG3Rh8zpbics=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRKpj2XBTZcV7QNqKcl0WgfTJCQTpRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69fhyIVDrOa86am19YXMovF1ZW19Y3iptbzTTKEsYbLAqipO17KQ9EyBtSyIC344R7Iz/gLf/mTMVbtzxJRRReynHMuyNvGIqBYJ4k6sLvVXrFklN29LJngWtACWbVo+ILrtBHBIYMI3CEkIQDeEjp6cCFg5i4LibEJYSEjnPco0DajLI4ZXjE3tB3SLuOYUPaK89UqxmdEtCbkNLGPmkiyksIq9NsHc+0s2J/855oT3W3Mf194zUiVuKa2L9008z/6lQtEgOc6hoE1RRrRlXHjEumu6Jubn+pSpJDTJzCfYonhJlWTvtsa02qa1e99XT8TWcqVu2Zyc3wrm5JA3Z/jnMWNA/L7nH56LxSqu6ZUeexg10c0DxPUEUNdTTIe4hHPOHZqlmhlVl3n6lWzmi28W1ZDx/a6o/6</latexit>

b4

<latexit sha1_base64="dpP0eyKkmPlDe79slgOUrNdQ5jE=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRKx6rLgpsuK9gG1lGQ6rYNpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wln9zpuKtW56kIgov5Tjm3ZE3DMVAME8SdeH3Kr1iySk7etmzwDWgBLPqUfEFV+gjAkOGEThCSMIBPKT0dODCQUxcFxPiEkJCxznuUSBtRlmcMjxib+g7pF3HsCHtlWeq1YxOCehNSGljnzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiQFOdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hPsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmodl97hcOT8qVffMqPPYwS4OaJ4nqKKGOhrkPcQjnvBs1azQyqy7z1QrZzTb+Lashw/dSo/7</latexit>

b5

<latexit sha1_base64="hqF/iGibGSb309o7d+eyPGAcaYY=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRLR6rLgpsuK9gG1lGQ6rYNpEpKJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePw5EKh3nNWfNzS8sLuWXCyura+sbxc2tZhplCeMNFgVR0va9lAci5A0pZMDbccK9kR/wln9zpuKtW56kIgov5Tjm3ZE3DMVAME8SdeH3Kr1iySk7etmzwDWgBLPqUfEFV+gjAkOGEThCSMIBPKT0dODCQUxcFxPiEkJCxznuUSBtRlmcMjxib+g7pF3HsCHtlWeq1YxOCehNSGljnzQR5SWE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FN7F+6aeZ/daoWiQFOdQ2Caoo1o6pjxiXTXVE3t79UJckhJk7hPsUTwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmodlt1I+Pj8qVffMqPPYwS4OaJ4nqKKGOhrkPcQjnvBs1azQyqy7z1QrZzTb+Lashw/fqo/8</latexit>

b6

(b) Partial homomorphism computed at the fifth step of the
algorithm. Figure III.17: Algorithm to evaluate

a CQ of path-width at most 𝑘 (here
𝑘 = 2) in NL. Each subfigure repre-
sents a path decomposition of the
CQ (on the left-hand side) and a re-
lational database (on the right-hand
side), together with a partial homo-
morphism from the first to the sec-
ond.

evaluated in polynomial time. We shall see that CQs of small path-width can
in fact be evaluated even more efficiently, namely in NL! We define a path
decomposition to be a tree decomposition ⟨𝐓, v⟩ in which 𝐓 is a path, such as
in Figure III.15. The path-width of a structure is the minimum of the width of
all of its path decompositions.

Lemma III.1.26 ([FM25, Lemma 8.10]).30 For each 𝑘 ≥ 1, the CQ evaluation

30 [FM25, Lemma 8.10], correspond-
ing to Lemma V.8.9 in this thesis,
actually proved this result over the
larger class of UC2RPQs of bounded
path-width. The proof of the upper
bound is exactly the same, but the
lowerbound is marginally harder.

problem, restricted to CQs of path-width at most 𝑘, is NL-complete.

Proof. X Lower bound. We reduce the problem of Reachability in finite
graphs NL-hardness directly follows from the NL-hardness of the reacha-
bility problem in finite graphs. Given an instance ⟨𝐆, 𝑠, 𝑡⟩ of this problem,
we reduce it to

⟨𝐆′, 𝑠, 𝑡⟩ ⊨? 𝜌(𝑥1, 𝑥𝑛) =̂ 𝑥1 → 𝑥2 ∧ 𝑥2 → 𝑥3 ∧…∧ 𝑥𝑛−1 → 𝑥𝑛,

where 𝑛 = |𝐺| and 𝐆′ is the graph obtained from 𝐆 by adding a self-loop on
𝑡. Clearly, there is a path from 𝑠 to 𝑡 in 𝐆 iff there is a path from 𝑠 to 𝑡 of
length at most 𝑛 in𝐆—by pigeon-hole principle—, which in turn is equivalent
to asking for a path from 𝑠 to 𝑡 of length exactly 𝑛 in 𝐆′ thanks to the extra
self-loop. To conclude, note that 𝜌 has path-width one.

X Upper bound, first part: with the path decomposition. First, we assume
that a path decomposition of width at most 𝑘 of the query of is also provided
as part of the input. So, we are given as input:
• a database ⟨𝐃, ̄𝑑⟩,
• a CQ 𝛾(�̄�), and
• a path decomposition ⟨𝑇, v⟩ of width at most 𝑘 of 𝛾(�̄�).
The algorithm, illustrated in Figure III.17, maintains a partial homomorphism
𝑓∶ 𝐆 ⇀ 𝐃. We scan the bags of the decomposition from top to bottom.
• Initially—before even scanning the first bag—𝑓 is the map with empty

domain.
• Then, when scanning the 𝑖-th bag 𝑏𝑖, we start by restricting 𝑓 to variables

of dom(𝑓) ∩ v(𝑏𝑖). Then, we extend 𝑓 so that it is defined on the whole bag

72

iii.1. relational databases

v(𝑏𝑖). For every variable 𝑦 in v(𝑏𝑖) ∖ dom(𝑓):
– if it belongs to �̄�, say 𝑦 = 𝑥𝑖, we let 𝑓(𝑥𝑖) =̂ 𝑢𝑖;
– otherwise, we non-deterministically guess the value of 𝑓(𝑦).
We then check, for every atom ℛ(𝑘)(𝑥1, … , 𝑥𝑘) of 𝛾(�̄�) s.t. all 𝑥𝑗’s occur in
v(𝑏𝑖) if ⟨𝑓(𝑥1), … , 𝑓(𝑥𝑘)⟩ ∈ ℛ(𝑘)(𝐃). If not, we reject.

If the algorithm manages to scan the whole bag decomposition without re-
jecting, it accepts.

Completeness of the algorithm is trivial. Correctness follows from the fact
that if a variable occurs in bags 𝑏𝑖 and 𝑏𝑘 with 𝑖 ≤ 𝑘, then it must also belong
to every bag 𝑏𝑗 for 𝑗 ∈ ⟦𝑖, 𝑘⟧. As a consequence, a variable 𝑥 is assigned exactly
one value 𝑓(𝑥) during the whole process.

Concerning the space complexity, by construction, at the 𝑖-th step of the
algorithm, 𝑓 is defined exactly on 𝑏𝑖, so on at most 𝑘 + 1 variables. And so, 𝑓
can be stored in space (𝑘 + 1) log(|𝐷|). We also need a counter with log(|𝑇|)
bits to scan through the path decomposition. Overall, the algorithm runs
in non-deterministic space 𝒪(𝑘 log(|𝐷|) + log(|𝑇|)) = 𝒪(log(|𝐷|) + log(|𝑇|)),
which is logarithmic in the size of the input.

X Upper bound, second part: without the path decomposition. Then, we
claim that the original problem—when the tree decomposition is not part of
the input—also lies in NL. This is because one can compute, from 𝛾, a path
decomposition in (deterministic) logarithmic space by31 [KM10, Theorem 1.3, 31 This result is an adaption of a sim-

ilar statement for tree-width [EJT10,
Theorem I.1, p. 143]. Note that the
promise that the query has bounded
path-width—in fact bounded tree-
width suffices—is a crucial assump-
tion of [EJT10, Theorem I.1, p. 143].

p. 2]. The conclusion follows since functions computable in non-deterministic
logarithmic space are closed under composition [AB09, Lemma 4.17, p. 88].

III.1.6 Unions of Conjunctive Queries

Figure III.18: Semantics of a union
of conjunctive queries (in blue) in
the distributive lattice of relational
databases.

Figure III.19: The study of (co-)UCQs
is intriguingly popular amongst fi-
nite model theorists. TER en Gare
des Houches, by Florian Pépellin, li-
censed under CC BY SA 3.0.

We now show that the desirable properties of conjunctive queries can be lifted
to finite unions of such queries. As mentioned in Section III.1.3, conjunctive
queries are not closed under semantical union: for instance, the query “the
database contains either an 𝑎-edge or a 𝑏-edge” cannot be expressed by a
conjunctive query. In fact, our graphical depiction of the distributive lattice
of relational databases precisely helps us understand this.

Formally, we define a union of conjunctive queries, or UCQ for short, as
a finite set of conjunctive queries that all have the same number of output
variables. This set is denoted disjunctively. Its semantics is defined as the
union of the semantics of the conjunctive queries it contains.32 For instance,

32 Strictly speaking it is not neces-
sary to assume that these output vari-
ables are equal, however we can as-
sume w.l.o.g. that it is the case, by
𝛼-renaming.

if 𝛾(𝑥) = 𝑥 𝑎−→ 𝑦 outputs all vertices with an outgoing 𝑎-edge and 𝛿(𝑥′) =
𝑥′ 𝑏−→ 𝑦′ 𝑐−→ 𝑧′ outputs all vertices with an outgoing 𝑏𝑐-path, then 𝛾(𝑥) ∨ 𝛿(𝑥′)
is the UCQ asking for all nodes that are either the source of an 𝑎-edge or of a
𝑏𝑐-path. We denote UCQs with capital Greek letters, and we call disjunct of Γ
any conjunctive query belonging to a UCQ Γ.

Notice that union of conjunctive queries are also closed under homomor-
phisms. Graphically, we represent them as… unions of conjunctive queries:

73

https://fr.m.wikipedia.org/wiki/Fichier:TER_en_gare_des_Houches_(Haute-Savoie).JPG
https://fr.m.wikipedia.org/wiki/Fichier:TER_en_gare_des_Houches_(Haute-Savoie).JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.fr

iii. query languages for relational and graph databases

instead of being diamond-shaped, UCQs will hence be depicted as inverted
mountain ranges, see Figure III.18. By the proof of Proposition III.1.1, we
can notice that unions of conjunctive queries are as expressive as existential-
positive formulas, i.e. first-order formulas built out of ∃, ∧ and ∨.

Proposition III.1.27. Let Γ be a UCQ. The following are equivalent:
1. Γ is semantically equivalent to a conjunctive query;
2. the semantics of Γ contains a unique hom-minimal element;
3. some disjunct of Γ contains all disjuncts;
4. Γ is semantically equivalent to one of its disjuncts;
5. Γ is semantically equivalent to the weak union of its disjuncts;

𝛾

𝛿

(a) Two CQs 𝛾 and 𝛿 whose seman-
tical union is equivalent to a CQ.

𝛾𝛿
𝛾 ∨○ 𝛿

(b) Two CQs 𝛾 and 𝛿 whose seman-
tical union is not equivalent to a
CQ. We also represented their weak
union.

Figure III.20: When is a union of con-
junctive queries actually equivalent
to a conjunctive query?

Proof. All the intuitions are provided in Figure III.20.
X (1)⇒ (2). If Γ is semantically equivalent to a CQ 𝛿, then the canonical

database 𝐃 of 𝛿 is the unique minimal element in the semantics of Γ.
X (2)⇒ (3). If the semantics of Γ contains a unique minimal element, say

𝐃, then since𝐃 ⊨ Γ, there exists a disjunct 𝛾 of Γ s.t. 𝐃 ⊨ 𝛾. By minimality of
𝐃, it follows that 𝛾 is actually the canonical CQ of𝐃, and again by minimality
of 𝐃 it follows that all disjuncts are contained in 𝛾.

X (3) ⇒ (4). If Γ = 𝛾1 ∨…∨ 𝛾𝑘 has a disjunct, say 𝛾𝑖, that contains all
other disjuncts, then

Γ = 𝛾1 ∨…∨ 𝛾𝑘 ⫅ 𝛾𝑖 ∨…∨ 𝛾𝑖 ≡ 𝛾𝑖 ⫅ Γ

and so Γ is semantically equivalent to its disjunct 𝛾𝑖.
X (4) ⇒ (5). If Γ = 𝛾1 ∨…∨ 𝛾𝑘 is semantically equivalent to one of its

disjuncts, say 𝛾𝑖, then for each 𝑗 we have 𝛾𝑗 ⫅ Γ ≡ 𝛾𝑖, and so by definition of
the weak union as the least upper bound, it follows that 𝛾1 ∨○… ∨○𝛾𝑘 ≡ 𝛾𝑖.

X (5) ⇒ (1). If Γ is semantically equivalent to the weak union of its
disjuncts, then since this query is a CQ, it is equivalent to a CQ…

Proposition III.1.28. Given two UCQs Γ and Δ, we have Γ ⫅ Δ if, and only
if, for every disjunct 𝛾 ∈ Γ, there exists a disjunct 𝛿 ∈ Δ s.t. 𝛾 ⫅ 𝛿.

Proof. The right-to-left implication is trivial. For the converse one, assume
that Γ ⫅ Δ, and let 𝛾 be a disjunct of Γ. Letting 𝐆 be its canonical database,

74

iii.2. graph databases

we have by duality that 𝐆 ⊨ Γ and since Γ ⫅ Δ, it follows that 𝐆 ⊨ Δ, and
hence 𝐆 ⊨ 𝛿 for some disjunct 𝛿 ∈ Δ, and so, by duality, 𝛾 ⫅ 𝛿.

Corollary III.1.29. Containment and semantical equivalence of unions of
conjunctive queries are NP-complete.

Essentially, these results are permitted, at least in part, by the fact that
semantical union is well-behaved with respect to duality: this is mostly
because their semantics is closed under homomorphisms. Hopefully, one
could hope to find larger query languages satisfying this property, and then
deduce decidability results via duality. Both unfortunately and expectedly, it
turns out that there are no other first-order queries which are closed under
homomorphisms.

Proposition III.1.30 (Rossman’s theorem, [Ros08, Theorem 1.7]).33 ,34 The 33 Actually the full statement of the
theorem is slightly more precise and
relates the quantifier-rank of the for-
mulas. The original construction was
far from optimal, and it was recently
shown by the same author that this
rank can actually be preserved by the
construction [Ros25, Theorem 1.4].
34 Both references mention first-
order sentences; however we do not
see any reason why it would not ap-
ply to all first-order formulas.

semantics over finite relational structures of a first-order sentence is closed
under homomorphisms if, and only if, it is equivalent to a union of conjunctive
queries.

We leave to the reader the care to show that the other properties of CQs
can be lifted to UCQs, for instance:
• starting from a UCQ 𝛾1 ∨…∨𝛾𝑘, the UCQ obtained by (1) considering the

cores �̌�1, … , �̌�𝑘, (2) putting aside those that are contained in another core,
and (3) taking their union yields a UCQ that is semantically equivalent to
the original one, and minimal under most reasonable metrics;

• the evaluation of UCQs of bounded tree-width—we naturally extend the
notion of tree-width to unions by letting it be the maximum of the tree-
width of its disjuncts—is polynomial time.
In the next section, we will deal with a class of queries closed under ho-

momorphisms that strictly extends unions of conjunctive queries, namely
unions of conjunctive regular path queries. Naturally, in light of Rossman’s
theorem, it will be incomparable with first-order logic, but the fact that it is
closed under homomorphisms will help retain a few helpful properties that
UCQs have.

III.2 Graph Databases

For a detailed introduction to CRPQs, the reader can also see [Fig21a]. For a
more general introduction to different query languages for graph databases—including
CRPQs—see [Bar13], and for a more practical approach, see [Ang+17].

III.2.1 Conjunctive Regular Path Queries

Section III.1 shows that conjunctive queries—and unions thereof—is a reason-
able query language: it is expressive enough to capture many of the queries
that are written in practice in SQL, but small enough to be amenable to static
analysis thanks to duality. However, conjunctive queries, and in fact the larger

75

iii. query languages for relational and graph databases

language of first-order logic, or relational calculus, is remarkably powerless
against “graph-traversal queries”.

author1

paper1

author2

paper2

author3 author4

paper3

author5

wrote wrote wrote wrote wrote wrote

advised advised Figure III.21: A relational database
with two binary predicates.

We illustrate this idea on a simplified example—to see a real example, see
Figures I.13, I.14 and I.16 and Table I.15. We depict in Figure III.21 a relational
database over the purely relational signature with two binary predicates wrote−−−−→
and advised−−−−−−→. Vertices of the structure represent people, and an edge 𝑥 wrote−−−−→ 𝑦
indicate that the person 𝑥 wrote the paper 𝑦, while edges 𝑥 advised−−−−−−→ 𝑦 indicate
that person 𝑥 was the Ph.D. advisor of person 𝑦. While conjunctive queries
can express properties like

𝛾1(𝑥, 𝑦) = 𝑥
wrote−−−−→ 𝑧∧ 𝑦 wrote−−−−→ 𝑧,

that asks for all pairs of co-authors, it cannot express transitive-based prop-
erties; in fact, even the full first-order logic cannot express such properties.

Proposition III.2.1. There is not first-order formula 𝛾2(𝑥, 𝑦) that ouputs all
pairs s.t. 𝑥 is a scientific ancestor of 𝑦—i.e. s.t. there is a non-empty path from
𝑥 to 𝑦 that only consists of advised edges.

Proof. Assume by contraction that this would be the case. Clearly, 𝛾2(𝑥, 𝑦)
is closed under homomorphisms, and so by Rossman’s theorem, it would be
equivalent to a UCQ, say 𝛿1(𝑥, 𝑦) ∨ …∨ 𝛿𝑘(𝑥, 𝑦). We let 𝑛 be strictly greater
than the diameter of any 𝛿𝑖, and define ⟨𝐏𝑛, 𝑝0, 𝑝𝑛⟩ to be the pointed relational
database consisting the facts

𝑝0
wrote−−−−→ 𝑝1

wrote−−−−→ … wrote−−−−→ 𝑝𝑛,

which is actually a shorthand for

{𝑝0
wrote−−−−→ 𝑝1, 𝑝1

wrote−−−−→ 𝑝2, … , 𝑝𝑛−1
wrote−−−−→ 𝑝𝑛}.

Then clearly, ⟨𝐏𝑛, 𝑝0, 𝑝𝑛⟩ ⊨ 𝛾2(𝑥, 𝑦) and so ⟨𝐏𝑛, 𝑝0, 𝑝𝑛⟩ ⊨ 𝛿𝑖(𝑥, 𝑦) for some
𝑖 ∈ ⟦1, 𝑘⟧. By duality, there exists a homomorphism from the canonical
database ⟨𝐃𝑖, 𝑥, 𝑦⟩ of 𝛿𝑖(𝑥, 𝑦) to ⟨𝐏𝑛, 𝑝0, 𝑝𝑛⟩. However, the distance from 𝑥
to 𝑦 in 𝐆𝑖 is strictly upper bounded by 𝑛, since 𝑛 was chosen to be strictly
greater than the diameter of𝐃𝑖, and the distance from 𝑥 to 𝑦 is exactly 𝑛. Since
homomorphisms contract distances, we have reached a contradiction. And
hence, the property of Proposition III.2.1 is not first-order definable.35 35 Amuchmore commonway of prov-

ing Proposition III.2.1 is by using
the notion of Ehrenfeucht–Fraïssé
games, see e.g. [Kol07, Propo-
sition 2.3.28]. or Gaifman/Hanf-
locality, see e.g. [Bar09]. In all
cases, the proof relies on an idea
that first-order queries are local. In
our proof, the notion of locality—
formalized by the fact that homo-
morphisms contract the distances—is
extremely strong, but is only valid
over the first-order queries amenable
to duality, i.e. UCQs. This results
in a very simple proof, which how-
ever relies on a highly non-trivial
result, namely Rossman’s theorem.
On the other hand, a proof based
on Ehrenfeucht–Fraïssé games or
Gaifman/Hanf-locality does not rely
on any deep theorem, but the no-
tion of locality it manipulates ismuch
more complex, as it captures all first-
order queries.

Queries such as the one of Proposition III.2.1 do not arise over all kinds

76

iii.2. graph databases

of databases: for instance, transitive closures of tables—or of projections of
table— for Table III.1 would not make any sense. On the other hand, it is a very
natural construction for databases such as the ones of Figures I.14 and III.21.
Transitive closures naturally arise in databases whose nodes are homogeneous,
and in particular for human-centered data—see for instance [Neo]. Rather
than encoding this kind of data into relational databases, by inferring from
the examples of Figures I.14 and III.21, we model graph databases as edge-
labelled directed graphs, or equivalently as relational structures over a finite
signature consisting only of binary predicates. Formally, given an alphabet
𝐀, a graph database over 𝐀 consists of a pair 𝐆 = ⟨𝐺,ℰ(𝐺)⟩, where ℰ(𝐺) ⊆
𝑉(𝐺) ×𝔸×𝑉(𝐺) is a set of labelled edges—sometimes also called atoms.

This definition was motivated by the need to have database models cen-
tred around the notion of paths. We then naturally extend the language of
conjunctive queries to allow for path navigation: this is done by allowing
these queries to ask for the existence of a path between two variables labelled
by a given regular language. For instance, 𝑥 (𝑎𝑏)∗−−−→ 𝑦 asks that there is path
from 𝑥 to 𝑦 that alternates between 𝑎−→ and 𝑏−→ edges.

Definition III.2.2 (CRPQ: syntax). A conjunctive regular path query, or CRPQ
for short, 𝛾(�̄�) over 𝔸 consists of a set of triples ⟨𝑦, 𝐿, 𝑧⟩ together with a tuple
of variables �̄�, where 𝐿 is a regular language over 𝔸, and 𝑦 and 𝑧 are variables.
We denote by 𝑥 𝐿−→ 𝑦 the triple ⟨𝑥, 𝐿, 𝑦⟩, called atom. The set Atoms(𝛾) of
atoms is denoted conjunctively. We denote by vars(𝛾) the set of variables
occurring in 𝛾. As for CQs, variables of �̄� are called output variables.

An example of conjunctive regular path query is

𝛾3(𝑥, 𝑦) =̂ 𝑥
wrote−−−−→ 𝑧∧ 𝑧′ wrote−−−−→ 𝑧∧ 𝑦 (advised)∗−−−−−−−→ 𝑧′,

which intuitively asks for, in a given graph databases, all pairs of people ⟨𝑥, 𝑦⟩
such that
• 𝑥 has written some paper 𝑧, and some person 𝑧′ also wrote 𝑧,
• this 𝑧′ can be reached from 𝑦 by taking an arbitrary sequence of advised−−−−−−→

edges.
Reformulating the constraints, we get that 𝑥 and 𝑧′ should be co-authors, and
that 𝑧′ should be a scientific descendant—in the broad sense—of 𝑦. Hence, the
query asks for all pairs ⟨𝑥, 𝑦⟩ s.t. 𝑥 is a co-author of a “scientific descendant”
of 𝑦.

By definition, conjunctive regular path queries over 𝔸 can be seen as
finite pointed structures over the infinite signature 𝜎Reg(𝔸∗) that has a binary
predicate 𝐿−→ for each regular language 𝐿 ⊆ 𝔸∗: this leads to a natural depiction
of these queries, see Figure III.22.

𝑥 𝑦

wrote wrote

advised∗

Figure III.22: Graphical representa-
tion of the CRPQ 𝛾3(𝑥, 𝑦).

Definition III.2.3 (CRPQ: semantics). Given a CRPQ 𝛾(�̄�) and a pointed
graph database ⟨𝐆, �̄�⟩, an evaluation map from 𝛾(�̄�) to ⟨𝐆, �̄�⟩ is a function
from vars(𝛾) to 𝐺 that sends �̄� to �̄�, and such that for every atom 𝑥 𝐿−→ 𝑦 of

77

iii. query languages for relational and graph databases

𝛾, there exists a path from 𝑓(𝑥) to 𝑓(𝑦) in𝐆 labelled by some word of 𝐿. See
Figure III.23 for an example.

When such an evaluation map exists, we say that ⟨𝐆, �̄�⟩ satisfies 𝛾(�̄�),
which we still denote by ⟨𝐆, �̄�⟩ ⊨ 𝛾(�̄�) or �̄� ∈ ⟦𝛾(�̄�)⟧𝐆. The set ⟦𝛾(�̄�)⟧𝐆 is
called the evaluation of 𝛾(�̄�) over 𝐆.

𝑥 𝑦

wrote wrote

advised∗

author1

paper1

author2

paper2

author3 author4

paper3

author5

wrote wrote wrote wrote wrote wrote

advised advised

Figure III.23: A conjunctive regular
path query (above), a graph database
(below), and an evaluation map from
the former to the latter.

Evaluation maps are, as Figure III.23 hints at, well-behaved w.r.t. homo-
morphisms: formally, if 𝑓∶ 𝛾(�̄�) → ⟨𝐇, �̄�⟩, and 𝑔∶ ⟨𝐇, �̄�⟩ → ⟨𝐇′, �̄�′⟩ is a
homomorphism, then their composition 𝑔 ∘ 𝑓 ∶ 𝛾(�̄�) → ⟨𝐇′, �̄�′⟩ is still an
evaluation map.

Fact III.2.4. In particular, the semantics of CRPQs is closed under homomor-
phisms.

When 𝛾(�̄�) is a CQ, an evaluation maps 𝛾(�̄�) → ⟨𝐇, �̄�⟩ exactly corre-
sponds homomorphisms ⟨𝐆, �̄�⟩ → ⟨𝐇, �̄�⟩, where ⟨𝐆, �̄�⟩ denotes the canonical
database of 𝛾(�̄�).36 36 Because of this, the terminology

is sometimes abused in the litera-
ture, where evaluations maps for CR-
PQs can be referred to as “homomor-
phisms”… We refuse this etymolog-
ical blasphemy: conjunctive regular
path queries and graph databases are
not of the same type—formally, these
structures do not share the same sig-
nature—so they cannot be homomor-
phic. Partially out of defiance we
actually considered calling evalua-
tion maps “heteromorphisms” since
they are constraint-preserving maps
between objects having a different
structure.

Naturally, any CQ can be seen as a CRPQ by identifying 𝑎−→with {𝑎}−−→. Hence,
by Proposition III.2.1, it follows that CRPQs are strictly more expressive than
CQs. An alternative but equivalent definition for the semantics of CRPQs
is to encode them as primitive-positive formulas over the infinite signature
𝜎Reg(𝔸∗). Exactly like for conjunctive queries, we encode e.g.

𝛾3(𝑥, 𝑦) = 𝑥
wrote−−−−→ 𝑧∧ 𝑧′ wrote−−−−→ 𝑧∧ 𝑦 (advised)∗−−−−−−−→ 𝑧′

as
�̃�3(𝑥, 𝑦) =̂ ∃𝑧. ∃𝑧′. 𝑥

wrote−−−−→ 𝑧∧ 𝑧′ wrote−−−−→ 𝑧∧ 𝑦 (advised)∗−−−−−−−→ 𝑧′.

To evaluate a primitive-positive formula �̃�(�̄�) over 𝜎Reg(𝔸∗), we need to build
a finite 𝜎Reg(𝔸∗)-structure out of a graph database𝐆: we let �̃� share the same
vertices as𝐆 and, for every regular language 𝐿 s.t. 𝐿−→ occurs in𝜙, we interpret
the predicate 𝐿−→ as the set of pairs ⟨𝑢, 𝑣⟩ of vertices s.t. there is a path from 𝑢
to 𝑣 labelled by a word of 𝐿.37 It is then routine to check that the first-order 37 This can be computed in NL e.g. by

doing a Cartesian product between
𝐆 and an automaton for 𝐿, followed
by a suitable projection.

semantics ⟦�̃�(�̄�)⟧�̃� coincides with the CRPQ semantics ⟦𝛾(�̄�)⟧𝐆.38

38 Hence, our reuse of ⊨ and ⟦ − ⟧− is
actually a very reasonable abuse of
notation!

78

iii.2. graph databases

Note however that this does not mean that the theory of CRPQs boils
down to the theory of CQ: one reason is first that the construction 𝐆 ↦
�̃� actually depends on the query—we need to restrict our construction to
languages occurring in the query in order to obtain a finite structure. Even
more importantly, the construction 𝐆 ↦ �̃� actually fails to preserve any
interesting property: notice e.g. that if 𝐆 is a directed path

𝑢0
𝑎−→ 𝑢1

𝑎−→ … 𝑎−→ 𝑢𝑛,

and if only 𝑎∗−→ occurs in the query, then �̃� is the 𝑘-transitive tournament, see
Figure III.24. From a very simple structure of path-width 1, we obtained a
structure of unbounded tree-width!

Figure III.24: The 3-transitive tour-
nament 𝐓3. (Replica of Figure I.25.)

Conjunctive Regular Path Queries Evaluation
Input : An alphabet 𝐀, a conjunctive regular path query 𝛾(�̄�)

over 𝐀, and a pointed graph database ⟨𝐆, �̄�⟩.
Question: Does �̄� ∈ ⟦𝛾(�̄�)⟧𝐆?

When dealing with CRPQs, we will assume in our proofs that the regular
languages are specified by non-deterministic finite automata; however we
will use regular expressions in every example for the sake of readability.
Given a CRPQ 𝛾, we denote its number of variables and atoms by ‖𝛾‖var and
‖𝛾‖at, respectively. On the other hand ‖𝛾‖ denotes the size of any reasonable
representation of the query: we agree to take the sum of its number of atoms
with the sum of the size of automata used to describe 𝛾.

Proposition III.2.5. The conjunctive regular path queries evaluation
problem is NP-complete.

Proof. The lower bound already holds for CQs by Proposition III.1.7. The
upper bound can be proven by (1) guess a function from the variables of the
query to the vertices of the database, and (2) checking that it is an evaluation
map. For each atom, each check consists in checking if there is a path from
some vertices to another labelled by a word of some language, which can be
done in NL e.g. by an easy adaptation of the NL algorithm for reachability
in finite graphs.

Overall, the algorithms for CQ evaluation extend effortlessly to CRPQs.
Let us point out that we defined graph databases as a subclass of relational
structures and not as relational databases: the motivation is behind this
definition is that, in light e.g. of the Wikidata example of Section I.2—or of the
Panama Papers [Neo]!—the vertices of graph databases are first-class citizens!

Variations on Conjunctive Regular Path Queries. We mention here a few
sub/subclasses of CRPQs that will play an important role. Regular path queries
(RPQ) consist of CRPQs with a single atom: the best example of RPQ is perhaps
that of 𝛾(𝑥, 𝑦) = 𝑥 𝔸∗

−−→ 𝑦 that described a simple reachability constraint.

79

iii. query languages for relational and graph databases

On the other direction, the languages used in CRPQs can be extended to
navigate edges in both directions. Formally, given a graph database 𝐆, we
consider the expanded database 𝐆± obtained from 𝐆 by adding, for every
edge 𝑥 𝑎−→ 𝑦 in 𝐆, an extra edge 𝑦 𝑎−−→ 𝑥. We obtain a graph database on
the alphabet 𝔸± = 𝔸 ∪𝔸− where 𝔸− =̂ {𝑎− ∣ 𝑎 ∈ 𝔸}. We then define
the syntax of a CRPQ with two-way navigation, or C2RPQ, as a CRPQ on the
alphabet 𝔸±. Its evaluation is defined as the evaluation of the CRPQ on𝐆±.
For instance, the evaluation of the C2RPQ

𝛾4(𝑥, 𝑦) =̂ 𝑥
(wrote ⋅wrote−)∗−−−−−−−−−−−−→ 𝑦

on the graph database of Figure III.21 returns all pairs of individuals linked by
a chain of co-authorship. It includes (author1, author3) or (author1, author1)
but not (author1, author4).

Unions of conjunctive regular path queries (UCRPQs) and unions of conjunc-
tive two-way regular path queries (UC2RPQs) are defined analogously to unions
of conjunctive queries. Infinitary unions are defined similarly, except that we
allow for potentially infinite unions. We often use a set notation to denote
the union, especially for infinitary unions.

Fact III.2.6. Infinitary unions of CQs, of CRPQs, or even of UC2RPQs all have
the same expressivity, which exactly correspond to the semantical queries
that are closed under homomorphisms.

Proof. Indeed, it is easy to see that each of these query languages are closed
under homomorphisms. Conversely, given a query 𝜙 that is closed under
homomorphisms, then 𝜙 is semantically equivalent to the infinitary union of
CQs

�{𝛾 ∣ 𝛾 canonical CQ of some 𝐆 ∈ 𝜙 }.

These infinite objects will mostly appear as intermediate objects in our con-
structions and proofs, on our way to proving that they are actually equivalent
to a finite union.

III.2.2 Deciding Equivalence of Conjunctive Regular Path Queries

CRPQs form the core navigational mechanism of the new ISO standard Graph
Query Language (GQL) [ISO24] and the SQL extension for querying graph-
structured data SQL/PGQ [ISO23] (see also [Fra+23a; Fra+23b]). Hence, the
static analysis of conjunctive regular path queries is of the foremost impor-
tance: we prove in this subsection that semantical equivalence of CRPQs is
decidable. Notice however that the containment of 𝛾1(𝑥, 𝑦) =̂ 𝑥 𝐾−→ 𝑦 into
𝛾2(𝑥, 𝑦) =̂ 𝑥

𝐿−→ 𝑦 is equivalent to asking for 𝐾 ⊆ 𝐿. Since language inclusion
for non-deterministic automata is PSpace-hard, it follows that there is no
hope for containment to be as easy for CRPQs as it is for conjunctive queries…

Static analysis of conjunctive queries relied on duality theory, which as-
sociated to each CQ a canonical database. We show here that for CRPQs, or

80

iii.2. graph databases

even for UC2RPQs, we can associate to each query an infinite set of canoni-
cal databases, which will help us decide containment, and hence semantical
equivalence.

Homomorphisms. CRPQs and C2RPQs over an alphabet 𝔸 can be seen
as relational structures over 𝜎Reg(𝔸∗) and 𝜎Reg(𝔸±∗), respectively. As such,
they come equipped with a notion of homomorphism between them, see
e.g. Figure III.26b. These homomorphisms behave nicely w.r.t. to evaluation
maps,39 in the sense that for every homomorphism of CRPQs 𝑓∶ 𝛾′(�̄�′) → 39 Déjà vu?

𝛾(�̄�), for every evaluation map 𝑔∶ 𝛾(�̄�) → ⟨𝐇, �̄�⟩, then their composition
𝑔 ∘ 𝑓 ∶ 𝛾′(�̄�′) → ⟨𝐇, �̄�⟩ is still an evaluation map.

Fact III.2.7. Hence, for anyCRPQs (resp. C2RPQs)𝛾(�̄�) and𝛾′(�̄�′), if𝛾(�̄�) hom−−−→
𝛾′(�̄�′) then 𝛾′(�̄�′) ⫅ 𝛾(�̄�).

However, contrary to the case of conjunctive queries (Proposition III.1.8),
the converse implication does not hold: letting 𝛾1() =̂ 𝑥

𝑎𝑏−→ 𝑧 and 𝛾2() =̂ 𝑥
𝑎−→

𝑦 𝑏−→ 𝑧, then 𝛾1() ⫅ 𝛾2() (in fact these queries are equivalent) but there is no
homomorphism from 𝛾2() to 𝛾1()—and neither from 𝛾1() to 𝛾1(). This lack of
converse implication for Fact III.2.7 is precisely what makes the static analysis
of CRPQs hard—or interesting, depending on the point of view! The previous
example, while important, can actually seem somewhat degenerate: the only
problems seems to occur from the fact that an atom 𝑎𝑏−→ essentially has access
to an internal variable that the homomorphism cannot manipulate. While
this is indeed an issue, it only illustrate part of the difficulty posed by CRPQs,
and so we turn to a slightly more involved example.

Example III.2.8 (Simplification of [FLS98, Figure 3].). Consider the Boolean
CRPQs

𝛾() =̂ 𝑤 𝑎−→ 𝑥 𝑎 + 𝑏−−−→ 𝑦 𝑏−→ 𝑧 and 𝛿() =̂ 𝑥 𝑎−→ 𝑦 𝑏−→ 𝑧.

We claim that 𝛾() ⫅ 𝛿(): indeed, if 𝐆 is a database that satisfies 𝛾() then
it contains a path that is either labelled by 𝑎𝑎𝑏 or by 𝑎𝑏𝑏, and so in both
cases it contains an 𝑎𝑏-path. However, there is no homomorphism from 𝛿()
to 𝛾(). Note that here the issue does not arise from an “internal variable”,
but rather from the fact that to handle one case (the case of 𝑎𝑎𝑏-paths), we
would need to map ⟨𝑥, 𝑦, 𝑧⟩ to ⟨𝑤, 𝑥, 𝑦⟩, while in the other case (the case of
𝑎𝑏𝑏-paths) we would need to map ⟨𝑥, 𝑦, 𝑧⟩ (of 𝛿) to ⟨𝑥, 𝑦, 𝑧⟩ (of 𝛾) to obtain a
homomorphism.40

40 Actually this idea of having maps
that covers only some cases but not
all can be formalized, and leads to
an algorithm for deciding contain-
ment: see the notion of “canonical
database covered by a query mapping”
in [FLS98].

The idea behind canonical databases for C(2)RPQs is as follows starting
from a CRPQ 𝛾(�̄�) = ⋀𝑛

𝑖=1 𝑦𝑖
𝐿𝑖−→ 𝑧𝑖, we look every possible choice of words

⟨𝑢𝑖 ∈ 𝐿𝑖⟩𝑖∈⟦1,𝑛⟧. Replacing
𝐿𝑖−→ by a directed path labelled by 𝑢𝑖 yields a pointed

graph database that satisfies 𝛾(�̄�) by construction. These will precisely be the
canonical databases of our CRPQ! We illustrate the notion on Figure III.25.
Dealing formally with the case that 𝑢𝑖 = 𝜀 is actually somewhat tricky since,
as a result, the two ends of this atom needs to bemerged. So, to properly define
canonical databases for CRPQs, we first need to introduce a few technical tools,

81

iii. query languages for relational and graph databases

𝑎∗

𝑏+

𝑐 + 𝑑

𝑎

𝑎
𝑎

𝑏 𝑏
𝑑

𝑎

𝑏

𝑑

𝑒

Figure III.25: A Boolean CRPQ
(left-hand side), one of its canoni-
cal databases (middle), and a graph
database that satisfies the query but
is not one of its canonical databases.

that will also prove useful throughout this part of the thesis to manipulate
CRPQs.

Equality Atoms. C2RPQs with equality atoms are queries of the form 𝛾(�̄�) =
𝛿 ∧ 𝐼, where 𝛿 is a C2RPQ (without equality atoms) and 𝐼 is a conjunction
of equality atoms of the form 𝑥 = 𝑦. Again, we denote by vars(𝛾) the set of
variables appearing in the (equality and non-equality) atoms of 𝛾. We define
the binary relation =𝛾 over vars(𝛾) to be the reflexive-symmetric-transitive
closure of the binary relation {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦 is an equality atom in 𝛾}. In
other words, we have 𝑥 =𝛾 𝑦 if the equality 𝑥 = 𝑦 is forced by the equality
atoms of 𝛾. Note that every C2RPQ with equality atoms 𝛾(�̄�) = 𝛿 ∧ 𝐼 is
equivalent to a C2RPQ without equality atoms 𝛾≈, which is obtained from 𝛾
by collapsing each equivalence class of the relation =𝛾 into a single variable.
This transformation gives us a canonical renaming from vars(𝛾) to vars(𝛾≈).
For instance, 𝛾(𝑥, 𝑦) =̂ 𝑥 𝐾−→ 𝑦 ∧ 𝑦 𝐿−→ 𝑧 ∧ 𝑥 = 𝑦 collapses to 𝛾≈(𝑥, 𝑥) =̂ 𝑥 𝐾−→
𝑥∧ 𝑥 𝐿−→ 𝑧.

Refinements. For anNFA𝒜 and two states 𝑞, 𝑞′ thereof, we denote by𝒜[𝑞, 𝑞′]
the sublanguage of 𝒜 recognized when considering {𝑞} as the set of initial
states and {𝑞′} as the set of final states. An atom 𝑚-refinement of a C2RPQ
atom 𝛾(𝑥, 𝑦) = 𝑥 𝐿−→ 𝑦 where 𝐿 is given by the NFA 𝒜𝐿 is any C2RPQ of the
form

𝜌(𝑥, 𝑦) = 𝑥 𝐿1−→ 𝑡1
𝐿2−→ … 𝐿𝑛−1−−−→ 𝑡𝑛−1

𝐿𝑛−→ 𝑦 (III.6)

where 1 ≤ 𝑛 ≤ 𝑚, 𝑡1, … , 𝑡𝑛−1 are fresh (existentially quantified) variables, and
𝐿1, … , 𝐿𝑛 are such that there exists a sequence (𝑞0, … , 𝑞𝑛) of states of 𝒜𝐿 such
that 𝑞0 is initial, 𝑞𝑛 is final, and for each 𝑖, 𝐿𝑖 is either of the form
i. 𝒜𝐿[𝑞𝑖, 𝑞𝑖+1],
ii. {𝑎} if the letter 𝑎 ∈ 𝔸 belongs to 𝒜𝐿[𝑞𝑖, 𝑞𝑖+1], or
iii. {𝑎−} if 𝑎− ∈ 𝔸− belongs to 𝒜[𝑞𝑖, 𝑞𝑖+1].
Additionally, if 𝜀 ∈ 𝐿, the equality atom “𝑥 = 𝑦” is also an atom 𝑚-refinement.
Thus, an atom 𝑚-refinement can be either of the form (III.6) or “𝑥 = 𝑦”.

<latexit sha1_base64="1T0nNyAJFrKErsnGQRXdfADHTfE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptA5OHiQTsRT9Abf6beIf6F94Z0xBLaITkpw5954zc+/1YylS5TivBWtmdm5+obhYWlpeWV0rr2+00ihLGG+ySEZJx/dSLkXIm0ooyTtxwr3Al7zt35zqePuWJ6mIwgs1inkv8IahGAjmKaIad1flilN1zLKngZuDCvJVj8ovuEQfERgyBOAIoQhLeEjp6cKFg5i4HsbEJYSEiXPco0TajLI4ZXjE3tB3SLtuzoa0156pUTM6RdKbkNLGDmkiyksI69NsE8+Ms2Z/8x4bT323Ef393CsgVuGa2L90k8z/6nQtCgOcmBoE1RQbRlfHcpfMdEXf3P5SlSKHmDiN+xRPCDOjnPTZNprU1K5765n4m8nUrN6zPDfDu74lDdj9Oc5p0NqvukfVw8ZBpbaXj7qILWxjl+Z5jBrOUUfTeD/iCc/WmSWt1Mo+U61CrtnEt2U9fABnJI9v</latexit>x
<latexit sha1_base64="v/7D3SiqSR9ZcVAlhkd4gaeWnFE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZJ0WkMnDyYToRT9Abf6beIf6F94Z5yCWkQnJDlz7j1n5t7rpzzMpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcBKwZJDwRHd/LGA9j1pSh5KyTCuZFPmdtf3Su4u07JrIwia/kOGW9yBvG4SAMPElUY3xTrjhVRy97FrgGVGBWPSm/4Bp9JAiQIwJDDEmYw0NGTxcuHKTE9TAhThAKdZzhHiXS5pTFKMMjdkTfIe26ho1przwzrQ7oFE6vIKWNPdIklCcIq9NsHc+1s2J/855oT3W3Mf194xURK3FL7F+6aeZ/daoWiQHOdA0h1ZRqRlUXGJdcd0Xd3P5SlSSHlDiF+xQXhAOtnPbZ1ppM16566+n4m85UrNoHJjfHu7olDdj9Oc5Z0DqsuifV48ZRpXZgRl3EDnaxT/M8RQ2XqKOpvR/xhGfrwuJWZuWfqVbBaLbxbVkPH2mEj3A=</latexit>y

<latexit sha1_base64="EgFra2uNR2H5hm3vuz27PDMQ68U=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptAbzIjMRatEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1+GgZCOs5rwZqZnZtfKC6WlpZXVtfK6xstkeQZ402WhEnW8T3BwyDmTRnIkHfSjHuRH/K2f3Oq4u1bnokgiS/kKOW9yBvGwSBgniSqcXdVrjhVRy97GrgGVGBWPSm/4BJ9JGDIEYEjhiQcwoOgpwsXDlLiehgTlxEKdJzjHiXS5pTFKcMj9oa+Q9p1DRvTXnkKrWZ0SkhvRkobO6RJKC8jrE6zdTzXzor9zXusPdXdRvT3jVdErMQ1sX/pJpn/1alaJAY40TUEVFOqGVUdMy657oq6uf2lKkkOKXEK9ymeEWZaOemzrTVC16566+n4m85UrNozk5vjXd2SBuz+HOc0aO1X3aPqYeOgUtszoy5iC9vYpXkeo4Zz1NHU3o94wrN1ZoWWsPLPVKtgNJv4tqyHD2vkj3E=</latexit>z
<latexit sha1_base64="3Zr3sNNhMJXAvinfkmr6VKCu0P4=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwVRLxtSwI4rIF+4BaZJJO69DJg2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1eLEWqHOe1YM3NLywuFZdLK6tr6xvlza1WGmWJz5t+JKOk47GUSxHyphJK8k6ccBZ4kre90bmOt+94kooovFLjmPcCNgzFQPhMEdVgN+WKU3XMsmeBm4MK8lWPyi+4Rh8RfGQIwBFCEZZgSOnpwoWDmLgeJsQlhISJc9yjRNqMsjhlMGJH9B3SrpuzIe21Z2rUPp0i6U1IaWOfNBHlJYT1abaJZ8ZZs795T4ynvtuY/l7uFRCrcEvsX7pp5n91uhaFAc5MDYJqig2jq/Nzl8x0Rd/c/lKVIoeYOI37FE8I+0Y57bNtNKmpXfeWmfibydSs3vt5boZ3fUsasPtznLOgdVh1T6rHjaNKbS8fdRE72MUBzfMUNVyijqbxfsQTnq0LS1qplX2mWoVcs41vy3r4AC62j1I=</latexit>a

<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤
<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤

<latexit sha1_base64="1T0nNyAJFrKErsnGQRXdfADHTfE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptA5OHiQTsRT9Abf6beIf6F94Z0xBLaITkpw5954zc+/1YylS5TivBWtmdm5+obhYWlpeWV0rr2+00ihLGG+ySEZJx/dSLkXIm0ooyTtxwr3Al7zt35zqePuWJ6mIwgs1inkv8IahGAjmKaIad1flilN1zLKngZuDCvJVj8ovuEQfERgyBOAIoQhLeEjp6cKFg5i4HsbEJYSEiXPco0TajLI4ZXjE3tB3SLtuzoa0156pUTM6RdKbkNLGDmkiyksI69NsE8+Ms2Z/8x4bT323Ef393CsgVuGa2L90k8z/6nQtCgOcmBoE1RQbRlfHcpfMdEXf3P5SlSKHmDiN+xRPCDOjnPTZNprU1K5765n4m8nUrN6zPDfDu74lDdj9Oc5p0NqvukfVw8ZBpbaXj7qILWxjl+Z5jBrOUUfTeD/iCc/WmSWt1Mo+U61CrtnEt2U9fABnJI9v</latexit>x
<latexit sha1_base64="v/7D3SiqSR9ZcVAlhkd4gaeWnFE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZJ0WkMnDyYToRT9Abf6beIf6F94Z5yCWkQnJDlz7j1n5t7rpzzMpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcBKwZJDwRHd/LGA9j1pSh5KyTCuZFPmdtf3Su4u07JrIwia/kOGW9yBvG4SAMPElUY3xTrjhVRy97FrgGVGBWPSm/4Bp9JAiQIwJDDEmYw0NGTxcuHKTE9TAhThAKdZzhHiXS5pTFKMMjdkTfIe26ho1przwzrQ7oFE6vIKWNPdIklCcIq9NsHc+1s2J/855oT3W3Mf194xURK3FL7F+6aeZ/daoWiQHOdA0h1ZRqRlUXGJdcd0Xd3P5SlSSHlDiF+xQXhAOtnPbZ1ppM16566+n4m85UrNoHJjfHu7olDdj9Oc5Z0DqsuifV48ZRpXZgRl3EDnaxT/M8RQ2XqKOpvR/xhGfrwuJWZuWfqVbBaLbxbVkPH2mEj3A=</latexit>y

<latexit sha1_base64="EgFra2uNR2H5hm3vuz27PDMQ68U=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptAbzIjMRatEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1+GgZCOs5rwZqZnZtfKC6WlpZXVtfK6xstkeQZ402WhEnW8T3BwyDmTRnIkHfSjHuRH/K2f3Oq4u1bnokgiS/kKOW9yBvGwSBgniSqcXdVrjhVRy97GrgGVGBWPSm/4BJ9JGDIEYEjhiQcwoOgpwsXDlLiehgTlxEKdJzjHiXS5pTFKcMj9oa+Q9p1DRvTXnkKrWZ0SkhvRkobO6RJKC8jrE6zdTzXzor9zXusPdXdRvT3jVdErMQ1sX/pJpn/1alaJAY40TUEVFOqGVUdMy657oq6uf2lKkkOKXEK9ymeEWZaOemzrTVC16566+n4m85UrNozk5vjXd2SBuz+HOc0aO1X3aPqYeOgUtszoy5iC9vYpXkeo4Zz1NHU3o94wrN1ZoWWsPLPVKtgNJv4tqyHD2vkj3E=</latexit>z
<latexit sha1_base64="3Zr3sNNhMJXAvinfkmr6VKCu0P4=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwVRLxtSwI4rIF+4BaZJJO69DJg2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1eLEWqHOe1YM3NLywuFZdLK6tr6xvlza1WGmWJz5t+JKOk47GUSxHyphJK8k6ccBZ4kre90bmOt+94kooovFLjmPcCNgzFQPhMEdVgN+WKU3XMsmeBm4MK8lWPyi+4Rh8RfGQIwBFCEZZgSOnpwoWDmLgeJsQlhISJc9yjRNqMsjhlMGJH9B3SrpuzIe21Z2rUPp0i6U1IaWOfNBHlJYT1abaJZ8ZZs795T4ynvtuY/l7uFRCrcEvsX7pp5n91uhaFAc5MDYJqig2jq/Nzl8x0Rd/c/lKVIoeYOI37FE8I+0Y57bNtNKmpXfeWmfibydSs3vt5boZ3fUsasPtznLOgdVh1T6rHjaNKbS8fdRE72MUBzfMUNVyijqbxfsQTnq0LS1qplX2mWoVcs41vy3r4AC62j1I=</latexit>a

<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤
<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤

<latexit sha1_base64="SATzPBK2qSO3XID7NaOAB+/c8Lo=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyFJn8uCmy4r2gfUKkk6raF5kUwUKYI/4FY/TfwD/QvvjCnoouiEJHfOPefM3HvtyHMTruvvOWVpeWV1Lb9e2Njc2t4p7u51kzCNHdZxQi+M+7aVMM8NWIe73GP9KGaWb3usZ0/PRL53x+LEDYNL/hCxoW9NAnfsOhYn6MK6Pr0plnStUi3XGrqqa6Zp1moGBfV62TB01dB0uUrIVjssvuEKI4RwkMIHQwBOsQcLCT0DGNARETbEjLCYIlfmGR5RIG1KLEYMi9ApfSe0G2RoQHvhmUi1Q6d49MakVHFMmpB4McXiNFXmU+ks0EXeM+kp7vZAfzvz8gnluCX0L92c+V+dqIVjjIaswaWaIomI6pzMJZVdETdXf1TFySEiTMQjyscUO1I577MqNYmsXfTWkvkPyRSo2DsZN8WnuCUNeD5FdXHQNTWjplXPK6XmUTbqPA5wiBOaZx1NtNBGh7wneMYLXpWWEiipcv9NVXKZZh+/lvL0BVJvkC4=</latexit>

a⇤
<latexit sha1_base64="SATzPBK2qSO3XID7NaOAB+/c8Lo=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyFJn8uCmy4r2gfUKkk6raF5kUwUKYI/4FY/TfwD/QvvjCnoouiEJHfOPefM3HvtyHMTruvvOWVpeWV1Lb9e2Njc2t4p7u51kzCNHdZxQi+M+7aVMM8NWIe73GP9KGaWb3usZ0/PRL53x+LEDYNL/hCxoW9NAnfsOhYn6MK6Pr0plnStUi3XGrqqa6Zp1moGBfV62TB01dB0uUrIVjssvuEKI4RwkMIHQwBOsQcLCT0DGNARETbEjLCYIlfmGR5RIG1KLEYMi9ApfSe0G2RoQHvhmUi1Q6d49MakVHFMmpB4McXiNFXmU+ks0EXeM+kp7vZAfzvz8gnluCX0L92c+V+dqIVjjIaswaWaIomI6pzMJZVdETdXf1TFySEiTMQjyscUO1I577MqNYmsXfTWkvkPyRSo2DsZN8WnuCUNeD5FdXHQNTWjplXPK6XmUTbqPA5wiBOaZx1NtNBGh7wneMYLXpWWEiipcv9NVXKZZh+/lvL0BVJvkC4=</latexit>

a⇤ <latexit sha1_base64="4wYvhb6w4OMYgq/kYBkHcfqT63w=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwFZK0TbssCOKyBfuAWiRJpzU0L5KJUIr+gFv9NvEP9C+8M6agi6ITktw595wzc+91Yt9Lua6/F5S19Y3NreJ2aWd3b/+gfHjUS6MscVnXjfwoGTh2ynwvZF3ucZ8N4oTZgeOzvjO7FPn+A0tSLwpv+Dxmo8Ceht7Ec21OUMe+K1d0rVavWk1d1TXTNC3LoKDRqBqGrhqaLlcF+WpH5TfcYowILjIEYAjBKfZhI6VnCAM6YsJGWBCWUOTJPMMjSqTNiMWIYRM6o++UdsMcDWkvPFOpdukUn96ElCrOSRMRL6FYnKbKfCadBbrKeyE9xd3m9Hdyr4BQjntC/9Itmf/ViVo4JmjKGjyqKZaIqM7NXTLZFXFz9UdVnBxiwkQ8pnxCsSuVyz6rUpPK2kVvbZn/kEyBir2bczN8ilvSgJdTVFcHPVMzLK3eqVVaZ/moizjBKS5ong20cI02utL7GS94Va4UX0mV7JuqFHLNMX4t5ekLwq+Pkg==</latexit>a
<latexit sha1_base64="8MLN1yYtPeJNs1YFPHKWRZ0qJcw=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyFJ27TLgiAuW7APqEWSdFpD8yKZCKXoD7jVbxP/QP/CO2MKuig6Icmdc885M/deJ/a9lOv6e0FZW9/Y3Cpul3Z29/YPyodHvTTKEpd13ciPkoFjp8z3QtblHvfZIE6YHTg+6zuzS5HvP7Ak9aLwhs9jNgrsaehNPNfmBHX4Xbmia7V61Wrqqq6ZpmlZBgWNRtUwdNXQdLkqyFc7Kr/hFmNEcJEhAEMITrEPGyk9QxjQERM2woKwhCJP5hkeUSJtRixGDJvQGX2ntBvmaEh74ZlKtUun+PQmpFRxRpqIeAnF4jRV5jPpLNBV3gvpKe42p7+TewWEctwT+pduyfyvTtTCMUFT1uBRTbFERHVu7pLJroibqz+q4uQQEybiMeUTil2pXPZZlZpU1i56a8v8h2QKVOzdnJvhU9ySBrycoro66JmaYWn1Tq3SushHXcQJTnFO82yghWu00ZXez3jBq3Kl+EqqZN9UpZBrjvFrKU9f8Z2Pqw==</latexit>

t<latexit sha1_base64="dWZlRtJIsgGP9Z6ULW961xvYK74=">AAACzXicjVHLTsMwEJyGd3kVOHKJKEicoiRA2yMSF26ARKECKpS4LljkJcdBQgWu/ABX+C3EH8BfsDapBIcKHCVZz86MvbthFolcue57xRobn5icmp6pzs7NLyzWlpZP8rSQjLdZGqWyEwY5j0TC20qoiHcyyYM4jPhpeLOn86e3XOYiTY7VXca7cXCViL5ggSLoTPI+CWOeqMta3XW2d7YaLdd2Hd/3Gw2PgmZzy/Nc23Ncs+oo12Fae8MFekjBUCAGRwJFcYQAOT3n8OAiI6yLAWGSImHyHA+okrYgFidGQOgNfa9od16iCe21Z27UjE6J6JWktLFBmpR4kmJ9mm3yhXHW6CjvgfHUd7ujf1h6xYQqXBP6l27I/K9O16LQR8vUIKimzCC6Ola6FKYr+ub2j6oUOWSE6bhHeUkxM8phn22jyU3tureByX8Ypkb1npXcAp/6ljTg4RTt0cGJ73gNZ+fIr++ul6OexirWsEnzbGIX+zhEm7wTPOMFr9aBVVj31uM31aqUmhX8WtbTFy3fk7Y=</latexit>

refinement

<latexit sha1_base64="9uXGYSeYCNhlclho06+tFoH93sg=">AAACznicjVHLSsNAFD2Nr1pfVZdugkWoIiUVX8uCG5cV7APaIpPptIbmRTIpllLc+gNu9bPEP9C/8M6YglpEJyQ5c+45d+bea4euE0vLes0Yc/MLi0vZ5dzK6tr6Rn5zqx4HScRFjQduEDVtFgvX8UVNOtIVzTASzLNd0bAHFyreGIoodgL/Wo5C0fFY33d6DmeSqFa7zzyPFe8OR/s3+YJVsvQyZ0E5BQWkqxrkX9BGFwE4EngQ8CEJu2CI6WmhDAshcR2MiYsIOTouMEGOvAmpBCkYsQP69mnXSlmf9ipnrN2cTnHpjchpYo88Aekiwuo0U8cTnVmxv+Ue65zqbiP622kuj1iJW2L/8k2V//WpWiR6ONc1OFRTqBlVHU+zJLor6ubml6okZQiJU7hL8Ygw185pn03tiXXtqrdMx9+0UrFqz1Ntgnd1Sxpw+ec4Z0H9qFQ+LZ1cHRcqB+mos9jBLoo0zzNUcIkqarrjj3jCs1E1hsbEuP+UGpnUs41vy3j4AN/rkyg=</latexit>

�(x, y)
<latexit sha1_base64="tVgBgxSV2y0mogEQKiB/HU7ofrA=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWoIiUVX8uCG1dSwT6kLZJMpzU0LyYTsZRu/QG3+l3iH+hfeGdMQS2iE5KcOfeeM3PvdSLPjaVlvWaMmdm5+YXsYm5peWV1Lb++UY/DRDBeY6EXiqZjx9xzA16TrvR4MxLc9h2PN5zBmYo37riI3TC4ksOId3y7H7g9l9mSqOu2uA2L9/vD3Zt8wSpZepnToJyCAtJVDfMvaKOLEAwJfHAEkIQ92IjpaaEMCxFxHYyIE4RcHecYI0fahLI4ZdjEDujbp10rZQPaK89Yqxmd4tErSGlihzQh5QnC6jRTxxPtrNjfvEfaU91tSH8n9fKJlbgl9i/dJPO/OlWLRA+nugaXaoo0o6pjqUuiu6Jubn6pSpJDRJzCXYoLwkwrJ302tSbWtave2jr+pjMVq/YszU3wrm5JAy7/HOc0qB+Uyselo8vDQmUvHXUWW9hGkeZ5ggrOUUWNvH084gnPxoUhjZEx/kw1MqlmE9+W8fAB01eSWg==</latexit>

⇢(x, y)

(a) A refinement.

<latexit sha1_base64="1T0nNyAJFrKErsnGQRXdfADHTfE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptA5OHiQTsRT9Abf6beIf6F94Z0xBLaITkpw5954zc+/1YylS5TivBWtmdm5+obhYWlpeWV0rr2+00ihLGG+ySEZJx/dSLkXIm0ooyTtxwr3Al7zt35zqePuWJ6mIwgs1inkv8IahGAjmKaIad1flilN1zLKngZuDCvJVj8ovuEQfERgyBOAIoQhLeEjp6cKFg5i4HsbEJYSEiXPco0TajLI4ZXjE3tB3SLtuzoa0156pUTM6RdKbkNLGDmkiyksI69NsE8+Ms2Z/8x4bT323Ef393CsgVuGa2L90k8z/6nQtCgOcmBoE1RQbRlfHcpfMdEXf3P5SlSKHmDiN+xRPCDOjnPTZNprU1K5765n4m8nUrN6zPDfDu74lDdj9Oc5p0NqvukfVw8ZBpbaXj7qILWxjl+Z5jBrOUUfTeD/iCc/WmSWt1Mo+U61CrtnEt2U9fABnJI9v</latexit>x
<latexit sha1_base64="v/7D3SiqSR9ZcVAlhkd4gaeWnFE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZJ0WkMnDyYToRT9Abf6beIf6F94Z5yCWkQnJDlz7j1n5t7rpzzMpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcBKwZJDwRHd/LGA9j1pSh5KyTCuZFPmdtf3Su4u07JrIwia/kOGW9yBvG4SAMPElUY3xTrjhVRy97FrgGVGBWPSm/4Bp9JAiQIwJDDEmYw0NGTxcuHKTE9TAhThAKdZzhHiXS5pTFKMMjdkTfIe26ho1przwzrQ7oFE6vIKWNPdIklCcIq9NsHc+1s2J/855oT3W3Mf194xURK3FL7F+6aeZ/daoWiQHOdA0h1ZRqRlUXGJdcd0Xd3P5SlSSHlDiF+xQXhAOtnPbZ1ppM16566+n4m85UrNoHJjfHu7olDdj9Oc5Z0DqsuifV48ZRpXZgRl3EDnaxT/M8RQ2XqKOpvR/xhGfrwuJWZuWfqVbBaLbxbVkPH2mEj3A=</latexit>y

<latexit sha1_base64="3Zr3sNNhMJXAvinfkmr6VKCu0P4=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwVRLxtSwI4rIF+4BaZJJO69DJg2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1eLEWqHOe1YM3NLywuFZdLK6tr6xvlza1WGmWJz5t+JKOk47GUSxHyphJK8k6ccBZ4kre90bmOt+94kooovFLjmPcCNgzFQPhMEdVgN+WKU3XMsmeBm4MK8lWPyi+4Rh8RfGQIwBFCEZZgSOnpwoWDmLgeJsQlhISJc9yjRNqMsjhlMGJH9B3SrpuzIe21Z2rUPp0i6U1IaWOfNBHlJYT1abaJZ8ZZs795T4ynvtuY/l7uFRCrcEvsX7pp5n91uhaFAc5MDYJqig2jq/Nzl8x0Rd/c/lKVIoeYOI37FE8I+0Y57bNtNKmpXfeWmfibydSs3vt5boZ3fUsasPtznLOgdVh1T6rHjaNKbS8fdRE72MUBzfMUNVyijqbxfsQTnq0LS1qplX2mWoVcs41vy3r4AC62j1I=</latexit>a
<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤
<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤

<latexit sha1_base64="M+BUNlIHyV9fidoiMLNa39M7+ko=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyEtSdruCoK4bME+oBZJ0mkNzYtkIpSiP+BWv038A/0L74wp6KLohCR3zj3nzNx7ndj3Uq7r7wVlbX1jc6u4XdrZ3ds/KB8e9dIoS1zWdSM/SgaOnTLfC1mXe9xngzhhduD4rO/MLkW+/8CS1IvCGz6P2Siwp6E38VybE9Thd+WKrjVNw2iaqq5ZllFv1iiomrresNSqpstVQb7aUfkNtxgjgosMARhCcIp92EjpGaIKHTFhIywISyjyZJ7hESXSZsRixLAJndF3Srthjoa0F56pVLt0ik9vQkoVZ6SJiJdQLE5TZT6TzgJd5b2QnuJuc/o7uVdAKMc9oX/plsz/6kQtHBM0ZA0e1RRLRFTn5i6Z7Iq4ufqjKk4OMWEiHlM+odiVymWfValJZe2it7bMf0imQMXezbkZPsUtacDLKaqrg15Nq1qa2TEqrYt81EWc4BTnNM86WrhGG13p/YwXvCpXiq+kSvZNVQq55hi/lvL0BS3Tj8U=</latexit>

t
<latexit sha1_base64="3Zr3sNNhMJXAvinfkmr6VKCu0P4=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwVRLxtSwI4rIF+4BaZJJO69DJg2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1eLEWqHOe1YM3NLywuFZdLK6tr6xvlza1WGmWJz5t+JKOk47GUSxHyphJK8k6ccBZ4kre90bmOt+94kooovFLjmPcCNgzFQPhMEdVgN+WKU3XMsmeBm4MK8lWPyi+4Rh8RfGQIwBFCEZZgSOnpwoWDmLgeJsQlhISJc9yjRNqMsjhlMGJH9B3SrpuzIe21Z2rUPp0i6U1IaWOfNBHlJYT1abaJZ8ZZs795T4ynvtuY/l7uFRCrcEvsX7pp5n91uhaFAc5MDYJqig2jq/Nzl8x0Rd/c/lKVIoeYOI37FE8I+0Y57bNtNKmpXfeWmfibydSs3vt5boZ3fUsasPtznLOgdVh1T6rHjaNKbS8fdRE72MUBzfMUNVyijqbxfsQTnq0LS1qplX2mWoVcs41vy3r4AC62j1I=</latexit>a

<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤
<latexit sha1_base64="1T0nNyAJFrKErsnGQRXdfADHTfE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZLptA5OHiQTsRT9Abf6beIf6F94Z0xBLaITkpw5954zc+/1YylS5TivBWtmdm5+obhYWlpeWV0rr2+00ihLGG+ySEZJx/dSLkXIm0ooyTtxwr3Al7zt35zqePuWJ6mIwgs1inkv8IahGAjmKaIad1flilN1zLKngZuDCvJVj8ovuEQfERgyBOAIoQhLeEjp6cKFg5i4HsbEJYSEiXPco0TajLI4ZXjE3tB3SLtuzoa0156pUTM6RdKbkNLGDmkiyksI69NsE8+Ms2Z/8x4bT323Ef393CsgVuGa2L90k8z/6nQtCgOcmBoE1RQbRlfHcpfMdEXf3P5SlSKHmDiN+xRPCDOjnPTZNprU1K5765n4m8nUrN6zPDfDu74lDdj9Oc5p0NqvukfVw8ZBpbaXj7qILWxjl+Z5jBrOUUfTeD/iCc/WmSWt1Mo+U61CrtnEt2U9fABnJI9v</latexit>x

<latexit sha1_base64="v/7D3SiqSR9ZcVAlhkd4gaeWnFE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyURX8uCIC5bsA+oRZJ0WkMnDyYToRT9Abf6beIf6F94Z5yCWkQnJDlz7j1n5t7rpzzMpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcBKwZJDwRHd/LGA9j1pSh5KyTCuZFPmdtf3Su4u07JrIwia/kOGW9yBvG4SAMPElUY3xTrjhVRy97FrgGVGBWPSm/4Bp9JAiQIwJDDEmYw0NGTxcuHKTE9TAhThAKdZzhHiXS5pTFKMMjdkTfIe26ho1przwzrQ7oFE6vIKWNPdIklCcIq9NsHc+1s2J/855oT3W3Mf194xURK3FL7F+6aeZ/daoWiQHOdA0h1ZRqRlUXGJdcd0Xd3P5SlSSHlDiF+xQXhAOtnPbZ1ppM16566+n4m85UrNoHJjfHu7olDdj9Oc5Z0DqsuifV48ZRpXZgRl3EDnaxT/M8RQ2XqKOpvR/xhGfrwuJWZuWfqVbBaLbxbVkPH2mEj3A=</latexit>y
<latexit sha1_base64="3Zr3sNNhMJXAvinfkmr6VKCu0P4=">AAACxHicjVHLSsNAFD2Nr1pfVZduglVwVRLxtSwI4rIF+4BaZJJO69DJg2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1eLEWqHOe1YM3NLywuFZdLK6tr6xvlza1WGmWJz5t+JKOk47GUSxHyphJK8k6ccBZ4kre90bmOt+94kooovFLjmPcCNgzFQPhMEdVgN+WKU3XMsmeBm4MK8lWPyi+4Rh8RfGQIwBFCEZZgSOnpwoWDmLgeJsQlhISJc9yjRNqMsjhlMGJH9B3SrpuzIe21Z2rUPp0i6U1IaWOfNBHlJYT1abaJZ8ZZs795T4ynvtuY/l7uFRCrcEvsX7pp5n91uhaFAc5MDYJqig2jq/Nzl8x0Rd/c/lKVIoeYOI37FE8I+0Y57bNtNKmpXfeWmfibydSs3vt5boZ3fUsasPtznLOgdVh1T6rHjaNKbS8fdRE72MUBzfMUNVyijqbxfsQTnq0LS1qplX2mWoVcs41vy3r4AC62j1I=</latexit>a

<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤

<latexit sha1_base64="EXC9exk+O6kJ169jZnVfmcqFmbc=">AAACxnicjVHLSsNAFD2Nr1pfVZduglUQFyUVX8uCmy4r2gfUKpPptAbzIpkopQj+gFv9NPEP9C+8M05BLaITkpw5954zc+91Y99LpeO85qyp6ZnZufx8YWFxaXmluLrWTKMs4aLBIz9K2i5Lhe+FoiE96Yt2nAgWuL5ouTcnKt66FUnqReG5HMaiG7BB6PU9ziRRZ+xy96pYcsqOXvYkqBhQgln1qPiCC/QQgSNDAIEQkrAPhpSeDipwEBPXxYi4hJCn4wL3KJA2oyxBGYzYG/oOaNcxbEh75ZlqNadTfHoTUtrYJk1EeQlhdZqt45l2Vuxv3iPtqe42pL9rvAJiJa6J/Us3zvyvTtUi0cexrsGjmmLNqOq4ccl0V9TN7S9VSXKIiVO4R/GEMNfKcZ9trUl17aq3TMffdKZi1Z6b3Azv6pY04MrPcU6C5l65clg+ON0vVbfMqPPYwCZ2aJ5HqKKGOhrkPcAjnvBs1azQyqy7z1QrZzTr+Lashw++Z4/u</latexit>

a⇤
<latexit sha1_base64="oYIx0T6gKCIH0XSkZtdYoLU73/c=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyGVJG13BUFctmAfUIsk6bSG5kUyEWrRH3Cr3yb+gf6Fd8YUdFF0QpI7555zZu69Tux7Kdf194Kysrq2vlHcLG1t7+zulfcPummUJS7ruJEfJX3HTpnvhazDPe6zfpwwO3B81nOmFyLfu2dJ6kXhNZ/FbBjYk9Abe67NCWo/3JYrutYwDaNhqrpmWUatcU5B1dT1uqVWNV2uCvLVispvuMEIEVxkCMAQglPsw0ZKzwBV6IgJG2JOWEKRJ/MMjyiRNiMWI4ZN6JS+E9oNcjSkvfBMpdqlU3x6E1KqOCFNRLyEYnGaKvOZdBboMu+59BR3m9Hfyb0CQjnuCP1Lt2D+Vydq4RijLmvwqKZYIqI6N3fJZFfEzdUfVXFyiAkT8YjyCcWuVC76rEpNKmsXvbVl/kMyBSr2bs7N8CluSQNeTFFdHnTPtaqlmW2j0jzLR13EEY5xSvOsoYkrtNCR3s94watyqfhKqmTfVKWQaw7xaylPXzwTj8s=</latexit>z <latexit sha1_base64="oYIx0T6gKCIH0XSkZtdYoLU73/c=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkUQFyGVJG13BUFctmAfUIsk6bSG5kUyEWrRH3Cr3yb+gf6Fd8YUdFF0QpI7555zZu69Tux7Kdf194Kysrq2vlHcLG1t7+zulfcPummUJS7ruJEfJX3HTpnvhazDPe6zfpwwO3B81nOmFyLfu2dJ6kXhNZ/FbBjYk9Abe67NCWo/3JYrutYwDaNhqrpmWUatcU5B1dT1uqVWNV2uCvLVispvuMEIEVxkCMAQglPsw0ZKzwBV6IgJG2JOWEKRJ/MMjyiRNiMWI4ZN6JS+E9oNcjSkvfBMpdqlU3x6E1KqOCFNRLyEYnGaKvOZdBboMu+59BR3m9Hfyb0CQjnuCP1Lt2D+Vydq4RijLmvwqKZYIqI6N3fJZFfEzdUfVXFyiAkT8YjyCcWuVC76rEpNKmsXvbVl/kMyBSr2bs7N8CluSQNeTFFdHnTPtaqlmW2j0jzLR13EEY5xSvOsoYkrtNCR3s94watyqfhKqmTfVKWQaw7xaylPXzwTj8s=</latexit>z

<latexit sha1_base64="9SUkjUOqFuCypUQaq8I/ODDyIU8=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNYXQAjsSNywxyiNBYtoyQENfaacaQkz8Abf6acY/0L/wzlgSXRCdpu2dc885M/deO/LchOv6e05ZW9/Y3MpvF3Z29/YPiodH3SRMY4d1nNAL475tJcxzA9bhLvdYP4qZ5dse69mzS5Hv3bM4ccPghs8jNvStSeCOXcfiBF1PQ/+uWNK1hlGtNgxV10yzWmtUKCgbul431bKmy1VCttph8Q23GCGEgxQ+GAJwij1YSOgZoAwdEWFDLAiLKXJlnuERBdKmxGLEsAid0XdCu0GGBrQXnolUO3SKR29MShXnpAmJF1MsTlNlPpXOAl3lvZCe4m5z+tuZl08ox5TQv3RL5n91ohaOMeqyBpdqiiQiqnMyl1R2Rdxc/VEVJ4eIMBGPKB9T7Ejlss+q1CSydtFbS+Y/JFOgYu9k3BSf4pY04OUU1dVBt6KVTc24qpSaZ9mo8zjBKS5onjU00UIbHfKe4BkveFVaSqCkysM3VcllmmP8WsrTF2ZEkKE=</latexit>

hom

<latexit sha1_base64="tVgBgxSV2y0mogEQKiB/HU7ofrA=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWoIiUVX8uCG1dSwT6kLZJMpzU0LyYTsZRu/QG3+l3iH+hfeGdMQS2iE5KcOfeeM3PvdSLPjaVlvWaMmdm5+YXsYm5peWV1Lb++UY/DRDBeY6EXiqZjx9xzA16TrvR4MxLc9h2PN5zBmYo37riI3TC4ksOId3y7H7g9l9mSqOu2uA2L9/vD3Zt8wSpZepnToJyCAtJVDfMvaKOLEAwJfHAEkIQ92IjpaaEMCxFxHYyIE4RcHecYI0fahLI4ZdjEDujbp10rZQPaK89Yqxmd4tErSGlihzQh5QnC6jRTxxPtrNjfvEfaU91tSH8n9fKJlbgl9i/dJPO/OlWLRA+nugaXaoo0o6pjqUuiu6Jubn6pSpJDRJzCXYoLwkwrJ302tSbWtave2jr+pjMVq/YszU3wrm5JAy7/HOc0qB+Uyselo8vDQmUvHXUWW9hGkeZ5ggrOUUWNvH084gnPxoUhjZEx/kw1MqlmE9+W8fAB01eSWg==</latexit>

⇢(x, y)
<latexit sha1_base64="yTvd2JZceflCF9bvhokgzyxlNZg=">AAACznicjVHLSsNAFD2Nr1pfVZdugkWoIiURX8uCG5cVrC20RSbTaRuaJiGZFEspbv0Bt/pZ4h/oX3hnTEEtohOSnDn3nDtz73VCz42lZb1mjLn5hcWl7HJuZXVtfSO/uXUTB0nERZUHXhDVHRYLz/VFVbrSE/UwEmzgeKLm9C9UvDYUUewG/rUchaI1YF3f7bicSaIaTeaFPVa8Oxzt3+YLVsnSy5wFdgoKSFclyL+giTYCcCQYQMCHJOyBIaanARsWQuJaGBMXEXJ1XGCCHHkTUglSMGL79O3SrpGyPu1Vzli7OZ3i0RuR08QeeQLSRYTVaaaOJzqzYn/LPdY51d1G9HfSXANiJXrE/uWbKv/rU7VIdHCua3CpplAzqjqeZkl0V9TNzS9VScoQEqdwm+IRYa6d0z6b2hPr2lVvmY6/aaVi1Z6n2gTv6pY0YPvnOGfBzVHJPi2dXB0XygfpqLPYwS6KNM8zlHGJCqq64494wrNRMYbGxLj/lBqZ1LONb8t4+ADnJJMr</latexit>

↵(x, y)

(b) A strong onto homomorphism be-
tween CRPQs.

Figure III.26: Homomorphisms and
refinements between CRPQs.

82

iii.2. graph databases

By convention, 𝑡 𝑎−−→ 𝑡′ is a shorthand for 𝑡′ 𝑎−→ 𝑡. As a consequence, the
underlying graph of an atom𝑚-refinement of the form (III.6) is not necessarily
a directed path. By definition, note that 𝐿1⋯𝐿𝑛 ⊆ 𝐿 and hence 𝜌 ⫅ 𝛾 for
any atom 𝑚-refinement 𝜌 of 𝛾. An atom refinement is an atom 𝑚-refinement
for some 𝑚. An example is provided in Figure III.26a.

Definition III.2.9. Given an atom refinement 𝜌 = 𝑥 𝐿1−→ 𝑡1
𝐿2−→ … 𝐿𝑛−1−−−→

𝑡𝑛−1
𝐿𝑛−→ 𝑦 of 𝛾 = 𝑥 𝐿−→ 𝑦 as in (III.6), define a condensation of 𝜌 between 𝑡𝑖 and

𝑡𝑗, where 0 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑗 > 𝑖 + 1, as any C2RPQ of the form:

𝜌′ = 𝑥 𝐿1−→ 𝑡1
𝐿2−→ … 𝐿𝑖−→ 𝑡𝑖

𝐾−→ 𝑡𝑗
𝐿𝑗+1−−−→ … 𝐿𝑛−1−−−→ 𝑡𝑛−1

𝐿𝑛−→ 𝑦

such that 𝐾 = 𝒜[𝑞𝑖, 𝑞𝑗].

Fact III.2.10. Every condensation 𝜌′ of 𝜌 is a refinement of 𝛾, and 𝜌 ⫅ 𝜌′ ⫅ 𝛾.

Informally, we will abuse the notation and write [𝐿𝑖⋯𝐿𝑗] to denote the
language 𝐾—even if this language does not only depend on 𝐿𝑖⋯𝐿𝑗.

Example III.2.11. Let 𝛾(𝑥, 𝑦) = 𝑥 (𝑎𝑎−)∗−−−−→ 𝑦 be a C2RPQ atom, where (𝑎𝑎−)∗ is
implicitly represented by its minimal automaton. Then 𝜌(𝑥, 𝑦) is a refinement
of refinement length seven of 𝛾(𝑥, 𝑦) and 𝜌′(𝑥, 𝑦) is a condensation of 𝜌(𝑥, 𝑦),
where:

𝜌(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑡1
(𝑎−𝑎)∗−−−−→ 𝑡2

(𝑎−𝑎)∗−−−−→ 𝑡3
𝑎←− 𝑡4

(𝑎𝑎−)∗−−−−→ 𝑡5
(𝑎𝑎−)∗𝑎−−−−−→ 𝑡6

𝑎←− 𝑦,

𝜌′(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑡1
(𝑎−𝑎)∗−−−−→ 𝑡2

(𝑎−𝑎)∗−−−−→ 𝑡3
𝑎←− 𝑡4

(𝑎𝑎−)∗−−−−→ 𝑦.

On the other hand, 𝜌″(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑡1
𝑎←− 𝑦 is not a condensation of 𝜌(𝑥, 𝑦).

Given a natural number 𝑚, an 𝑚-refinement of a C2RPQ 𝛾(�̄�) = ⋀𝑖 𝑥𝑖
𝐿𝑖−→

𝑦𝑖 is any query resulting from: (1) replacing every atom by one of its 𝑚-
refinements, and (2) should some 𝑚-refinements have equality atoms, col-
lapsing the variables. A refinement is an 𝑚-refinement for some 𝑚. Note that
any atom 𝑚-refinements is, by definition, also an atom 𝑚′-refinements when
𝑚 ≤ 𝑚′: as a consequence, in the refinement of a C2RPQ the atom refine-
ments need not have the same length. For instance, both 𝜌(𝑥, 𝑥) = 𝑥 𝑐−→ 𝑥 and
𝜌′(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑡1

𝑎−→ 𝑦 𝑐←− 𝑦 are refinements of 𝛾(𝑥, 𝑦) = 𝑥 𝑎∗−→ 𝑦 𝑐←− 𝑥.
For a given C2RPQ 𝛾, let Ref≤𝑚(𝛾) be the set of all𝑚-refinements of 𝛾, and

Ref(𝛾) be the set of all its refinements. Given a refinement 𝜌(�̄�) of 𝛾(�̄�), its
refinement length is the least natural number 𝑚 such that 𝜌(�̄�) ∈ Ref≤𝑚(𝛾).
Note that if the automaton representing a language 𝐿 has more than one final
state, for instance the minimal automaton for 𝐿 = 𝑎+ + 𝑏+, then 𝑥 𝐿−→ 𝑦 is not
a refinement of itself. However, it will always be equivalent to a union of
refinements: in this example, 𝑥 𝑎+ + 𝑏+−−−−−→ 𝑦 is equivalent to the union of 𝑥 𝑎+−→ 𝑦
and 𝑥 𝑏+−→ 𝑦, which are both refinements of the original C2RPQ.

83

iii. query languages for relational and graph databases

Expansions. Remember that a C2RPQ whose languages are of the form {𝑎}
or {𝑎−} for 𝑎 ∈ 𝔸 is in effect a CQ. The expansions of a C2RPQ 𝛾 is the set
Exp(𝛾) of all CQs which are refinements of 𝛾. In other words, an expansion of
𝛾 is any CQ obtained from 𝛾 by replacing each atom 𝑥 𝐿−→ 𝑦 by a path 𝑥 𝑤−→ 𝑦
for some word 𝑤 ∈ 𝐿. For instance, 𝜉(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑡1

𝑎←− 𝑡2
𝑎−→ 𝑡3

𝑎←− 𝑦 is an
expansion of 𝜌(𝑥, 𝑦) = 𝑥 (𝑎𝑎−)∗−−−−→ 𝑦.

Figure III.27: Serio-comic war map for
the year 1877, by F. W. Rose.

Canonical databases. We define the canonical databases of a C2RPQ as the
canonical databases of the expansions of the query. We denote by ⟨𝐆, �̄�⟩ ⊨⋆

𝛾(�̄�) the fact that ⟨𝐆, �̄�⟩ is a canonical database of 𝛾(�̄�). We extend the notions
of expansions and of canonical databases to UC(2)RPQs by taking the union.

Notice that any UC2RPQ is equivalent to the infinitary union of its expan-
sions. In light of this, the semantics for UC2RPQ can be rephrased as follows.
Given a UC2RPQ Γ(�̄�) and a graph database𝐆, the evaluation of Γ(�̄�) over𝐇,
is the set of tuples �̄� of nodes for which:
• there is 𝜉 ∈ Exp(Γ) such that there is an evaluation map from 𝜉 to 𝐇 that

sends �̄� onto �̄�, or equivalently
• there exists ⟨𝐆, �̄�⟩ ⊨⋆ Γ(�̄�) s.t. ⟨𝐆, �̄�⟩ hom−−−→ ⟨𝐇, �̄�⟩.
In this specific case, since 𝜉 is a CQ, the notion of evaluation map coincides
with that of homomorphism: duality justifies that we use these two notions
interchangeably, which we will happily do from now on.

Similarly, containment of UC2RPQs can also be characterized in terms of
expansions.

Proposition III.2.12 (Folklore).41 42 Let Γ1 and Γ2 be UC2RPQs. The fol- 41 The proof is elementary, see e.g.
[FLS98, Proposition 3.2] or [CDLV00,
Theorem 2].
42 The proposition works for Boolean
as well as non-Boolean queries: we
dropped the tuples of variables for
the sake of readability.

lowing are equivalent:
• Γ1 ⫅ Γ2;
• for every 𝜉1 ∈ Exp(Γ1), we have 𝜉1 ⫅ Γ2;
• for every 𝜉1 ∈ Exp(Γ1) there exists 𝜉2 ∈ Exp(Γ2) such that 𝜉2

hom−−−→ 𝜉1;
• for every 𝐆1 ⊨⋆ Γ1, we have 𝐆1 ⊨ Γ2;
• for every 𝐆1 ⊨⋆ Γ1, there exists 𝐆2 ⊨⋆ Γ2 s.t. 𝐆2

hom−−−→ 𝐆1; 𝑎 𝑎 𝑏

𝑎 𝑏

Figure III.28: Homomorphism from
𝐃 to 𝐆𝑎.

𝑎 𝑏 𝑏

𝑎 𝑏

Figure III.29: Homomorphism from
𝐃 to 𝐆𝑏.

As an example, we consider the queries

𝛾() =̂ 𝑤 𝑎−→ 𝑥 𝑎 + 𝑏−−−→ 𝑦 𝑏−→ 𝑧 and 𝛿() =̂ 𝑥 𝑎−→ 𝑦 𝑏−→ 𝑧

from Example III.2.8. Then 𝛿() has a unique canonical database that we denote
by 𝐃, and 𝛾() has two canonical databases 𝐆𝑎 and 𝐆𝑏. We represent them in
Figures III.28 and III.29, together with witnesses that 𝛾() ⫅ 𝛿().

Proposition III.2.12 by itself is not enough to conclude to the decidability of
containment since the set of expansions or canonical databases of a UC2RPQ,
or even simply CRPQs, is infinite. To get decidability, the easiest way is by
proving a small model property.

Proposition III.2.13 (Small model property for C2RPQs, folklore). Given two
C2RPQs 𝛾1(�̄�1) and 𝛾2(�̄�2), if 𝛾1(�̄�1) " 𝛾2(�̄�2), then there exists ⟨𝐆1, �̄�1⟩ ⊨⋆

𝛾1(�̄�1) of size at most 𝑓(‖𝛾1‖ + ‖𝛾2‖) s.t. ⟨𝐆1, �̄�1⟩ ⊭ 𝛾2(�̄�2), where 𝑓 is a

84

iii.2. graph databases

doubly-exponential function.

Proof sketch. We start with some ⟨𝐆1, �̄�1⟩ ⊨⋆ 𝛾1(�̄�1) of arbitrary size such
that ⟨𝐆1, �̄�1⟩ ⊭ 𝛾2(�̄�2). On then look at how 𝛾2 maps into𝐆1 in the following
sense: in an atom refinement in 𝐆1

𝑥0
𝑎1−→ 𝑥1

𝑎2−→ … 𝑎𝑛−→ 𝑥𝑛

we associate to every sequence 𝑎1𝑎2⋯𝑎𝑖 the function which takes a tuple of
set of automaton states (one set for each automaton of 𝛾2), and returns the
tuple of set of states they can reach after reading 𝑎𝑖𝑎𝑖+1⋯𝑎𝑗. By pigeon-hole
principle, if 𝑛 has at least double-exponential size, then there must exist two
indices 𝑖 < 𝑗 that have the same behaviour. Then, shrinking

𝑥0
𝑎1−→ 𝑥1

𝑎2−→ … 𝑎𝑛−→ 𝑥𝑛 into 𝑥0
𝑎1−→ 𝑥1

𝑎2−→ … 𝑎𝑖−→ 𝑥𝑖 = 𝑥𝑗
𝑎𝑗+1−−→ … 𝑎𝑛−→ 𝑥𝑛

yields a strictly smaller canonical database𝐆′
1 of 𝛾1 that behaves like𝐆1 w.r.t.

to the automata of 𝛾2, and so since we had ⟨𝐆1, �̄�1⟩ ⊭ 𝛾2(�̄�2), we still have
⟨𝐆′

1, �̄�1⟩ ⊭ 𝛾2(�̄�2).

Figure III.30: Fun interlude: try
spotting the difference with Propo-
sition III.2.13. Spinifex Pigeon, by JJ
Harrison, licensed under CC BY SA
3.0.In particular Proposition III.2.13 implies that containment is decidable for

UC2RPQs. However, this does not give an optimal algorithm.

Proposition III.2.14.Proven independently in [CDLV00, Theorem 5] for
C2RPQs and in [FLS98, § after Theorem 4.8] for CRPQs without inverses but
with an infinite alphabet. Containment of UC2RPQs is ExpSpace-complete.
The lower bound already holds for Boolean CRPQs.

Overtime, this proof has been simplified to eventually climax to the follow-
ing result.

Proposition III.2.15 ([Fig20, Lemma 8]). There is a fixed alphabet over which
the containment problem for Boolean CRPQs is already ExpSpace-hard
when restricted to instances of the form

𝛾1() = • • ⫅? • • = 𝛾2().
𝐾

𝐿1
⋮

𝐿𝑝

Observe that, while the containment

(𝛾1(𝑥, 𝑦) =̂ 𝑥
𝐾−→ 𝑦) ⫅? (𝛾2(𝑥, 𝑦) =̂ 𝑥

𝐿−→ 𝑦)

is equivalent to 𝐾 ⫅? 𝐿, we have that

(𝛾1() =̂ 𝑥
𝐾−→ 𝑦) ⫅? (𝛾2() =̂ 𝑥

𝐿−→ 𝑦)

is rather equivalent to 𝐾 ⫅? 𝔸∗𝐿𝔸∗, and so the problem of Proposition III.2.15
can be reformulated as

𝐾 ⊆? 𝔸∗�
𝑝

�
𝑖=1

𝐿𝑖�𝔸∗.

85

https://commons.wikimedia.org/wiki/File:Spinifex_Pigeon_0A2A1585.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.fr
https://creativecommons.org/licenses/by-sa/3.0/deed.fr

iii. query languages for relational and graph databases

The proof of Proposition III.2.15 is by reduction from the exponential-space
tiling problem, and relies on encoding exponential-sized counters in polyno-
mial space.

Hom-Minimality. We say that a graph database ⟨𝐆, �̄�⟩ satisfying a seman-
tical query 𝛾(�̄�) is hom-minimal if for every other graph database ⟨𝐆′, �̄�⟩, if
⟨𝐆′, �̄�⟩ also satisfies 𝛾(�̄�) and if ⟨𝐆′, �̄�⟩ hom−−−→ ⟨𝐆, �̄�⟩ then ⟨𝐆′, �̄�⟩ ≡ ⟨𝐆, �̄�⟩.
Graphically, this literally corresponds to the minimal elements of a set in
Figure III.9. In the definition, the quantification over all “⟨𝐆′, �̄�⟩ that satisfy
𝛾(�̄�)” can actually be replaced, for UC2RPQs, by a quantification over all
canonical databases.

III.2.3 Queries Over Simple Languages

The high complexity of Proposition III.2.15 and ?? motivate the quest for
fragments of conjunctive regular path queries with better complexity. We
will present a fragment UCRPQ(SRE) that has a containment problem that
is much better behaved than for general UCRPQs, and moreover is widely
used in practice.

A simple regular expression, or SRE, is a regular expression the form 𝑎∗

for some letter 𝑎 ∈ 𝔸 or of the form 𝑎1 +⋯+ 𝑎𝑚 for some 𝑎1, … , 𝑎𝑚 ∈ 𝔸.
Let UCRPQ(SRE) be the set of all UCRPQ whose languages are expressed
via simple regular expressions. Observe that UCRPQ(SRE) is semantically
equivalent to the class of UCRPQs over the closure under concatenation
of simple regular expressions since 𝛾(𝑥, 𝑦) = 𝑥 𝑒1 ⋅ 𝑒2−−−−→ 𝑦 is equivalent to
𝛾′(𝑥, 𝑦) = 𝑥 𝑒1−→ 𝑧 ∧ 𝑧 𝑒2−→ 𝑦. Moreover, UCRPQ(SRE) also corresponds to
UC2RPQ whose languages are expressed via SREs; in other words adding
two-wayness does not increase the expressivity of the class.

Proposition III.2.16 ([Fig+20, Corollary 5.2]). Containment of UCRPQ(SRE)
is Π𝑝

2 -complete.

In other words, this problem is just one level up the polynomial hierarchy
compared to the CQ containment problem, which sharply contrasts with the
costly ExpSpace-completeness result for the full class of UC2RPQs! Moreover,
recent studies on SPARQL query logs onWikidata, DBpedia and other sources
show that this kind of regular expressions cover a majority of the queries
investigated, e.g., 75% of the “property paths” (C2RPQ atoms) of the corpus of
1.5M queries of Bonifati, Martens and Timm [BMT20, Table 15].

In Chapter IV we will actually need a marginally smaller subclass of these:
we define positive simple regular expressions analogously to simple regular
expressions but by replacing 𝑎∗ with 𝑎+.

III.2.4 Static Analysis

Static optimization for CRPQs has received considerable attention. Beyond
the basic study of containment and equivalence problems for CRPQs that we

86

iii.2. graph databases

already mentioned, let us highlight that these problems have also been inves-
tigated under different scenarios: restrictions on the shape of queries [Fig20],
restrictions on their regular languages [Fig+20], alternative semantics [FR23],
or under schema information [GGIM22; GGIM24]. This has enabled the study
of more advanced static analysis problems motivated by the following general
question: Can a given query be equivalently rewritten as one from a target
fragment (which enjoys desirable properties)? In the literature the problem
has been studied where the target fragment are queries which either (i) avoid
having infinite languages, or (ii) have a tree-like structure. This gives rise
to the so-called (i) boundedness problem for CRPQs (i.e., whether a CRPQ is
equivalent to a UCQ) [BFR19; FKMP24], and (ii) semantic treewidth problem
for CRPQs (i.e., whether a CRPQ is equivalent to one that is tree-shaped)
[BRV16].

In the next chapters, we focus on the problems of minimizing the number
of atoms (Chapter IV) and tree-width (Chapter IV) necessary to express a
(U)C(2)RPQ. In both cases, we will prove decidability of the problem by
providing an algorithm in 𝑘-ExpSpace for some 𝑘, and will provide a much
more efficient algorithm—i.e. in the polynomial hierarchy—for queries over
simple regular expressions.

87

Chapter IV
Minimization of Conjunctive Regular Path Queries

Abstract

We study the minimization problem for Conjunctive Regular Path Queries (CRPQs)
and unions of CRPQs (UCRPQs). This is the problem of checking, given a query and
a number 𝑘, whether the query is equivalent to one of size at most 𝑘. For CRPQs we
consider the size to be the number of atoms, and for UCRPQs the maximum number
of atoms in a CRPQ therein, motivated by the fact that the number of atoms has a
leading influence on the cost of query evaluation.
We show that the minimization problem is decidable, both for CRPQs and UCRPQs.
We provide a 2ExpSpace upper-bound for CRPQ minimization, based on a brute-force
enumeration algorithm, and an ExpSpace lower-bound. For UCRPQs, we show that
the problem is ExpSpace-complete, having thus the same complexity as the classical
containment problem. The upper bound is obtained by defining and computing a
notion of maximal under-approximation. Moreover, we show that for UCRPQs using
the so-called simple regular expressions consisting of concatenations of expressions of
the form 𝑎+ or 𝑎1 +⋯+ 𝑎𝑘, the minimization problem becomes Π𝑝

2 -complete, again
matching the complexity of containment.

Acknowledgements

This chapter is mostly a reproduction of the eponymous paper that was published
in PODS ’25 [FMR25], that received the Distinguished Paper Award. Proofs were
incorporated in the body; the preliminaries and part of the introduction was moved
to Chapter III. It is a joint work with Diego Figueira and Miguel Romero.

89

Contents

IV.1 Introduction 91

IV.2 Necessary & Sufficient Conditions for Minimality 93

IV.2.1 Necessary Conditions: Contractions and Redundancy 94

IV.2.2 A Sufficient Condition: Strong Minimality 96

IV.3 An Upper Bound for Minimization of CRPQs 100

IV.4 Minimization of UCRPQs via Approximations 104

IV.4.1 Unions Allow Further Minimization 104

IV.4.2 Maximal Under-Approximations 106

IV.4.3 CRPQs over Simple Regular Expressions 109

IV.5 Lower Bounds 110

IV.5.1 Equivalence with a Single Atom 111

IV.5.2 Minimization is Harder than Containment 113

IV.6 Discussion 120

IV.6.1 Variable minimization 120

IV.6.2 Tree patterns 122

IV.A Lower Bounds for Variable Minimization 124

IV.A.1 Equivalence with a Single Variable 124

IV.A.2 Variable Minimization is Harder than Containment 125

90

iv.1. introduction

IV.1 Introduction

Minimization of queries. Minimization – that is, the problem of transforming
a query into a strictly smaller equivalent query – is perhaps the most funda-
mental query optimization question. For CQs (and UCQs), minimization is
well understood, and there exists a canonical unique minimal query, namely
the core. The mechanism for obtaining such minimal query is simple: elimi-
nate any atom from the query that results in an equivalent query (i.e., any
atom which is ‘redundant’ in the sense of equivalence). In contrast, minimiza-
tion of CRPQs is poorly understood from a theoretical perspective. In this
case, the situation is more challenging: there is no natural notion of ‘core’,
and it is not clear whether a notion of ‘canonical’ smallest query may even be
possible. In particular, eliminating redundant atoms of a CRPQ as done for
CQs, in general results in a query which is neither minimal nor canonical.

In this chapter we study the minimization problem for CRPQs and UCR-
PQs. In the case of CRPQs, we aim at minimizing the number of atoms of
a CRPQ, and hence we formulate the problem as follows (≡ denotes query
equivalence, i.e., the fact that the queries output the same answer for all
databases):1 1 Note that we can always assume

𝑘 to be smaller than the number of
atoms of the input query, since oth-
erwise the instance of the minimiza-
tion problem is trivially solvable by
answering ‘yes’. So, whether 𝑘 is
given in unary or binary does not af-
fect the size of the input.

Minimization problem for CRPQs
Input : A finite alphabet 𝔸, a CRPQ 𝛾 over 𝔸 and 𝑘 ∈ ℕ.

Question: Is there a CRPQ 𝛿 over 𝔸 with at most 𝑘 atoms such that
𝛾 ≡ 𝛿?

On the other hand, in the case of UCRPQs, we minimize the maximum
number of atoms of the CRPQs participating in a UCRPQ:

Minimization problem for UCRPQs
Input : A finite alphabet 𝔸, a UCRPQ Γ over 𝔸 and 𝑘 ∈ ℕ.

Question: Is there a UCRPQ Δ over 𝔸 whose every CRPQ has at
most 𝑘 atoms s.t. Γ ≡ Δ?

Observe that the minimization problem for CRPQs and UCRPQs are two
different problems: an algorithm for the minimization problem for UCRPQs
(where the equivalent query may have unions) in principle does not imply
any bound on the minimization for CRPQs (where we insist in being only
one CRPQ).

Contributions. We investigate the minimization problem for CRPQs and
UCRPQs, and present several fundamental results. More concretely:
• We show that the minimization problem for CRPQs and UCRPQs are both

decidable. As explained before, these are different problems and we give

91

iv. minimization of conjunctive regular path queries

two very different algorithms. Contrary as what happens for CQs, mini-
mizing a CRPQ by unions of CRPQs may result in smaller queries, hence
in a sense UCRPQ minimization may be seen as a strictly more powerful
approach (Proposition IV.4.1).

• For the minimization of CRPQs, the algorithm is essentially by brute-force.
By carefully bounding the sizes of the automata involved, we show that
the algorithm can be implemented in 2ExpSpace in Theorem IV.3.1. We
also show an ExpSpace-hard lower bound in Theorem IV.5.2, leaving an
exponential gap.

• For the minimization of UCRPQs we can apply a more elegant solution,
and in fact we show how to compute ‘maximal under-approximations’ of a
query by UCRPQs of a given size (Lemma IV.4.6). The minimization then
follows by testing whether the given query is equivalent to its approxima-
tion of size 𝑘, yielding an ExpSpace upper bound (Corollary IV.4.7), which
is tight with the lower bound (Corollary IV.5.13).

• We consider subclasses of UCRPQs restricted to some commonly used
regular expressions as observed in practice, namely, the so-called positive
simple regular expressions2 We show that minimization of UCRPQs having 2 The positivity restriction is needed

in Lemma IV.5.12.such simple regular expressions is Π𝑝
2 -complete (Theorem IV.4.8).

• We explore some necessary and sufficient conditions for minimality. In
particular, we show that non-redundancy (i.e., the fact that removing any
atom results in a non-equivalent query) is necessary but not sufficient for
minimality (also known to be the case for tree patterns [CMNP18]). We
also investigate a notion of ‘strong minimality’ which implies minimality
(Corollary IV.2.9), and can be used as a theoretical tool to prove minimality
of queries. This result is based on Theorem IV.2.8, which may be of inde-
pendent interest, providing a tool to extract lower bounds on the number
of atoms (and more generally properties on the underlying structure of
queries, such as tree-width, path-width, etc.) that is necessary to express a
UCRPQ.

• We also discuss an alternative definition of size, where instead of the
number of atoms we count the number of variables: we obtain upper
bounds for the variable-minimization problem of CRPQs and UCRPQs
in Section V.10.

On the chosen size measure. A naïve algorithm for the evaluation of a union
of 𝑡 CRPQs with 𝑘 atoms on a graph database 𝐺 gives a rough bound of
𝑂�𝑡𝑘(|𝑉(𝐺)||ℰ(𝐺)|𝑟) + 𝑡|𝑉(𝐺)|2𝑘�, where 𝑟 is the maximum size of the regular
expressions it contains, and ℰ(𝐺), 𝑉(𝐺) are the set of edges and vertices of
𝐺, respectively.3 As we see, the most costly dependence is on 𝑘, since 𝐺

3 This is obtained by first materializ-
ing a table with the answers to each
RPQ atom 𝑥 𝐿−→ 𝑦 of the query. For
each vertex 𝑢 ∈ 𝑉(𝐺), we can com-
pute the answers to 𝑢 𝐿−→ 𝑦, by a
BFS traversal on the product of𝐺 and
the NFA 𝒜𝐿 for the regular language
𝐿, taking roughly 𝒪(|ℰ(𝐺)|𝑟). Then
we can evaluate each CRPQ as if it
were a conjunctive query on the com-
puted tables (each table having size
at most |𝑉(𝐺)|2), in 𝒪((|𝑉(𝐺)|2)𝑘) =
𝒪(|𝑉(𝐺)|2𝑘).

is the largest object (i.e., the database, several orders of magnitude larger
than the remaining parameters in practice). The size of regular expressions
and the number of unions have a less predominant multiplicative influence
on the cost. Further, unions can be executed in parallel, which justifies the

92

iv.2. necessary & sufficient conditions for minimality

choice of taking the maximum size of the number of atoms of the CRPQs
therein. However, other measures may also be reasonable. For example,
taking the size to be the number of variables instead of the number of atoms
is explored in Section IV.6.1. More complex measures including the size of
regular expressions and the number of unions would need to take into account
the drastically different roles of the parameters in the evaluation in view of
the previous discussion (e.g., a simple sum of the parameters would not be a
reasonable choice).

Our size measure of number of atoms is also natural from a practical
perspective. In practice, systems typically evaluate CRPQs by combining on-
the-fly “materialization” of CRPQ atoms with relational database techniques,
in particular using join algorithms (see e.g. [Vrg+24; KBHSN24; CRV23]). The
number of atoms (or joins) plays an important role in these algorithms.

Related work. Minimization has also been studied for the class of tree pat-
terns [FFM08; KS08; CMNP18]. Tree patterns are simple yet widely used
tree-like queries for tree-like databases such as XML. These queries allow
mild recursion in the form of descendent edges, that is, atoms of the form
𝑥 𝑎+−→ 𝑦, where 𝑥 is the parent of 𝑦. Minimization of tree patterns is now
well-understood [CMNP18]: it is known that non-redundancy is not the same
as minimality, and that the minimization problem is Σ𝑝

2 -complete, the lower
bound being highly non-trivial.

IV.2 Necessary & Sufficient Conditions for Minimality

This section explores some necessary and sufficient conditions for a query to
be minimal. We start with some necessary definitions. We say that a (U)CRPQ
isminimal if it is not equivalent to any (U)CRPQ having less maximumnumber
of atoms. An internal variable of a CRPQ 𝛾 is any non-output variable with
both in-degree and out-degree 1. A non-internal variable is called external. A
one-way internal path,4 or internal path for short, from 𝑥0 to 𝑥𝑛 of a CRPQ 𝛾 4 This definition comes from [FM25,

§7], under the name ‘one-way inter-
nal path’; there is also an equivalent
notion for C2RPQs.

is a simple5 path

5 Meaning that all nodes are pairwise
disjoint, except that potentially 𝑥0 =
𝑥𝑛.

𝑥0
𝐿1−→ 𝑥1

𝐿2−→ ⋯ 𝐿𝑛−→ 𝑥𝑛 (IV.1)

in 𝛾 where 𝑛 > 0 and every 𝑥𝑖 is internal with 𝑖 ∈ ⟦1, 𝑛 − 1⟧. A segment of
a CRPQ 𝛾 is a maximal internal path in 𝛾, where “maximal” means that it
cannot be extended on the left or on the right. We say that a segment is cyclic
if 𝑥0 = 𝑥𝑛. We identify two cyclic segments if they are equal up to circular
permutation. We say that a segment as in (IV.1) is incident to a variable 𝑦 if
𝑦 = 𝑥𝑖 for some 𝑖.

Fact IV.2.1. The segments—seen as sets of atoms—of 𝛾 form a partition on
its set of atoms.

See Figure IV.1a for an example of a decomposition into segments. Note

93

iv. minimization of conjunctive regular path queries

(a) The segments of 𝛾—labels are omitted. Each seg-
ment has a different color. Internal variables are the
smaller circles.

(b) The segment graph of 𝛾.

Figure IV.1: Segments and segment
graph of a CRPQ 𝛾.

that each segment is incident to either zero external variable (isolated cycles),
to one (non-isolated cycles) or to two (non-cycles). We denote by ‖𝛾‖seg the
number of segments of a CRPQ 𝛾, and we extend this notation to UCRPQs by
letting ‖Γ‖seg =̂ max𝛾∈Γ ‖𝛾‖seg. By Fact IV.2.1, ‖Γ‖seg ≤ ‖Γ‖at always holds.

IV.2.1 Necessary Conditions: Contractions and Redundancy

Contractions. One simple (and tractable) way to make a query smaller is to
‘contract’ any two consecutive atoms in a path with just one atom having
the concatenation of the languages. A CRPQ 𝛾 is fully contracted if it cannot
be contracted. In other words, 𝛾 is fully contracted iff ‖𝛾‖seg = ‖𝛾‖at. A
contraction of a UCRPQ is a contraction of a CRPQ therein (obtaining the
UCRPQ where one CRPQ 𝛾 was replaced by a contraction of 𝛾). A UCRPQ is
then fully contracted if each CRPQ therein is fully contracted.

Fact IV.2.2. Contractions preserve semantic equivalence. Further, from a
UCRPQ Γ one can produce, in polynomial time, an equivalent one that is fully
contracted with ‖Γ‖seg atoms.

In particular, if a UCRPQ Γ is minimal then Γ is fully contracted and
‖Γ‖seg = ‖Γ‖at; in other words, ‖Γ‖seg is an upper bound on the number of
atoms of the minimal equivalent query.

Redundancy. Another way to reduce the number of atoms of a query is to
remove any redundant atom, that is, any atom whose removal results in an
equivalent query. When there are no such redundant atoms, we say that the
query is non-redundant. However, this is a more difficult problem, since it
involves testing for query equivalence, an ExpSpace-complete problem.

Proposition IV.2.3. Testing whether a (U)CRPQ is non-redundant is Ex-

pSpace-complete.

Proof. The upper bound is trivial: for every atom we remove it and check
equivalence.

For the lower bound, we use the construction of Proposition IV.5.1 for
containment. Let 𝛿() =̂ 𝑥′ 𝐾−→ 𝑦′ ∧⋀𝑖 𝑥

𝐿𝑖−→ 𝑦 be the disjoint conjunction
of 𝛾1() and 𝛾2() as defined in Proposition IV.5.1. We first strengthen the
construction to ensure the following two properties:

94

iv.2. necessary & sufficient conditions for minimality

1. 𝐾 cannot be mapped inside any 𝐿𝑖: There is no word of 𝐾which appears
as factor of a word from some 𝐿𝑖. For this, it suffices to add a special letter
at the beginning and the end of every word of 𝐾 which is not in any of the
𝐿𝑖’s. That is, we can define a new 𝐾new =̂ # ⋅ 𝐾old ⋅ # for a new symbol #.

2. For every 𝑗 there is 𝑤𝑗 ∈ 𝐿𝑗 such that 𝑤𝑗 ∉ 𝐿𝑖 for every 𝑖 ≠ 𝑗: it suffices
to add a special word (e.g. using a new alphabet letter) to each 𝐿𝑖. For
example, we can define 𝐿new

𝑖 =̂ 𝐿old
𝑖 ∪ {@𝑖}, where @𝑖 is a fresh alphabet

letter.
It is easy to see that these modifications preserve all the properties needed
for the containment problem to still be ExpSpace-hard.

We show that 𝛿() is non-redundant iff 𝑥′ 𝐾−→ 𝑦′ ⫅ ⋀𝑖 𝑥
𝐿𝑖−→ 𝑦.

X 𝐾 cannot be removed. We first show that removing the atom 𝑥′ 𝐾−→ 𝑦′

from 𝛿() results in a non-equivalent query 𝛿′(). Indeed, if it is removed then
for any expansion of 𝛿′() there will not be any word from 𝐾 that can be used
to map into the expansion due to the first point above.

X If some 𝐿𝑗 is redundant, then containment holds. Consider the result 𝛿′()
of removing an atom 𝑥 𝐿𝑗−→ 𝑦 from 𝛿(). Consider all the expansions of 𝛿′()
that choose 𝑤𝑖—defined in the second point above—as the atom expansion
for 𝐿𝑖 for every 𝑖 ≠ 𝑗. It follows that for any such expansion there must be
an expansion of 𝛿() that maps necessarily 𝑥 𝐿𝑗−→ 𝑦 to the atom expansion of
𝑥′ 𝐾−→ 𝑦′ in 𝛿′(). Otherwise, we would be mapping some word of 𝐿𝑗 to some
𝑤𝑖 with 𝑖 ≠ 𝑗, which we know it is not possible due to the second point above.
This means that 𝑥′ 𝐾−→ 𝑦′ ⫅ ⋀𝑖 𝑥

𝐿𝑖−→ 𝑦.
X If containment holds, then all 𝐿𝑖’s redundant. Finally, observe that if

𝑥′ 𝐾−→ 𝑦′ ⫅ ⋀𝑖 𝑥
𝐿𝑖−→ 𝑦 then the query is equivalent to 𝑥′ 𝐾−→ 𝑦′.

Overall, we obtained that the following are equivalent:
i. 𝛿() is redundant,
ii. an atom 𝑥 𝐿𝑖−→ 𝑦 of 𝛿() is redundant,
iii. the containment 𝑥′ 𝐾−→ 𝑦′ ⫅ ⋀𝑖 𝑥

𝐿𝑖−→ 𝑦 holds,
iv. all atoms 𝑥 𝐿𝑖−→ 𝑦 of 𝛿() are redundant.

While in the case of conjunctive queries non-redundancy is the same as
minimality, for CRPQs and UCRPQs this is not the case, even if the query is
fully contracted.

Proposition IV.2.4. There are fully contracted non-redundant CRPQs which
are not minimal.

Proof.
<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0
<latexit sha1_base64="zT3tTpx5qSuTpPKEzY6npLpyRdw=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5Kij5GK1ETbDKoJ5EE1BY+/x4fvvD3cPrYt6bdjt5dxmqIhLMKYThQXFJWgSXOLI71qDBfAruMSOgwoyNHFZdToKNhzTC9Jcu6coqNh/HSVkxgyzxGVmQH0zq43J/2kdS+lOXApVWELFJx+lVgaUB+Oxg57QyEkOHQCuhes14H3QwMktx/f97jEOrMtpTeudRHE5brEqNisS7aYgDX6uake7pC3GpRQJuiUonDdcgx7YuLwTX+e1v7a4VHhDt9WIz+buWeJ9DnLkjhXNnmYenH5pRlvNraOwsb/JJrHE1tlH9olFbJvtsx+sxdqMM2T37Cf75a15O96e922S6tWmnvfsWXiHT7CL0EI=</latexit>

1

<latexit sha1_base64="eHstJMqRqutUkxLqaL2dJEuUGNg=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjfrHaCJthFcE8iKagsff48P33h7uH1kW9Nuz2cm4zVMQlGNOJwoLiEjQJLnHkd63BAvgVXGLHQQUZmrisOh0FG47pBWmu3VMUVOy/jhIyY4ZZ4jIzoL6Z1cbk/7SOpXQnLoUqLKHik49SKwPKg/HYQU9o5CSHDgDXwvUa8D5o4OSW4/t+9xgH1uW0pvVOorgct1gVmxWJdlOQBj9XtaNd0hbjUooE3RIUzhuuQQ9sXN6Jr/PaX1tcKryh22rEZ3P3LPE+Bzlyx4pmTzMPTr80o63m1lHY2N9kk1hi6+wj+8Qits322Q/WYm3GGbJ79pP98ta8HW/P+zZJ9WpTz3v2LLzDJ7K30EM=</latexit>

2

<latexit sha1_base64="UuDjHKEFIPrawc+P6PwSVUfAzsw=">AAACkXicbVHLTttAFJ24LQ8XKJTuurEagbpAkY0qHgvUqF1QqZsUEUBKLHQ9uSYjxmMzcwcIVv6g2/IZ/E+X/EE/oRMnqkrClUY6OueeO/eRFFIYCsPfNe/Fy1dz8wuL/uul5ZU3q2tvT0xuNcc2z2WuzxIwKIXCNgmSeFZohCyReJpcfh3pp9eojcjVMQ0KjDO4UCIVHMhRRwDnq/WwEVYRzIJoAuqf/zwePry7e2ydr9UG3V7ObYaKuARjOlFYUFyCJsElDv2uNVgAv4QL7DioIEMTl1Wrw2DDMb0gzbV7ioKK/d9RQmbMIEtcZgbUN9PaiHxO61hK9+JSqMISKj7+KLUyoDwYzR30hEZOcuAAcC1crwHvgwZObju+73eP8Mq6nNak3nEUl6MWq2LTItFBCtLgVlU7OiBtMS6lSNAtQeGs4Rr0lY3LO/FpVvtni0uFN3Rbjfhk7p4l3ucgh+5Y0fRpZsHJdiPaaez8COvNTTaOBfaefWAfWcR2WZN9Yy3WZpyl7Cf7xe69dW/fa3pfxqlebeJZZ0/C+/4XpwfQrA==</latexit>

00

<latexit sha1_base64="5ykYAnJiS38ARJfw7eV/wKyPtNk=">AAAClnicbVHbbtNAEN2YWzG3tvCAxIshAiFRRTZCLS+FSgiVx4CaplJiqvFm3KyyXru7s4V0lY/gFf6B/+Gxf8AnsHYiRBNGWunonDmzc8kqKQzF8a9WcOXqtes31m6Gt27fuXtvfWPz0JRWc+zxUpb6KAODUijskSCJR5VGKDKJ/Wzyrtb7Z6iNKNUBTStMCzhRIhccyFN9+OyGj1/MjtfbcSduIloFyQK03/6+2P/54Pyie7zRmg5HJbcFKuISjBkkcUWpA02CS5yFQ2uwAj6BExx4qKBAk7qm31n01DOjKC+1f4qihv3X4aAwZlpkPrMAGptlrSb/pw0s5a9TJ1RlCRWff5RbGVEZ1cNHI6GRk5x6AFwL32vEx6CBk19RGIbDT3hqfU53Ue8gSV3dYlNsWSTazUEa3GpqJ7ukLaZOigz9EhSuGs5An9rUnYtXq9pfW+oUfqGvzYiX5h5Z4mMOsj5WsnyaVXD4spNsd7Y/xu29Z2wea+wRe8Kes4TtsD32gXVZj3E2Yd/Yd/YjeBi8Cd4H+/PUoLXw3GeXIuj+AetB0ns=</latexit>

0+

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0
<latexit sha1_base64="zT3tTpx5qSuTpPKEzY6npLpyRdw=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5Kij5GK1ETbDKoJ5EE1BY+/x4fvvD3cPrYt6bdjt5dxmqIhLMKYThQXFJWgSXOLI71qDBfAruMSOgwoyNHFZdToKNhzTC9Jcu6coqNh/HSVkxgyzxGVmQH0zq43J/2kdS+lOXApVWELFJx+lVgaUB+Oxg57QyEkOHQCuhes14H3QwMktx/f97jEOrMtpTeudRHE5brEqNisS7aYgDX6uake7pC3GpRQJuiUonDdcgx7YuLwTX+e1v7a4VHhDt9WIz+buWeJ9DnLkjhXNnmYenH5pRlvNraOwsb/JJrHE1tlH9olFbJvtsx+sxdqMM2T37Cf75a15O96e922S6tWmnvfsWXiHT7CL0EI=</latexit>

1

<latexit sha1_base64="eHstJMqRqutUkxLqaL2dJEuUGNg=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjfrHaCJthFcE8iKagsff48P33h7uH1kW9Nuz2cm4zVMQlGNOJwoLiEjQJLnHkd63BAvgVXGLHQQUZmrisOh0FG47pBWmu3VMUVOy/jhIyY4ZZ4jIzoL6Z1cbk/7SOpXQnLoUqLKHik49SKwPKg/HYQU9o5CSHDgDXwvUa8D5o4OSW4/t+9xgH1uW0pvVOorgct1gVmxWJdlOQBj9XtaNd0hbjUooE3RIUzhuuQQ9sXN6Jr/PaX1tcKryh22rEZ3P3LPE+Bzlyx4pmTzMPTr80o63m1lHY2N9kk1hi6+wj+8Qits322Q/WYm3GGbJ79pP98ta8HW/P+zZJ9WpTz3v2LLzDJ7K30EM=</latexit>

2

<latexit sha1_base64="0prLI8xrLBPAK9N5mrzOz2lF64o=">AAACl3icbVHbbtNAEN2YW2tuLfQF8WKIQEigyEao8FK1UiXoY4qaNlJiqvFm3Ky6Xru7s4V0lZ/glX4D/8Nj/4BPYO1EiCaMtNLROXNm55JVUhiK41+t4MbNW7fvrKyGd+/df/Bwbf3RoSmt5tjjpSx1PwODUijskSCJ/UojFJnEo+x0t9aPzlEbUaoDmlSYFnCiRC44kKf6AF/c8Nnr6fFaO+7ETUTLIJmD9vbvq08/Ny6uusfrrclwVHJboCIuwZhBEleUOtAkuMRpOLQGK+CncIIDDxUUaFLXNDyNXnhmFOWl9k9R1LD/OhwUxkyKzGcWQGOzqNXk/7SBpfxD6oSqLKHis49yKyMqo3r6aCQ0cpITD4Br4XuN+Bg0cPI7CsNw+BnPrM/pzusdJKmrW2yKLYpEWzlIg2+a2skWaYupkyJDvwSFy4Zz0Gc2dRfi3bL215Y6hV/pWzPitblHlviYg6yPlSyeZhkcvu0km53N/bi985LNYoU9Zc/ZK5aw92yH7bEu6zHOJPvOfrDL4EmwHXwM9mapQWvuecyuRbD/B+Y70uY=</latexit>

00+
<latexit sha1_base64="5ykYAnJiS38ARJfw7eV/wKyPtNk=">AAAClnicbVHbbtNAEN2YWzG3tvCAxIshAiFRRTZCLS+FSgiVx4CaplJiqvFm3KyyXru7s4V0lY/gFf6B/+Gxf8AnsHYiRBNGWunonDmzc8kqKQzF8a9WcOXqtes31m6Gt27fuXtvfWPz0JRWc+zxUpb6KAODUijskSCJR5VGKDKJ/Wzyrtb7Z6iNKNUBTStMCzhRIhccyFN9+OyGj1/MjtfbcSduIloFyQK03/6+2P/54Pyie7zRmg5HJbcFKuISjBkkcUWpA02CS5yFQ2uwAj6BExx4qKBAk7qm31n01DOjKC+1f4qihv3X4aAwZlpkPrMAGptlrSb/pw0s5a9TJ1RlCRWff5RbGVEZ1cNHI6GRk5x6AFwL32vEx6CBk19RGIbDT3hqfU53Ue8gSV3dYlNsWSTazUEa3GpqJ7ukLaZOigz9EhSuGs5An9rUnYtXq9pfW+oUfqGvzYiX5h5Z4mMOsj5WsnyaVXD4spNsd7Y/xu29Z2wea+wRe8Kes4TtsD32gXVZj3E2Yd/Yd/YjeBi8Cd4H+/PUoLXw3GeXIuj+AetB0ns=</latexit>

0+

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0
<latexit sha1_base64="zT3tTpx5qSuTpPKEzY6npLpyRdw=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5Kij5GK1ETbDKoJ5EE1BY+/x4fvvD3cPrYt6bdjt5dxmqIhLMKYThQXFJWgSXOLI71qDBfAruMSOgwoyNHFZdToKNhzTC9Jcu6coqNh/HSVkxgyzxGVmQH0zq43J/2kdS+lOXApVWELFJx+lVgaUB+Oxg57QyEkOHQCuhes14H3QwMktx/f97jEOrMtpTeudRHE5brEqNisS7aYgDX6uake7pC3GpRQJuiUonDdcgx7YuLwTX+e1v7a4VHhDt9WIz+buWeJ9DnLkjhXNnmYenH5pRlvNraOwsb/JJrHE1tlH9olFbJvtsx+sxdqMM2T37Cf75a15O96e922S6tWmnvfsWXiHT7CL0EI=</latexit>

1

<latexit sha1_base64="eHstJMqRqutUkxLqaL2dJEuUGNg=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjfrHaCJthFcE8iKagsff48P33h7uH1kW9Nuz2cm4zVMQlGNOJwoLiEjQJLnHkd63BAvgVXGLHQQUZmrisOh0FG47pBWmu3VMUVOy/jhIyY4ZZ4jIzoL6Z1cbk/7SOpXQnLoUqLKHik49SKwPKg/HYQU9o5CSHDgDXwvUa8D5o4OSW4/t+9xgH1uW0pvVOorgct1gVmxWJdlOQBj9XtaNd0hbjUooE3RIUzhuuQQ9sXN6Jr/PaX1tcKryh22rEZ3P3LPE+Bzlyx4pmTzMPTr80o63m1lHY2N9kk1hi6+wj+8Qits322Q/WYm3GGbJ79pP98ta8HW/P+zZJ9WpTz3v2LLzDJ7K30EM=</latexit>

2

<latexit sha1_base64="0prLI8xrLBPAK9N5mrzOz2lF64o=">AAACl3icbVHbbtNAEN2YW2tuLfQF8WKIQEigyEao8FK1UiXoY4qaNlJiqvFm3Ky6Xru7s4V0lZ/glX4D/8Nj/4BPYO1EiCaMtNLROXNm55JVUhiK41+t4MbNW7fvrKyGd+/df/Bwbf3RoSmt5tjjpSx1PwODUijskSCJ/UojFJnEo+x0t9aPzlEbUaoDmlSYFnCiRC44kKf6AF/c8Nnr6fFaO+7ETUTLIJmD9vbvq08/Ny6uusfrrclwVHJboCIuwZhBEleUOtAkuMRpOLQGK+CncIIDDxUUaFLXNDyNXnhmFOWl9k9R1LD/OhwUxkyKzGcWQGOzqNXk/7SBpfxD6oSqLKHis49yKyMqo3r6aCQ0cpITD4Br4XuN+Bg0cPI7CsNw+BnPrM/pzusdJKmrW2yKLYpEWzlIg2+a2skWaYupkyJDvwSFy4Zz0Gc2dRfi3bL215Y6hV/pWzPitblHlviYg6yPlSyeZhkcvu0km53N/bi985LNYoU9Zc/ZK5aw92yH7bEu6zHOJPvOfrDL4EmwHXwM9mapQWvuecyuRbD/B+Y70uY=</latexit>

00+

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0

<latexit sha1_base64="zT3tTpx5qSuTpPKEzY6npLpyRdw=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5Kij5GK1ETbDKoJ5EE1BY+/x4fvvD3cPrYt6bdjt5dxmqIhLMKYThQXFJWgSXOLI71qDBfAruMSOgwoyNHFZdToKNhzTC9Jcu6coqNh/HSVkxgyzxGVmQH0zq43J/2kdS+lOXApVWELFJx+lVgaUB+Oxg57QyEkOHQCuhes14H3QwMktx/f97jEOrMtpTeudRHE5brEqNisS7aYgDX6uake7pC3GpRQJuiUonDdcgx7YuLwTX+e1v7a4VHhDt9WIz+buWeJ9DnLkjhXNnmYenH5pRlvNraOwsb/JJrHE1tlH9olFbJvtsx+sxdqMM2T37Cf75a15O96e922S6tWmnvfsWXiHT7CL0EI=</latexit>

1

<latexit sha1_base64="eHstJMqRqutUkxLqaL2dJEuUGNg=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjfrHaCJthFcE8iKagsff48P33h7uH1kW9Nuz2cm4zVMQlGNOJwoLiEjQJLnHkd63BAvgVXGLHQQUZmrisOh0FG47pBWmu3VMUVOy/jhIyY4ZZ4jIzoL6Z1cbk/7SOpXQnLoUqLKHik49SKwPKg/HYQU9o5CSHDgDXwvUa8D5o4OSW4/t+9xgH1uW0pvVOorgct1gVmxWJdlOQBj9XtaNd0hbjUooE3RIUzhuuQQ9sXN6Jr/PaX1tcKryh22rEZ3P3LPE+Bzlyx4pmTzMPTr80o63m1lHY2N9kk1hi6+wj+8Qits322Q/WYm3GGbJ79pP98ta8HW/P+zZJ9WpTz3v2LLzDJ7K30EM=</latexit>

2

<latexit sha1_base64="0prLI8xrLBPAK9N5mrzOz2lF64o=">AAACl3icbVHbbtNAEN2YW2tuLfQF8WKIQEigyEao8FK1UiXoY4qaNlJiqvFm3Ky6Xru7s4V0lZ/glX4D/8Nj/4BPYO1EiCaMtNLROXNm55JVUhiK41+t4MbNW7fvrKyGd+/df/Bwbf3RoSmt5tjjpSx1PwODUijskSCJ/UojFJnEo+x0t9aPzlEbUaoDmlSYFnCiRC44kKf6AF/c8Nnr6fFaO+7ETUTLIJmD9vbvq08/Ny6uusfrrclwVHJboCIuwZhBEleUOtAkuMRpOLQGK+CncIIDDxUUaFLXNDyNXnhmFOWl9k9R1LD/OhwUxkyKzGcWQGOzqNXk/7SBpfxD6oSqLKHis49yKyMqo3r6aCQ0cpITD4Br4XuN+Bg0cPI7CsNw+BnPrM/pzusdJKmrW2yKLYpEWzlIg2+a2skWaYupkyJDvwSFy4Zz0Gc2dRfi3bL215Y6hV/pWzPitblHlviYg6yPlSyeZhkcvu0km53N/bi985LNYoU9Zc/ZK5aw92yH7bEu6zHOJPvOfrDL4EmwHXwM9mapQWvuecyuRbD/B+Y70uY=</latexit>

00+

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0
<latexit sha1_base64="zT3tTpx5qSuTpPKEzY6npLpyRdw=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5Kij5GK1ETbDKoJ5EE1BY+/x4fvvD3cPrYt6bdjt5dxmqIhLMKYThQXFJWgSXOLI71qDBfAruMSOgwoyNHFZdToKNhzTC9Jcu6coqNh/HSVkxgyzxGVmQH0zq43J/2kdS+lOXApVWELFJx+lVgaUB+Oxg57QyEkOHQCuhes14H3QwMktx/f97jEOrMtpTeudRHE5brEqNisS7aYgDX6uake7pC3GpRQJuiUonDdcgx7YuLwTX+e1v7a4VHhDt9WIz+buWeJ9DnLkjhXNnmYenH5pRlvNraOwsb/JJrHE1tlH9olFbJvtsx+sxdqMM2T37Cf75a15O96e922S6tWmnvfsWXiHT7CL0EI=</latexit>

1

<latexit sha1_base64="eHstJMqRqutUkxLqaL2dJEuUGNg=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjfrHaCJthFcE8iKagsff48P33h7uH1kW9Nuz2cm4zVMQlGNOJwoLiEjQJLnHkd63BAvgVXGLHQQUZmrisOh0FG47pBWmu3VMUVOy/jhIyY4ZZ4jIzoL6Z1cbk/7SOpXQnLoUqLKHik49SKwPKg/HYQU9o5CSHDgDXwvUa8D5o4OSW4/t+9xgH1uW0pvVOorgct1gVmxWJdlOQBj9XtaNd0hbjUooE3RIUzhuuQQ9sXN6Jr/PaX1tcKryh22rEZ3P3LPE+Bzlyx4pmTzMPTr80o63m1lHY2N9kk1hi6+wj+8Qits322Q/WYm3GGbJ79pP98ta8HW/P+zZJ9WpTz3v2LLzDJ7K30EM=</latexit>

2

<latexit sha1_base64="5ykYAnJiS38ARJfw7eV/wKyPtNk=">AAAClnicbVHbbtNAEN2YWzG3tvCAxIshAiFRRTZCLS+FSgiVx4CaplJiqvFm3KyyXru7s4V0lY/gFf6B/+Gxf8AnsHYiRBNGWunonDmzc8kqKQzF8a9WcOXqtes31m6Gt27fuXtvfWPz0JRWc+zxUpb6KAODUijskSCJR5VGKDKJ/Wzyrtb7Z6iNKNUBTStMCzhRIhccyFN9+OyGj1/MjtfbcSduIloFyQK03/6+2P/54Pyie7zRmg5HJbcFKuISjBkkcUWpA02CS5yFQ2uwAj6BExx4qKBAk7qm31n01DOjKC+1f4qihv3X4aAwZlpkPrMAGptlrSb/pw0s5a9TJ1RlCRWff5RbGVEZ1cNHI6GRk5x6AFwL32vEx6CBk19RGIbDT3hqfU53Ue8gSV3dYlNsWSTazUEa3GpqJ7ukLaZOigz9EhSuGs5An9rUnYtXq9pfW+oUfqGvzYiX5h5Z4mMOsj5WsnyaVXD4spNsd7Y/xu29Z2wea+wRe8Kes4TtsD32gXVZj3E2Yd/Yd/YjeBi8Cd4H+/PUoLXw3GeXIuj+AetB0ns=</latexit>

0+

<latexit sha1_base64="9axxK3e7MN5EUVDdKEwE0MA/tXE=">AAACkHicbVHNTttAEN4Y2lJDW0J742I1AvVQRXZVARcEFYdWnAIigJRYaLwZkxXrtbM7CwQrT8C1fY2+T4+8AY/AxomqknSklT5933yz85MUUhgKwz81b2HxxctXS6/95ZU3b9+t1tdOTW41xzbPZa7PEzAohcI2CZJ4XmiELJF4llwdjPWza9RG5OqEhgXGGVwqkQoO5KgjuFhthM2wimAeRFPQ2Ht8+P77w91D66JeG3Z7ObcZKuISjOlEYUFxCZoElzjyu9ZgAfwKLrHjoIIMTVxWnY6CDcf0gjTX7ikKKvZfRwmZMcMscZkZUN/MamPyf1rHUroTl0IVllDxyUeplQHlwXjsoCc0cpJDB4Br4XoNeB80cHLL8X2/e4wD63Ja03onUVyOW6yKzYpEuylIg5+r2tEuaYtxKUWCbgkK5w3XoAc2Lu/E13ntry0uFd7QbTXis7l7lnifgxy5Y0Wzp5kHp1+a0VZz6yhs7G+ySSyxdfaRfWIR22b77AdrsTbjDNk9+8l+eWvejrfnfZukerWp5z17Ft7hE65f0EE=</latexit>

0
<latexit sha1_base64="Ay9aqaFZfI+vTRYXJbfnOS/nLAM=">AAAB7XicbZC5TgMxEIZnwxXCFY6OxiICUUW7FIGOSBRQBokcUrKKvI6TGLz2YnsjhVXegYYChGjpeBg6yrwBj4BzFJDwS5Y+/f+MPDNBxJk2rvvlpBYWl5ZX0quZtfWNza3s9k5Fy1gRWiaSS1ULsKacCVo2zHBaixTFYcBpNbi7GOXVHlWaSXFj+hH1Q9wRrM0INtaqNOh9zHrNbM7Nu2OhefCmkDv/Hl5+7D0MS83sZ6MlSRxSYQjHWtc9NzJ+gpVhhNNBphFrGmFyhzu0blHgkGo/GU87QIfWaaG2VPYJg8bu744Eh1r3w8BWhth09Ww2Mv/L6rFpn/kJE1FsqCCTj9oxR0ai0eqoxRQlhvctYKKYnRWRLlaYGHugjD2CN7vyPFRO8l4hX7h2c8UjmCgN+3AAx+DBKRThCkpQBgK38AjP8OJI58l5dd4mpSln2rMLf+S8/wC6hZOb</latexit>⌘ <latexit sha1_base64="Ay9aqaFZfI+vTRYXJbfnOS/nLAM=">AAAB7XicbZC5TgMxEIZnwxXCFY6OxiICUUW7FIGOSBRQBokcUrKKvI6TGLz2YnsjhVXegYYChGjpeBg6yrwBj4BzFJDwS5Y+/f+MPDNBxJk2rvvlpBYWl5ZX0quZtfWNza3s9k5Fy1gRWiaSS1ULsKacCVo2zHBaixTFYcBpNbi7GOXVHlWaSXFj+hH1Q9wRrM0INtaqNOh9zHrNbM7Nu2OhefCmkDv/Hl5+7D0MS83sZ6MlSRxSYQjHWtc9NzJ+gpVhhNNBphFrGmFyhzu0blHgkGo/GU87QIfWaaG2VPYJg8bu744Eh1r3w8BWhth09Ww2Mv/L6rFpn/kJE1FsqCCTj9oxR0ai0eqoxRQlhvctYKKYnRWRLlaYGHugjD2CN7vyPFRO8l4hX7h2c8UjmCgN+3AAx+DBKRThCkpQBgK38AjP8OJI58l5dd4mpSln2rMLf+S8/wC6hZOb</latexit>⌘ <latexit sha1_base64="Ay9aqaFZfI+vTRYXJbfnOS/nLAM=">AAAB7XicbZC5TgMxEIZnwxXCFY6OxiICUUW7FIGOSBRQBokcUrKKvI6TGLz2YnsjhVXegYYChGjpeBg6yrwBj4BzFJDwS5Y+/f+MPDNBxJk2rvvlpBYWl5ZX0quZtfWNza3s9k5Fy1gRWiaSS1ULsKacCVo2zHBaixTFYcBpNbi7GOXVHlWaSXFj+hH1Q9wRrM0INtaqNOh9zHrNbM7Nu2OhefCmkDv/Hl5+7D0MS83sZ6MlSRxSYQjHWtc9NzJ+gpVhhNNBphFrGmFyhzu0blHgkGo/GU87QIfWaaG2VPYJg8bu744Eh1r3w8BWhth09Ww2Mv/L6rFpn/kJE1FsqCCTj9oxR0ai0eqoxRQlhvctYKKYnRWRLlaYGHugjD2CN7vyPFRO8l4hX7h2c8UjmCgN+3AAx+DBKRThCkpQBgK38AjP8OJI58l5dd4mpSln2rMLf+S8/wC6hZOb</latexit>⌘

Figure IV.2: Equivalent CRPQs. The
leftmost query is fully contracted,
non-redundant and not minimal,
since it is equivalent to the rightmost
query.

Figure IV.2 contains a simple witnessing example. It is trivial to see that
the CRPQs in the figure are all equivalent and that the leftmost query is

95

iv. minimization of conjunctive regular path queries

non-redundant and fully contracted. However, it is not minimal since it is
equivalent to the rightmost CRPQ.

IV.2.2 A Sufficient Condition: Strong Minimality

We have seen some sound ways to reduce the size of queries. But how can
we ensure that a query is actually minimal? Here we give a theoretical tool
which can ensure this by means of finding some expansion which is a witness
for the query to have “many atoms”. We call this strong minimality.

A UCRPQ Γ is strongly minimal if it has a hom-minimal expansion 𝜉 ∈
Exp(Γ) s.t. ‖ ̌(𝜉)‖seg = ‖Γ‖at. We will next show that this is a sufficient

condition for minimality.
Informally, the segment graph 𝒮𝒢(𝛾) of a CRPQ 𝛾 is the directedmultigraph

obtained by replacing segments of 𝛾 with edges in its underlying graph, as
illustrated in Figure IV.1b. Themainmotivation behind the notion of segments
is that it is essentially dual to the notion of atom refinements.

Definition IV.2.5. Given a CRPQ 𝛾, we define its segment graph 𝒮𝒢(𝛾) to be
the directed multigraph defined by:
• every external variable of 𝛾 is a vertex of 𝒮𝒢(𝛾), and moreover, for every

cyclic segment 𝜎 that is not incident to any external variable, we create a
new variable 𝑥𝜎;

• for every cyclic segment 𝜎, we have a self-loop around 𝑥𝜎, and for any
external variable 𝑥 and 𝑦 of 𝛾, we have an edge from 𝑥 to 𝑦 in 𝒮𝒢(𝛾) for
any segment starting at 𝑥 and ending at 𝑦.

Fact IV.2.6. The segment graph of 𝛾 can always be obtained from its under-
lying graph by contracting internal variables.

A minor of a graph is any graph that can be obtained by removing edges,
removing vertices—and their adjacent edges—, and contracting edges—meaning
that we identify the two endpoints of the edge and remove the edge from the
graph.6 Moreover, we say that a class of CRPQs is minor-closed when, for 6 This definition is a trivial general-

ization of the notion of minors for
undirected graphs.

every query is the class, any other query whose underlying graph is a minor
of the underlying graph of the first query must also belong to the class.

<latexit sha1_base64="SEyiz29sDEwT4EfVt3eD862W/cM=">AAAC7HicjVLJTsMwFJyGrZStwJFLREFCHKoUsR0rceFYBF2kUlDiuiUimxwHUVV8AjcEB8SVf+IPgK/g2U0loGJxlGQ8783Yz89O5LmxtKyXjDE2PjE5lZ3OzczOzS/kF5dqcZgIxqss9ELRcOyYe27Aq9KVHm9Egtu+4/G6c3mg4vUrLmI3DE5kL+It3+4GbsdltiTq2D7bPM8XrKKlhzkKSikoIB2VMP+OU7QRgiGBD44AkrAHGzE9TZRgISKuhT5xgpCr4xw3yJE2oSxOGTaxl/Tt0qyZsgHNlWes1YxW8egVpDSxTpqQ8gRhtZqp44l2VuxP3n3tqfbWo7+TevnESlwQ+5dumPlfnapFooN9XYNLNUWaUdWx1CXRp6J2bn6qSpJDRJzCbYoLwkwrh+dsak2sa1dna+v4q85UrJqzNDfB26/VXdMeBw7UF7oGpe9NHwW1rWJpt7hztF0or6UXIosVrGKDur6HMg5RQZUcu7jFPR6MwLgzHo2nQaqRSTXL+DKM5w9AE5hK</latexit>

a⇤
<latexit sha1_base64="Qf0Meac8Inr87eH9+nHu5aB3vuc=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTGpomYTKRluIXuBNdiFt/yj9Qv8I70ymoxceEJGfOvefMvTPjxoGfCMt6yRgzs3PzC9nF3NLyyupafn2jlkQp91jVi4KIN1wnYYEfsqrwRcAaMWdO3w1Y3e2dynj9mvHEj8JzMYxZq+90Q7/je44gqjK4zBesoqWGOQ1sDQrQoxzl33GBNiJ4SNEHQwhBOICDhJ4mbFiIiWthRBwn5Ks4ww1ypE0pi1GGQ2yPvl2aNTUb0lx6Jkrt0SoBvZyUJnZJE1EeJyxXM1U8Vc6S/cl7pDxlbUP6u9qrT6zAFbF/6SaZ/9XJXgQ6OFE9+NRTrBjZnaddUrUrsnLzU1eCHGLiJG5TnBP2lHKyz6bSJKp3ubeOir+qTMnKuadzU7z92t2Aahw70LnQNbC/H/o0qO0X7aPiYeWgUNrRFyKLLWxjj079GCWcoYyqquAW93gwAuPOeDSexqlGRms28WUYzx/V4ZfF</latexit>x

<latexit sha1_base64="+eqjg6+7/ML4WJTHla6BK4V+AjA=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTOjh5kEzEUvwCd6ILcetP+QfqV3hnmoJafExIcubce87cOzNuJHgiLeslZ0xNz8zO5ecLC4tLyyvF1bVGEqaxx+peKMK45ToJEzxgdcmlYK0oZo7vCtZ0L49VvHnF4oSHwakcRKzjO/2A97jnSKJqg/NiySpbepiTwM5ACdmohsV3nKGLEB5S+GAIIAkLOEjoacOGhYi4DobExYS4jjPcoEDalLIYZTjEXtK3T7N2xgY0V56JVnu0iqA3JqWJbdKElBcTVquZOp5qZ8X+5D3Unqq2Af3dzMsnVuKC2L9048z/6lQvEj0c6R449RRpRnXnZS6p3hVVufmpK0kOEXEKdykeE/a0crzPptYkune1t46Ov+pMxaq5l+WmePu1u2uqceRA50LXwP5+6JOgsVu2D8r7tb1SZSu7EHlsYBM7dOqHqOAEVdR1Bbe4x4MhjDvj0XgapRq5TLOOL8N4/gDYZ5fG</latexit>y

<latexit sha1_base64="jVrdGDom0bwaWhhG7z98NP3CqWg=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTOjRNQjIRa/EL3IkuxK0/5R+oX+Gd6RTU4mNCkjPn3nPm3plxI58nwrJeMsbU9MzsXHY+t7C4tLySX12rJWEae6zqhX4YN1wnYT4PWFVw4bNGFDOn7/qs7vaOZbx+yeKEh8GpGESs1Xe6Ae9wzxFEVa7P8wWraKlhTgJbgwL0KIf5d5yhjRAeUvTBEEAQ9uEgoacJGxYi4loYEhcT4irOcIMcaVPKYpThENujb5dmTc0GNJeeiVJ7tIpPb0xKE9ukCSkvJixXM1U8Vc6S/cl7qDxlbQP6u9qrT6zABbF/6caZ/9XJXgQ6OFI9cOopUozsztMuqdoVWbn5qStBDhFxErcpHhP2lHK8z6bSJKp3ubeOir+qTMnKuadzU7z92t0V1ThyoHOha2B/P/RJUNst2gfF/cpeobSlL0QWG9jEDp36IUo4QRlVVcEt7vFg+Mad8Wg8jVKNjNas48swnj8A2u2Xxw==</latexit>z <latexit sha1_base64="T5ECA7PDvgfSFPOu078akSvUp3Q=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTOpgXyUQsxS9wJ7oQt/6Uf6B+hXemU1CLjwlJzpx7z5l7Z8aNfZ4Ky3rJGVPTM7Nz+fnCwuLS8kpxda2RRlnisboX+VHScp2U+TxkdcGFz1pxwpzA9VnTvTyW8eYVS1IehadiELNO4PRD3uOeI4iqZefFklW21DAnga1BCXpUo+I7ztBFBA8ZAjCEEIR9OEjpacOGhZi4DobEJYS4ijPcoEDajLIYZTjEXtK3T7O2ZkOaS89UqT1axac3IaWJbdJElJcQlquZKp4pZ8n+5D1UnrK2Af1d7RUQK3BB7F+6ceZ/dbIXgR6OVA+ceooVI7vztEumdkVWbn7qSpBDTJzEXYonhD2lHO+zqTSp6l3uraPirypTsnLu6dwMb792d001jhzoXOga2N8PfRI0dsv2QXm/tleqbOkLkccGNrFDp36ICk5QRV1VcIt7PBi+cWc8Gk+jVCOnNev4MoznD85Pl8I=</latexit>u

<latexit sha1_base64="O+SvEKUY/9LLfkw/FmlgLMs58KQ=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTGpomYTIpluIXuBNdiFt/yj9Qv8I70ymoxceEJGfOvefMvTPjxoGfCMt6yRgzs3PzC9nF3NLyyupafn2jlkQp91jVi4KIN1wnYYEfsqrwRcAaMWdO3w1Y3e2dynh9wHjiR+G5GMas1Xe6od/xPUcQVRlc5gtW0VLDnAa2BgXoUY7y77hAGxE8pOiDIYQgHMBBQk8TNizExLUwIo4T8lWc4QY50qaUxSjDIbZH3y7NmpoNaS49E6X2aJWAXk5KE7ukiSiPE5armSqeKmfJ/uQ9Up6ytiH9Xe3VJ1bgiti/dJPM/+pkLwIdnKgefOopVozsztMuqdoVWbn5qStBDjFxErcpzgl7SjnZZ1NpEtW73FtHxV9VpmTl3NO5Kd5+7e6aahw70LnQNbC/H/o0qO0X7aPiYeWgUNrRFyKLLWxjj079GCWcoYyqquAW93gwAuPOeDSexqlGRms28WUYzx/Q1ZfD</latexit>v
<latexit sha1_base64="LA5UIAVHRV4oy0YwRJcm3S1ouZg=">AAAC6nicjVLLSsNAFD2Nr1pfVZduglVwVRLxtSy4cdmCfUAtkqTTOpgXyUQsxS9wJ7oQt/6Uf6B+hXemU1CLjwlJzpx7z5l7Z8aNfZ4Ky3rJGVPTM7Nz+fnCwuLS8kpxda2RRlnisboX+VHScp2U+TxkdcGFz1pxwpzA9VnTvTyW8eYVS1IehadiELNO4PRD3uOeI4iquefFklW21DAnga1BCXpUo+I7ztBFBA8ZAjCEEIR9OEjpacOGhZi4DobEJYS4ijPcoEDajLIYZTjEXtK3T7O2ZkOaS89UqT1axac3IaWJbdJElJcQlquZKp4pZ8n+5D1UnrK2Af1d7RUQK3BB7F+6ceZ/dbIXgR6OVA+ceooVI7vztEumdkVWbn7qSpBDTJzEXYonhD2lHO+zqTSp6l3uraPirypTsnLu6dwMb792d001jhzoXOga2N8PfRI0dsv2QXm/tleqbOkLkccGNrFDp36ICk5QRV1VcIt7PBi+cWc8Gk+jVCOnNev4MoznD55dl68=</latexit>

b
<latexit sha1_base64="cDcmtk0Mb/RNjwfLLtkupHf78qc=">AAAC7HicjVLLSsNAFD2Nr1pfVZduglUQhJKKr2XBjcuK9gG1SjKd1mBeJBOxFD/BnehC3PpP/oH6Fd6ZTkEtPiYkOXPuPWfmzh0n8txEWNZLxhgbn5icyk7nZmbn5hfyi0u1JExjxqss9MK44dgJ99yAV4UrPN6IYm77jsfrzuWBjNeveJy4YXAiehFv+XY3cDsuswVRx+xs8zxfsIqWGuYoKGlQgB6VMP+OU7QRgiGFD44AgrAHGwk9TZRgISKuhT5xMSFXxTlukCNtSlmcMmxiL+nbpVlTswHNpWei1IxW8eiNSWlinTQh5cWE5WqmiqfKWbI/efeVp9xbj/6O9vKJFbgg9i/dMPO/OlmLQAf7qgaXaooUI6tj2iVVpyJ3bn6qSpBDRJzEbYrHhJlSDs/ZVJpE1S7P1lbxV5UpWTlnOjfF26/VXdMeBw7UF7oGpe9NHwW1rWJpt7hztF0or+kLkcUKVrFBXd9DGYeooEqOXdziHg9GYNwZj8bTINXIaM0yvgzj+QNHqZhN</latexit>

c+
<latexit sha1_base64="qgvm/N6IMMNBWIAQaieYtIkNwQk=">AAAC7HicjVLLSsNAFD2Nr1pfVZduglUQhJKKr2XBjcuK9gG1SjKd1mBeTCZiKX6CO9GFuPWf/AP1K7wzTUEtPiYkOXPuPWfmzh0n8txYWtZLxhgbn5icyk7nZmbn5hfyi0u1OEwE41UWeqFoOHbMPTfgVelKjzciwW3f8XjduTxQ8foVF7EbBieyF/GWb3cDt+MyWxJ1bJ9tnucLVtHSwxwFpRQUkI5KmH/HKdoIwZDAB0cASdiDjZieJkqwEBHXQp84QcjVcY4b5EibUBanDJvYS/p2adZM2YDmyjPWakarePQKUppYJ01IeYKwWs3U8UQ7K/Yn7772VHvr0d9JvXxiJS6I/Us3zPyvTtUi0cG+rsGlmiLNqOpY6pLoU1E7Nz9VJckhIk7hNsUFYaaVw3M2tSbWtauztXX8VWcqVs1Zmpvg7dfqrmmPAwfqC12D0vemj4LaVrG0W9w52i6U19ILkcUKVrFBXd9DGYeooEqOXdziHg9GYNwZj8bTINXIpJplfBnG8wdCmZhL</latexit>

a+
<latexit sha1_base64="dyMPs7X1huABKsTr+NM2bq7giNU=">AAAC7HicjVLJTsMwFJyGrZStwJFLREFCHKoUsR0rceFYBF2kUlDiusUimxIHUVV8AjcEB8SVf+IPgK/g2U0loGJxlGQ8783Yz89O6IpYWtZLxhgbn5icyk7nZmbn5hfyi0u1OEgixqsscIOo4dgxd4XPq1JIlzfCiNue4/K6c3mg4vUrHsUi8E9kL+Qtz+76oiOYLYk6ds42z/MFq2jpYY6CUgoKSEclyL/jFG0EYEjggcOHJOzCRkxPEyVYCIlroU9cREjoOMcNcqRNKItThk3sJX27NGumrE9z5RlrNaNVXHojUppYJ01AeRFhtZqp44l2VuxP3n3tqfbWo7+TennESlwQ+5dumPlfnapFooN9XYOgmkLNqOpY6pLoU1E7Nz9VJckhJE7hNsUjwkwrh+dsak2sa1dna+v4q85UrJqzNDfB26/VXdMeBw7UF7oGpe9NHwW1rWJpt7hztF0or6UXIosVrGKDur6HMg5RQZUcu7jFPR4M37gzHo2nQaqRSTXL+DKM5w9Cm5hL</latexit>

b⇤
<latexit sha1_base64="cDcmtk0Mb/RNjwfLLtkupHf78qc=">AAAC7HicjVLLSsNAFD2Nr1pfVZduglUQhJKKr2XBjcuK9gG1SjKd1mBeJBOxFD/BnehC3PpP/oH6Fd6ZTkEtPiYkOXPuPWfmzh0n8txEWNZLxhgbn5icyk7nZmbn5hfyi0u1JExjxqss9MK44dgJ99yAV4UrPN6IYm77jsfrzuWBjNeveJy4YXAiehFv+XY3cDsuswVRx+xs8zxfsIqWGuYoKGlQgB6VMP+OU7QRgiGFD44AgrAHGwk9TZRgISKuhT5xMSFXxTlukCNtSlmcMmxiL+nbpVlTswHNpWei1IxW8eiNSWlinTQh5cWE5WqmiqfKWbI/efeVp9xbj/6O9vKJFbgg9i/dMPO/OlmLQAf7qgaXaooUI6tj2iVVpyJ3bn6qSpBDRJzEbYrHhJlSDs/ZVJpE1S7P1lbxV5UpWTlnOjfF26/VXdMeBw7UF7oGpe9NHwW1rWJpt7hztF0or+kLkcUKVrFBXd9DGYeooEqOXdziHg9GYNwZj8bTINXIaM0yvgzj+QNHqZhN</latexit>

c+

(a) A CRPQ 𝛾.

<latexit sha1_base64="GgzXEMVajOYAOtdRvOrhlxmnaO4=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUhNn7uCG5ct2AdokSSd1tA0CclEWopf4E50IW79Kf9A/QrvTFPQRdUJSe6ce8+Ze2bGClwn4rr+llKWlldW19LrmY3Nre2d7O5eK/Lj0GZN23f9sGOZEXMdjzW5w13WCUJmjiyXta3hmci3b1kYOb53wScB647Mgef0HdvkBDXG19mcrhlVQy8UVF0rlA2jUqSgWM5XjZKa13Q5ckhG3c9+4go9+LARYwQGD5xiFyYiei6Rh46AsC6mhIUUOTLPcIcMcWOqYlRhEjqk74Bmlwnq0VxoRpJt0youvSExVRwTx6e6kGKxmirzsVQW6CLtqdQUvU3obyVaI0I5bgj9izev/C9PeOHooyI9OOQpkIhwZycqsdwV0bn6zRUnhYAwEfcoH1JsS+Z8n1XJiaR3sbemzL/LSoGKuZ3Uxvj41d2Yepwp0LnQNZiftbo4aJ1q+ZJWbBRytcPkQqRxgCOc0KmXUcM56mjKDu7xiCfFVR6UZ+VlVqqkEs4+fgzl9QuhfJgR</latexit>

x

<latexit sha1_base64="7yxRTCTqpRaZE3gYtArmjFTsA5U=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUhNn7uCG5ct2AfUIkk6raFpEpKJWIpf4E50IW79Kf9A/QrvTFPQRdUJSe6ce8+Ze2bGClwn4rr+llKWlldW19LrmY3Nre2d7O5eK/Lj0GZN23f9sGOZEXMdjzW5w13WCUJmji2Xta3Rmci3b1gYOb53wScB643NoecMHNvkBDUmV9mcrhlVQy8UVF0rlA2jUqSgWM5XjZKa13Q5ckhG3c9+4hJ9+LARYwwGD5xiFyYierrIQ0dAWA9TwkKKHJlnuEOGuDFVMaowCR3Rd0izboJ6NBeakWTbtIpLb0hMFcfE8akupFispsp8LJUFukh7KjVFbxP6W4nWmFCOa0L/4s0r/8sTXjgGqEgPDnkKJCLc2YlKLHdFdK5+c8VJISBMxH3KhxTbkjnfZ1VyIuld7K0p8++yUqBibie1MT5+dXdLPc4U6FzoGszPWl0ctE61fEkrNgq52mFyIdI4wBFO6NTLqOEcdTRlB/d4xJPiKg/Ks/IyK1VSCWcfP4by+gWkApgS</latexit>y

<latexit sha1_base64="KpH10ZvZx9Z0cC9pye2scQLMbOk=">AAAC7nicjVLNbtNAGJy6BUILNLTH9rAiQuJkOTh/PVSK1AvHIJG2Uokq29mEVRzbsteIEvEMvVXtoeLKK/EGhadgdutIcAiwlu1v5/tmdme/DbNYFdrzvq856xsPHj6qPd7cevL02Xb9+c5xkZZ5JIdRGqf5aRgUMlaJHGqlY3ma5TKYh7E8CWdHJn/yUeaFSpN3+iKTo3kwTdRERYEmNPwsDkV5Xm94rn/ge62W8NxW1/d7bQbtbvPA74im69nRQDUGaf0n3mOMFBFKzCGRQDOOEaDgc4YmPGTERlgQyxkpm5f4gk1yS1ZJVgREZ/xOOTur0IRzo1lYdsRVYr45mQIvyUlZlzM2qwmbL62yQVdpL6ym2dsF/2GlNSeq8YHov3jLyv/lGS8aE/SsB0VPmUWMu6hSKe2pmJ2L31xpKmTETDxmPmccWebynIXlFNa7OdvA5u9spUHNPKpqS/z4q7tP3OO9AvvCa7DstVgdHL92mx23/bbV6O9XF6KGPbzAK3a9iz7eYIAhFRUucY0bJ3OunFvn632ps1ZxdvHHcL79AqPnmS0=</latexit>

z = u

<latexit sha1_base64="1evmCdZeHAgucEmwwWMhjwswwxQ=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUhNn7uCG5ct2AdokSSd1tA0CcmkWIpf4E50IW79Kf9A/QrvTFPQRdUJSe6ce8+Ze2bGClwn4rr+llKWlldW19LrmY3Nre2d7O5eK/Lj0GZN23f9sGOZEXMdjzW5w13WCUJmjiyXta3hmci3xyyMHN+74JOAdUfmwHP6jm1yghrj62xO14yqoRcKqq4VyoZRKVJQLOerRknNa7ocOSSj7mc/cYUefNiIMQKDB06xCxMRPZfIQ0dAWBdTwkKKHJlnuEOGuDFVMaowCR3Sd0CzywT1aC40I8m2aRWX3pCYKo6J41NdSLFYTZX5WCoLdJH2VGqK3ib0txKtEaEcN4T+xZtX/pcnvHD0UZEeHPIUSES4sxOVWO6K6Fz95oqTQkCYiHuUDym2JXO+z6rkRNK72FtT5t9lpUDF3E5qY3z86u6Wepwp0LnQNZiftbo4aJ1q+ZJWbBRytcPkQqRxgCOc0KmXUcM56mjKDu7xiCfFVR6UZ+VlVqqkEs4+fgzl9QuccJgP</latexit>

v

<latexit sha1_base64="sBrAvpR9zXRaUq53qQOlSIXXbsE=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJEmndWheJBOxFL/AnehC3PpT/oH6Fd6ZTkEtPiYkOXPuPWfunRk39nkqLOslZ0xNz8zO5ecLC4tLyyvF1bVGGmWJx+pe5EdJy3VS5vOQ1QUXPmvFCXMC12dNt38s480rlqQ8Ck/FIGbngdMLeZd7jiCq5lwUS1bZUsOcBLYGJehRjYrvOEMHETxkCMAQQhD24SClpw0bFmLizjEkLiHEVZzhBgXSZpTFKMMhtk/fHs3amg1pLj1TpfZoFZ/ehJQmtkkTUV5CWK5mqnimnCX7k/dQecraBvR3tVdArMAlsX/pxpn/1cleBLo4Uj1w6ilWjOzO0y6Z2hVZufmpK0EOMXESdyieEPaUcrzPptKkqne5t46Kv6pMycq5p3MzvP3a3TXVOHKgc6FrYH8/9EnQ2C3bB+X92l6psqkvRB4b2MIOnfohKjhBFXVVwS3u8WD4xp3xaDyNUo2c1qzjyzCePwCZb5em</latexit>

a
<latexit sha1_base64="4n0PXVK+4WGkTPiRUkBujq1hjnY=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJJlOa2heTCZiKX6BO9GFuPWn/AP1K7wzTUEtPiYkOXPuPWfunRk39r1EWtZLzpianpmdy88XFhaXlleKq2uNJEoF43UW+ZFouU7CfS/kdelJn7diwZ3A9XnT7R+rePOKi8SLwlM5iPl54PRCr+sxRxJVYxfFklW29DAngZ2BErJRjYrvOEMHERhSBOAIIQn7cJDQ04YNCzFx5xgSJwh5Os5xgwJpU8rilOEQ26dvj2btjA1prjwTrWa0ik+vIKWJbdJElCcIq9VMHU+1s2J/8h5qT1XbgP5u5hUQK3FJ7F+6ceZ/daoXiS6OdA8e9RRrRnXHMpdU74qq3PzUlSSHmDiFOxQXhJlWjvfZ1JpE96721tHxV52pWDVnWW6Kt1+7u6YaRw50LnQN7O+HPgkau2X7oLxf2ytVNrMLkccGtrBDp36ICk5QRV1XcIt7PBi+cWc8Gk+jVCOXadbxZRjPH557l6g=</latexit>

c

<latexit sha1_base64="sBrAvpR9zXRaUq53qQOlSIXXbsE=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJEmndWheJBOxFL/AnehC3PpT/oH6Fd6ZTkEtPiYkOXPuPWfunRk39nkqLOslZ0xNz8zO5ecLC4tLyyvF1bVGGmWJx+pe5EdJy3VS5vOQ1QUXPmvFCXMC12dNt38s480rlqQ8Ck/FIGbngdMLeZd7jiCq5lwUS1bZUsOcBLYGJehRjYrvOEMHETxkCMAQQhD24SClpw0bFmLizjEkLiHEVZzhBgXSZpTFKMMhtk/fHs3amg1pLj1TpfZoFZ/ehJQmtkkTUV5CWK5mqnimnCX7k/dQecraBvR3tVdArMAlsX/pxpn/1cleBLo4Uj1w6ilWjOzO0y6Z2hVZufmpK0EOMXESdyieEPaUcrzPptKkqne5t46Kv6pMycq5p3MzvP3a3TXVOHKgc6FrYH8/9EnQ2C3bB+X92l6psqkvRB4b2MIOnfohKjhBFXVVwS3u8WD4xp3xaDyNUo2c1qzjyzCePwCZb5em</latexit>

a

<latexit sha1_base64="sBrAvpR9zXRaUq53qQOlSIXXbsE=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJEmndWheJBOxFL/AnehC3PpT/oH6Fd6ZTkEtPiYkOXPuPWfunRk39nkqLOslZ0xNz8zO5ecLC4tLyyvF1bVGGmWJx+pe5EdJy3VS5vOQ1QUXPmvFCXMC12dNt38s480rlqQ8Ck/FIGbngdMLeZd7jiCq5lwUS1bZUsOcBLYGJehRjYrvOEMHETxkCMAQQhD24SClpw0bFmLizjEkLiHEVZzhBgXSZpTFKMMhtk/fHs3amg1pLj1TpfZoFZ/ehJQmtkkTUV5CWK5mqnimnCX7k/dQecraBvR3tVdArMAlsX/pxpn/1cleBLo4Uj1w6ilWjOzO0y6Z2hVZufmpK0EOMXESdyieEPaUcrzPptKkqne5t46Kv6pMycq5p3MzvP3a3TXVOHKgc6FrYH8/9EnQ2C3bB+X92l6psqkvRB4b2MIOnfohKjhBFXVVwS3u8WD4xp3xaDyNUo2c1qzjyzCePwCZb5em</latexit>

a
<latexit sha1_base64="Xtw1H9f9B2qmrEJydudyE0ddSpg=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJEmndWheJBOxFL/AnehC3PpT/oH6Fd6ZTkEtPiYkOXPuPWfunRk39nkqLOslZ0xNz8zO5ecLC4tLyyvF1bVGGmWJx+pe5EdJy3VS5vOQ1QUXPmvFCXMC12dNt38s480rlqQ8Ck/FIGbngdMLeZd7jiCq5l4US1bZUsOcBLYGJehRjYrvOEMHETxkCMAQQhD24SClpw0bFmLizjEkLiHEVZzhBgXSZpTFKMMhtk/fHs3amg1pLj1TpfZoFZ/ehJQmtkkTUV5CWK5mqnimnCX7k/dQecraBvR3tVdArMAlsX/pxpn/1cleBLo4Uj1w6ilWjOzO0y6Z2hVZufmpK0EOMXESdyieEPaUcrzPptKkqne5t46Kv6pMycq5p3MzvP3a3TXVOHKgc6FrYH8/9EnQ2C3bB+X92l6psqkvRB4b2MIOnfohKjhBFXVVwS3u8WD4xp3xaDyNUo2c1qzjyzCePwCb9Zen</latexit>

b
<latexit sha1_base64="Xtw1H9f9B2qmrEJydudyE0ddSpg=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJEmndWheJBOxFL/AnehC3PpT/oH6Fd6ZTkEtPiYkOXPuPWfunRk39nkqLOslZ0xNz8zO5ecLC4tLyyvF1bVGGmWJx+pe5EdJy3VS5vOQ1QUXPmvFCXMC12dNt38s480rlqQ8Ck/FIGbngdMLeZd7jiCq5l4US1bZUsOcBLYGJehRjYrvOEMHETxkCMAQQhD24SClpw0bFmLizjEkLiHEVZzhBgXSZpTFKMMhtk/fHs3amg1pLj1TpfZoFZ/ehJQmtkkTUV5CWK5mqnimnCX7k/dQecraBvR3tVdArMAlsX/pxpn/1cleBLo4Uj1w6ilWjOzO0y6Z2hVZufmpK0EOMXESdyieEPaUcrzPptKkqne5t46Kv6pMycq5p3MzvP3a3TXVOHKgc6FrYH8/9EnQ2C3bB+X92l6psqkvRB4b2MIOnfohKjhBFXVVwS3u8WD4xp3xaDyNUo2c1qzjyzCePwCb9Zen</latexit>

b
<latexit sha1_base64="4n0PXVK+4WGkTPiRUkBujq1hjnY=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJJlOa2heTCZiKX6BO9GFuPWn/AP1K7wzTUEtPiYkOXPuPWfunRk39r1EWtZLzpianpmdy88XFhaXlleKq2uNJEoF43UW+ZFouU7CfS/kdelJn7diwZ3A9XnT7R+rePOKi8SLwlM5iPl54PRCr+sxRxJVYxfFklW29DAngZ2BErJRjYrvOEMHERhSBOAIIQn7cJDQ04YNCzFx5xgSJwh5Os5xgwJpU8rilOEQ26dvj2btjA1prjwTrWa0ik+vIKWJbdJElCcIq9VMHU+1s2J/8h5qT1XbgP5u5hUQK3FJ7F+6ceZ/daoXiS6OdA8e9RRrRnXHMpdU74qq3PzUlSSHmDiFOxQXhJlWjvfZ1JpE96721tHxV52pWDVnWW6Kt1+7u6YaRw50LnQN7O+HPgkau2X7oLxf2ytVNrMLkccGtrBDp36ICk5QRV1XcIt7PBi+cWc8Gk+jVCOXadbxZRjPH557l6g=</latexit>

c

<latexit sha1_base64="4n0PXVK+4WGkTPiRUkBujq1hjnY=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJJlOa2heTCZiKX6BO9GFuPWn/AP1K7wzTUEtPiYkOXPuPWfunRk39r1EWtZLzpianpmdy88XFhaXlleKq2uNJEoF43UW+ZFouU7CfS/kdelJn7diwZ3A9XnT7R+rePOKi8SLwlM5iPl54PRCr+sxRxJVYxfFklW29DAngZ2BErJRjYrvOEMHERhSBOAIIQn7cJDQ04YNCzFx5xgSJwh5Os5xgwJpU8rilOEQ26dvj2btjA1prjwTrWa0ik+vIKWJbdJElCcIq9VMHU+1s2J/8h5qT1XbgP5u5hUQK3FJ7F+6ceZ/daoXiS6OdA8e9RRrRnXHMpdU74qq3PzUlSSHmDiFOxQXhJlWjvfZ1JpE96721tHxV52pWDVnWW6Kt1+7u6YaRw50LnQN7O+HPgkau2X7oLxf2ytVNrMLkccGtrBDp36ICk5QRV1XcIt7PBi+cWc8Gk+jVCOXadbxZRjPH557l6g=</latexit>

c

<latexit sha1_base64="4n0PXVK+4WGkTPiRUkBujq1hjnY=">AAAC6nicjVLLSsNAFD2Nr1pfVZe6CBbBVUnE17LgxmUL9gFVJJlOa2heTCZiKX6BO9GFuPWn/AP1K7wzTUEtPiYkOXPuPWfunRk39r1EWtZLzpianpmdy88XFhaXlleKq2uNJEoF43UW+ZFouU7CfS/kdelJn7diwZ3A9XnT7R+rePOKi8SLwlM5iPl54PRCr+sxRxJVYxfFklW29DAngZ2BErJRjYrvOEMHERhSBOAIIQn7cJDQ04YNCzFx5xgSJwh5Os5xgwJpU8rilOEQ26dvj2btjA1prjwTrWa0ik+vIKWJbdJElCcIq9VMHU+1s2J/8h5qT1XbgP5u5hUQK3FJ7F+6ceZ/daoXiS6OdA8e9RRrRnXHMpdU74qq3PzUlSSHmDiFOxQXhJlWjvfZ1JpE96721tHxV52pWDVnWW6Kt1+7u6YaRw50LnQN7O+HPgkau2X7oLxf2ytVNrMLkccGtrBDp36ICk5QRV1XcIt7PBi+cWc8Gk+jVCOXadbxZRjPH557l6g=</latexit>

c

(b) An expansion 𝜉 of 𝛾, to-
gether with its segments.

(c) The segment
graph of 𝜉.

Figure IV.3: Illustration of Proposi-
tion IV.2.7: Figure IV.3c can be ob-
tained as a minor of Figure IV.3a.

Proposition IV.2.7. Let 𝛾 be a CRPQ and 𝜉 be an expansion of 𝛾. Then
𝒮𝒢(𝜉) is a minor of the underlying graph of 𝛾.7

7 In general, 𝒮𝒢(𝜉) can be obtained
by contracting edges, but there are
some degenerate cases where we
must remove some vertices, for in-
stance when considering the expan-
sion of 𝑥 𝑎∗−−→ 𝑥 associated with the
empty word. This is an artefact of
our choice to disallow isolated vari-
ables in CRPQs.

96

iv.2. necessary & sufficient conditions for minimality

In particular, ‖𝜉‖seg ≤ ‖𝛾‖at. See Figure IV.3 for an example.

Proof. The underlying graph of 𝜉 is obtained from the underlying graph of 𝛾
by:
1. contracting some edges—corresponding to atom refinements for the word
𝜀,

2. potentially removing isolated vertices,8 and 8 This can happen e.g. in the atom
refinement of 𝑥 𝑎∗−−→ 𝑥 when dealing
with the empty word.

3. refining some edges—corresponding to atom refinements for words of
length at least 2.

Let 𝐺′ be the underlying graph of 𝛾 to which we applied all operation of
type (1) and (2). By construction, 𝐺′ is a minor of 𝐺𝛾. Notice then that if
𝐻 is a graph obtained by refining one edge of 𝐺′, then 𝒮𝒢(𝐻) and 𝒮𝒢(𝐺′)
are isomorphic. By trivial induction, it follows that 𝒮𝒢(𝜉) is isomorphic to
𝒮𝒢(𝐺′). In turn, by Fact IV.2.6, 𝒮𝒢(𝐺′) is an edge contraction of 𝐺′, which
concludes the proof since the latter is a minor of 𝐺𝛾.

The next proposition provides a helpful tool to prove lower bounds on the
number of atoms—but also on the structure—required to express a query.

Theorem IV.2.8 (Semantical Structure). Let Γ be a UCRPQ. Let 𝜉 be a hom-
minimal expansion of Γ, and Δ be any UCRPQ equivalent to Γ. Then there
exists some 𝛿 ∈ Δ s.t. the segment graph 𝒮𝒢(̌(𝜉)) of the core of 𝜉 is a minor
of the underlying graph of 𝛿.

Proof. Let Γ be a fixed UCRPQ, and let Δ be a equivalent UCRPQ. Let 𝜉Γ be a
hom-minimal expansion of Γ. Since Γ ⫅ Δ, there exists an expansion 𝜉Δ of Δ
s.t. 𝜉Δ

hom−−−→ 𝜉Γ. Likewise, since Δ ⫅ Γ, there exists an expansion 𝜉′Γ ∈ Exp(Γ)
s.t. 𝜉′Γ

hom−−−→ 𝜉Δ. Overall, we have 𝜉′Γ
hom−−−→ 𝜉Γ and so, by hom-minimality of 𝜉Γ,

it is hom-equivalent to 𝜉′Γ. In turn, this implies that 𝜉Δ is hom-equivalent to
𝜉Γ, and thus there exists an embedding of ̌(𝜉Γ) into 𝜉Δ. Note moreover that
such an embedding must send variables of in-degree 0 (resp. out-degree 0) to
nodes of in-degree 0 (resp. out-degree 0) and so by Corollary IV.2.12, there is
an embedding from 𝒮𝒢(̌(𝜉Γ)) into 𝒮𝒢(𝜉Δ). Letting 𝛿 be the disjunct of Δ of
which 𝜉Δ is an expansion, Proposition IV.2.7 implies that 𝒮𝒢(𝜉Δ) is a minor
of the underlying graph of 𝛿. Hence, 𝒮𝒢(̌(𝜉Γ)) is a subgraph of a minor, and
hence a minor, of the underlying graph of 𝛿.

Corollary IV.2.9 (of Theorem IV.2.8). Every strongly minimal UCRPQ is
minimal.

Proof. The number of edges of 𝒮𝒢(̌(𝜉)) equals ‖ ̌(𝜉)‖seg, and a minor can only
decrease the number of edges.

In fact, it can be seen that the assumption that 𝜉 is hom-minimal in The-
orem IV.2.8 is necessary as otherwise the statement would be false (see Re-
mark IV.2.14 for details). Also, note in particular that Theorem IV.2.8 implies
‖ ̌(𝜉)‖seg ≤ ‖Δ‖at. But it can also be used to obtain lower bounds on, for in-
stance, the tree-width of Δ, and hence the one-way semantic tree-width9 of 9 Defined in [FM25, §1, p. 7].

97

iv. minimization of conjunctive regular path queries

Γ, or more generally to prove that Γ cannot be equivalent to a UCRPQ whose
underlying graphs all belong to a minor-closed class of graphs.

Proposition IV.2.10. Let 𝛾 be a CRPQ. The set of atoms of any path 𝑥0
𝑎1−→

⋯ 𝑎𝑛−→ 𝑥𝑛 of 𝛾 where either 𝑥0 = 𝑥𝑛 or where both 𝑥0 and 𝑥𝑛 are external is a
finite union of segments of 𝛾.

Proof. The statement deals with the set of atoms of the path—and not the
path itself—, so w.l.o.g., up to a circular permutation of the path, we assume
that (¶) if 𝑥0 = 𝑥𝑛 then either 𝑥0 and 𝑥𝑛 are external, or all 𝑥𝑖’s (𝑖 ∈ ⟦1, 𝑛 − 1⟧)
are internal.

We prove the statement by induction on the length of the path. We identify
three cases:
1. each 𝑥𝑖 (𝑖 ∈ ⟦1, 𝑛 − 1⟧) is both internal and distinct from all 𝑥𝑗’s (𝑗 ∈ ⟦0, 𝑛⟧);
2. 𝑥0 and 𝑥𝑛 are external and there exists 𝑖 ∈ ⟦1, 𝑛 − 1⟧ s.t. 𝑥𝑖 is external;
3. 𝑥0 = 𝑥𝑛 and there exists 𝑘 ∈ ⟦1, 𝑛 − 1⟧ s.t. 𝑥𝑘 = 𝑥0 (= 𝑥𝑛).
Next, we show that this covers all possible cases.

If we are not in the first case, then either some 𝑥𝑖 (𝑖 ∈ ⟦1, 𝑛 − 1⟧) is external
or is equal to some 𝑥𝑗 (𝑗 ∈ ⟦0, 𝑛⟧). For the former, by (¶) we get that 𝑥0 and 𝑥𝑛
are necessarily external, and we fall in case 2.

For the former, we know that all 𝑥𝑖’s (𝑖 ∈ ⟦1, 𝑛 − 1⟧) are internal, and there
exists 𝑖 ∈ ⟦1, 𝑛 − 1⟧ and 𝑗 ∈ ⟦0, 𝑛⟧ s.t. 𝑥𝑖 = 𝑥𝑗. Up to renaming the variables,
we get that 𝑖 < 𝑗 and (𝑖, 𝑗) ≠ (0, 𝑛). Recall that all 𝑥𝑘’s (𝑘 ∈ ⟦1, 𝑛 − 1⟧) are
internal, and so from 𝑥𝑖 = 𝑥𝑗 we get by trivial induction that 𝑥0 = 𝑥𝑗−𝑖. In
particular, 𝑥0 must be internal and so 𝑥0 = 𝑥𝑛. Letting 𝑘 =̂ 𝑗 − 𝑖 we have
𝑘 ∈ ⟦1, 𝑛 − 1⟧ s.t. 𝑥𝑘 = 𝑥0 = 𝑥𝑛, and so we are in case 3.

We can now proceed with the induction.
1. For the base case, we have a path where each 𝑥𝑖 (𝑖 ∈ ⟦1, 𝑛 − 1⟧) is both

internal and distinct from all 𝑥𝑗’s (𝑗 ∈ ⟦0, 𝑛⟧). By definition this path is a
segment.

2. In the second case, 𝑥0 and 𝑥𝑛 are external, and there exists some 𝑖 ∈
⟦1, 𝑛 − 1⟧ s.t. 𝑥𝑖 is external. We use the induction hypothesis on the paths
𝑥0

𝑎1−→ ⋯ 𝑎𝑖−→ 𝑥𝑖 and 𝑥𝑖
𝑎𝑖+1−−→ ⋯ 𝑎𝑛−→ 𝑥𝑛 and the conclusion follows.

3. In the last case, there exists 𝑘 ∈ ⟦1, 𝑛 − 1⟧ s.t. 𝑥0 = 𝑥𝑘 = 𝑥𝑛, and the
conclusion follows from applying the induction on 𝑥0

𝑎1−→ ⋯ 𝑎𝑘−→ 𝑥𝑘 and
𝑥𝑘

𝑎𝑘+1−−−→ ⋯ 𝑎𝑛−→ 𝑥𝑛.
This concludes the induction and the proof.

Lemma IV.2.11. Let 𝛾, 𝛿 be CRPQs. If 𝑓∶ 𝛿 → 𝛾 is a homomorphism that
sends external variables of 𝛿 on external variables of 𝛾, then there is a function
from nodes of 𝒮𝒢(𝛿) to nodes of 𝒮𝒢(𝛾) that sends an edge of 𝒮𝒢(𝛿) to a path
of 𝒮𝒢(𝛾).

Proof. By Proposition IV.2.10, the image 𝑓[𝜎] by 𝑓 of any segment 𝜎 of 𝛿 is a
union of segments of 𝛾.

98

iv.2. necessary & sufficient conditions for minimality

Corollary IV.2.12. Let 𝛾, 𝛿 be two CRPQs such that there is an embedding
from 𝛿 to 𝛾 s.t. every node of in-degree 0 (resp. out-degree 0) is sent on a
node of in-degree 0 (resp. out-degree 0). Then 𝒮𝒢(𝛿) is a minor of 𝒮𝒢(𝛾).

Proof. Let 𝑓∶ 𝛿 → 𝛾 be such an embedding.

Claim IV.2.13. If 𝑥 ∈ 𝛿 is external, then 𝑓(𝑥) is external.

Indeed, if 𝑥 has in-degree at least 2, or out-degree at least 2, so does 𝑓(𝑥)
since 𝑓 is an embedding. Otherwise, either 𝑥 has either in-degree 0 or out-
degree 0, and so does 𝑓(𝑥) using the assumption we made on 𝑓.

We then use Lemma IV.2.11. Note that since 𝑓 is an embedding, the seg-
ments of 𝛾 occurring in 𝑓[𝜎] must be distinct from the segments occurring in
𝑓[𝜎′] for any segment 𝜎′ ≠ 𝜎. Overall, we have an injective map from nodes
of 𝒮𝒢(𝛿) to nodes of 𝒮𝒢(𝛾), which sends an edge to a path, and moreover these
paths are pairwise disjoint. This shows that 𝒮𝒢(𝛿) is a minor of 𝒮𝒢(𝛾).

Remark IV.2.14. Note that the assumption that 𝜉 is hom-minimal in Theo-
rem IV.2.8 is necessary: consider the CRPQ 𝛾(𝑥, 𝑦) =̂ 𝑥 𝑎+−→ 𝑦∧ 𝑥 (𝑎𝑎)+−−−→ 𝑦. For
𝑛,𝑚 ∈ ℕ>0, let 𝜉𝑛,𝑚(𝑥, 𝑦) =̂ 𝑥

𝑎𝑛−→ 𝑦∧ 𝑥 𝑎2𝑚−−→ 𝑦. There are two cases:
1. If 𝑛 ≠ 2𝑚, then ‖ ̌(𝜉𝑛,𝑚)‖seg = 2 but 𝜉𝑛,𝑚 is not hom-minimal since
𝜉2𝑚,𝑚

hom−−−→ 𝜉𝑛,𝑚 but 𝜉𝑛,𝑚 ���hom−−−→ 𝜉2𝑚,𝑚.
2. If 𝑛 = 2𝑚, then ‖ ̌(𝜉𝑛,𝑚)‖seg = 1 and 𝜉𝑛,𝑚 is hom-minimal.
Hence, using Theorem IV.2.8, we can only get a lower bound of one atom
(and not two) on the size of any UCRPQ equivalent to 𝛾(𝑥, 𝑦), which is con-
sistent with the fact that 𝛾(𝑥, 𝑦) ≡ 𝛾′(𝑥, 𝑦) where 𝛾′(𝑥, 𝑦) =̂ 𝑥 (𝑎𝑎)+−−−→ 𝑦. If
Theorem IV.2.8 would allow for non hom-minimal queries we would obtain,
by Item 1 a lower bound of 2 atoms, which is false.

However, this is a sound but unsurprisingly not a complete characterization
of minimality.

Proposition IV.2.15. There are minimal (U)CRPQs which are not strongly
minimal.

Proof. The Boolean CRPQ 𝛾() = 𝑥 𝑎+−→ 𝑥. Since it has one atom, it must be
minimal, but it has no hom-minimal expansions.

Finally, we show that checking strong minimality is at least as hard as
checking containment.

Proposition IV.2.16. Testing whether a (U)CRPQ is strongly minimal is
ExpSpace-hard.

Proof. We use the same reduction as in Proposition IV.2.3. If 𝛿 is strongly
minimal, then it is minimal, and so it is non-redundant, and hence by the
proof of Proposition IV.2.3, 𝑥′ 𝐾−→ 𝑦′ " ⋀

𝑖 𝑥
𝐿𝑖−→ 𝑦.

We prove the converse implication: assume that 𝑥′ 𝐾−→ 𝑦′ " ⋀
𝑖 𝑥

𝐿𝑖−→ 𝑦.
Then there exists #𝑢# ∈ 𝐾 s.t. 𝑥′ #𝑢#−−→ 𝑦′ does not satisfy⋀𝑖 𝑥

𝐿𝑖−→ 𝑦. Consider
the expansion 𝜉 obtained by replacing 𝐾 with #𝑢#, and replacing 𝐿𝑖 with @𝑖

99

iv. minimization of conjunctive regular path queries

for each 𝑖. Then 𝜉 is a core because of the fresh letters # and @𝑖. Moreover,
we claim that it has to be hom-minimal. Indeed, assume that some other
expansion 𝜉′ is s.t. 𝜉′ hom−−−→ 𝜉. Then because of #, the atom expansion of
𝑥′ 𝐾−→ 𝑦′ in 𝜉′ must be mapped on 𝑥′ #𝑢#−−→ 𝑦′ in 𝜉. Then, by definition of 𝑢, the
atom expansions of⋀𝑖 𝑥

𝐿𝑖−→ 𝑦 cannot be mapped on 𝑥′ #𝑢#−−→ 𝑦′, and so they
must be mapped on⋀𝑖 𝑥

@𝑖−→ 𝑦, and hence 𝜉′ = 𝜉. Hence, this shows that 𝛿
is strongly minimal. Overall, we showed that 𝑥′ 𝐾−→ 𝑦′ " ⋀

𝑖 𝑥
𝐿𝑖−→ 𝑦 iff 𝛿 is

strongly minimal, which concludes our reduction.

IV.3 An Upper Bound for Minimization of CRPQs

In this section we show that the minimization problem for CRPQs is decid-
able, in particular, it belongs to the class 2ExpSpace.

Theorem IV.3.1. The minimization problem for CRPQs is in 2ExpSpace.

The proof of Theorem IV.3.1 is based on a key lemma stated below. Intu-
itively, this lemma tells us that if a CRPQ 𝛾 is equivalent to another CRPQ
𝛼, then 𝛾 is also equivalent to a CRPQ 𝛽, where 𝛽 has the same “shape” than
𝛼 but the sizes of the NFAs appearing in 𝛽 are bounded by the size of 𝛾.
In particular, if 𝛾 is equivalent to a CRPQ with at most 𝑘 atoms, then it is
equivalent to a CRPQ with at most 𝑘 atoms and NFAs of bounded sizes, and
hence the search space in the minimization problem becomes finite. A careful
analysis of this idea yields our 2ExpSpace upper bound.

Lemma IV.3.2. Let 𝛾 and 𝛼 be two CRPQs such that 𝛼 ⫅ 𝛾. Then there
exists a CRPQ 𝛽 satisfying 𝛼 ⫅ 𝛽 ⫅ 𝛾 such that:
1. The underlying graphs of 𝛼 and 𝛽 coincide.
2. The size of each NFA appearing in 𝛽 is bounded by 𝑓(‖𝛾‖), where 𝑓 is a

double-exponential function.

We star by giving a proof sketch of this lemma before giving the full detailed
proof.

Proof sketch. The idea is to define the CRPQ 𝛽 as the CRPQ obtained from 𝛼
by replacing each regular language 𝐿 by a suitable regular language �̃�, which
depends also on 𝛾. Consider the following equivalence relation on 𝔸∗, where
𝔸 is the underlying alphabet. Given 𝑢, 𝑣 ∈ 𝔸∗, we write 𝑢 ∼𝛾 𝑣 if for every
NFA 𝒜 appearing on 𝛾, and pair of states 𝑝, 𝑞 of 𝒜:

𝑢 is accepted by 𝒜[𝑝, 𝑞] ⟺ 𝑣 is accepted by 𝒜[𝑝, 𝑞].

Recall that 𝒜[𝑝, 𝑞] denote the sublanguage of 𝒜 recognized when considering
{𝑝} as the set of initial states and {𝑞} as the set of final states. For 𝑢 ∈ 𝔸∗, we
define its 𝛾-type to be:

type𝛾(𝑢) =̂ {([𝑢1]∼𝛾 , … , [𝑢ℓ]∼𝛾) ∣ ℓ ≤ (‖𝛾‖var + 1), and 𝑢1, … , 𝑢ℓ ∈ 𝔸∗ satisfy that 𝑢 = 𝑢1⋯𝑢ℓ}.

100

iv.3. an upper bound for minimization of crpqs

The idea is that type𝛾(𝑢) encodes all the possible ways 𝑢 can be broken into
ℓ ≤ (‖𝛾‖var + 1) subwords: we are not interested in the particular subwords
𝑢𝑖, but in their equivalence classes [𝑢𝑖]∼𝛾 with respect to ∼𝛾.

We define the sought CRPQ 𝛽 to be the CRPQ obtained from 𝛼 by replacing
each regular language 𝐿 by �̃�, where:

�̃� =̂ �
𝑢∈𝐿
{𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)}.

By definition, the underlying graphs of 𝛼 and 𝛽 are the same, and hence
condition (1) holds. It remains to verify 𝛼 ⫅ 𝛽 ⫅ 𝛾 and condition (2). Note
that 𝑢 ∈ {𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)} always holds, and hence 𝐿 ⊆ �̃�. It
follows that 𝛼 ⫅ 𝛽.

Showing 𝛽 ⫅ 𝛾 is more involved. By Proposition III.2.12, we need to prove
that for every expansion 𝜉𝛽 ∈ Exp(𝛽), there exists an expansion 𝜂𝛽 ∈ Exp(𝛾),
such that 𝜂𝛽

hom−−−→ 𝜉𝛽. Assume that 𝛽 and 𝛾 are of the form⋀𝑚
𝑗=1 𝑥𝑗

�̃�𝑗−→ 𝑦𝑗 and
⋀𝑟
𝑖=1 𝑡𝑖

𝑀𝑖−−→ 𝑠𝑖, respectively. In particular, 𝛼 must be of the form⋀𝑚
𝑗=1 𝑥𝑗

𝐿𝑗−→ 𝑦𝑗.
Suppose 𝜉𝛽 is of the form⋀𝑚

𝑗=1 𝑥𝑗
𝑧𝑗−→ 𝑦𝑗, where 𝑧𝑗 ∈ �̃�𝑗. By construction, 𝜉𝛽 has

a corresponding expansion 𝜉𝛼 of 𝛼: since each 𝑧𝑗 ∈ �̃�𝑗, there must be a 𝑢𝑗 ∈ 𝐿𝑗
such that type𝛾(𝑢𝑗) ⊆ type𝛾(𝑧𝑗), and then we can take 𝜉𝛼 as⋀𝑚

𝑗=1 𝑥𝑗
𝑢𝑗−→ 𝑦𝑗. In

turn, since 𝛼 ⫅ 𝛾, there exists an expansion 𝜂𝛼 ∈ Exp(𝛾) such that 𝜂𝛼
hom−−−→ 𝜉𝛼

via a homomorphism 𝑓.
The idea is to modify 𝜂𝛼 into another expansion 𝜂𝛽 with 𝜂𝛽 → 𝜉𝛽, as

desired. Note that 𝑓 maps the external variables of 𝜂𝛼 to external or internal
variables in 𝜉𝛼. This determines a subdivision for each path 𝑥𝑗

𝑢𝑗−→ 𝑦𝑗 of 𝜉𝛼
into smaller or ‘basic paths’, whose endpoints correspond to external variables
of 𝜉𝛼 or images of the external variables of 𝜂𝛼 via 𝑓. The number of these
paths is hence bounded by ‖𝛾‖var + 1. Since type𝛾(𝑢𝑗) ⊆ type𝛾(𝑧𝑗), then each
path 𝑥𝑗

𝑧𝑗−→ 𝑦𝑗 in 𝜉𝛽 can also be subdivided in an equivalent way than 𝑥𝑗
𝑢𝑗−→ 𝑦𝑗.

Overall, the decomposition of 𝜉𝛼 into basic paths can be ‘simulated’ in 𝜉𝛽.
This gives us a homomorphism from 𝜂𝛽 to 𝜉𝛽, where 𝜂𝛽 is obtained from 𝜂𝛼
in the following way: for each path 𝑡𝑖

𝑤𝑖−→ 𝑠𝑖 in 𝜂𝛼, where 𝑤𝑖 ∈ 𝑀𝑖, the image
of the path via 𝑓 induces a subdivision of 𝑡𝑖

𝑤𝑖−→ 𝑠𝑖 into basic paths of 𝜉𝛼. We
can replace each of these basic paths by its equivalent basic path in 𝜉𝛽. As
the label of these paths are equivalent w.r.t to the relation ∼𝛾, membership in
𝑀𝑖 is maintained after this transformation. Hence 𝜂𝛽 is indeed an expansion
of 𝛾.

For condition (2), it is easy to see that every equivalence class 𝐶 of the
relation ∼𝛾 can be accepted by an NFA 𝒜𝐶 of single-exponential size on ‖𝛾‖.
Also, for each word 𝑢 ∈ 𝔸∗, and each tuple �̄� = (𝐶1, … , 𝐶ℓ) ∈ type𝛾(𝑢), there
is a single-exponential size NFA 𝒜�̄� accepting the language {𝑧 ∈ 𝔸∗ ∣ �̄� ∈
type𝛾(𝑧)}. By intersecting these NFAs, we obtain an NFA 𝒜𝑢 accepting the
language {𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)}. It is easy to see that the number of
tuples of the form (𝐶1, … , 𝐶ℓ) is at most single-exponential, and then the size
of 𝒜𝑢 is at most double-exponential. It follows that the number of possible

101

iv. minimization of conjunctive regular path queries

type𝛾(𝑢) is at most double-exponential, and hence the languages �̃� in 𝛽 can
be described by a union of double-exponential many NFAs, each of size at
most double-exponential. Overall, each �̃� can be described by an NFA of at
most double-exponential size on ‖𝛾‖.

Proof details. X Construction of 𝛽. Recall that 𝛽 is defined as the CRPQ
obtained from 𝛼 by replacing each regular language 𝐿 by �̃�, where:

�̃� =̂ �
𝑢∈𝐿
{𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)}.

X Correctness of the construction. By definition, the underlying graphs
of 𝛼 and 𝛽 are the same, and hence condition (1) holds. It remains to verify
𝛼 ⫅ 𝛽 ⫅ 𝛾 and condition (2).

XX 𝛼 ⫅ 𝛽 ⫅ 𝛾. Note that 𝑢 ∈ {𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)} always

holds, and hence 𝐿 ⊆ �̃�. It follows that 𝛼 ⫅ 𝛽.
We check 𝛽 ⫅ 𝛾 using Proposition III.2.12. Assume 𝛽 is of the form

⋀𝑚
𝑗=1 𝑥𝑗

�̃�𝑗−→ 𝑦𝑗. Consider an expansion 𝜉𝛽 ∈ Exp(𝛽) defined by replacing

each atom 𝑥𝑗
�̃�𝑗−→ 𝑦𝑗 by the path 𝑥𝑗

𝑧𝑗−→ 𝑦𝑗, for 𝑧𝑗 ∈ �̃�𝑗. There must exist
𝑢𝑗 ∈ 𝐿𝑗 such that type𝛾(𝑢𝑗) ⊆ type𝛾(𝑧𝑗). Let 𝜉𝛼 ∈ Exp(𝛼) be the expansion of
𝛼 = ⋀𝑚

𝑗=1 𝑥𝑗
𝐿𝑗−→ 𝑦𝑗 obtained from replacing each atom 𝑥𝑗

𝐿𝑗−→ 𝑦𝑗 by the path
𝑥𝑗

𝑢𝑗−→ 𝑦𝑗. As 𝛼 ⫅ 𝛾, then there exists an expansion 𝜂𝛼 ∈ Exp(𝛾) such that
𝜂𝛼

hom−−−→ 𝜉𝛼. Assume 𝛾 is of the form ⋀𝑟
𝑖=1 𝑡𝑖

𝑀𝑖−−→ 𝑠𝑖 and 𝜂𝛼 is of the form
⋀𝑟
𝑖=1 𝑡𝑖

𝑤𝑖−→ 𝑠𝑖, where 𝑤𝑖 ∈ 𝑀𝑖. Let 𝑓 be a homomorphism from 𝜂𝛼 to 𝜉𝛼. We
can decompose each path 𝑥𝑗

𝑢𝑗−→ 𝑦𝑗 in 𝜉𝛼 into

𝑥𝑗
𝑢𝑗,1−−→ ℎ𝑗,1

𝑢𝑗,2−−→ ⋯ 𝑢𝑗,ℓ−1−−−→ ℎ𝑗,ℓ−1
𝑢𝑗,ℓ−−→ 𝑦𝑗

where each ℎ𝑗,𝑝 is the image via 𝑓 of some variable in vars(𝛾) = {𝑠1, 𝑡1, … , 𝑠𝑟, 𝑡𝑟}
and each path 𝑥 𝑢𝑗,𝑝−−→ 𝑥’ satisfies that all of its internal variables are not images
via 𝑓 of variables in vars(𝛾). Note that ℓ ≤ (‖𝛾‖var + 1). We say that the
paths of the form 𝑥 𝑢𝑗,𝑝−−→ 𝑥’ are the basic paths of 𝜉𝛼 with respect to 𝑓. Since
type𝛾(𝑢𝑗) ⊆ type𝛾(𝑧𝑗), each path 𝑥𝑗

𝑧𝑗−→ 𝑦𝑗 in 𝜉𝛽 can be decomposed into

𝑥𝑗
𝑧𝑗,1−−→ 𝑔𝑗,1

𝑧𝑗,2−−→ ⋯ 𝑧𝑗,ℓ−1−−−→ 𝑔𝑗,ℓ−1
𝑧𝑗,ℓ−−→ 𝑦𝑗

where 𝑧𝑗,𝑝 ∼𝛾 𝑢𝑗,𝑝. Again, we say that the paths 𝑥 𝑧𝑗,𝑝−−→ 𝑥’ are the basic paths of
𝜉𝛽 with respect to 𝑓. We conclude by showing that there is 𝜂𝛽 ∈ Exp(𝛾) such
that 𝜂𝛽

hom−−−→ 𝜉𝛽. Intuitively, 𝜉𝛼 and 𝜉𝛽 have “equivalent’’ decompositions in
terms of basic paths. Hence, it is possible to turn 𝜂𝛼 into another expansion
𝜂𝛽 ∈ Exp(𝛾) by replacing basic paths of 𝜉𝛼 by their corresponding basic
paths in 𝜉𝛽. By doing so, we indeed obtain an expansion 𝜂𝛽 of 𝛾 such that
𝜂𝛽

hom−−−→ 𝜉𝛽.
Formally, observe that each path 𝑡𝑖

𝑤𝑖−→ 𝑠𝑖 of expansion 𝜂𝛼 is mapped via 𝑓
to path in 𝜉𝛼 that can be decomposed into

𝑘0
𝑤𝑖,1−−→ 𝑘1

𝑤𝑖,2−−→ ⋯ 𝑤𝑖,𝑛−1−−−−→ 𝑘𝑛−1
𝑤𝑖,𝑛−−→ 𝑘𝑛

102

iv.3. an upper bound for minimization of crpqs

where 𝑤𝑖 = 𝑤𝑖,1⋯𝑤𝑖,𝑛, 𝑘0 = 𝑓(𝑡𝑖), 𝑘𝑛 = 𝑓(𝑠𝑖) and each path 𝑘𝑞−1
𝑤𝑖,𝑞−−→ 𝑘𝑞

is a basic path of 𝜉𝛼 w.r.t. 𝑓. Each path 𝑘𝑞−1
𝑤𝑖,𝑞−−→ 𝑘𝑞 has a corresponding

basic path 𝑘’𝑞−1
𝑤𝑖,𝑞’−−−→ 𝑘𝑞’ of 𝜉𝛽 w.r.t. 𝑓 defined in the natural way: if 𝑘𝑜 ∈

vars(𝛼) = {𝑥1, 𝑦1, … , 𝑥𝑚, 𝑦𝑚}, then 𝑘𝑜’ = 𝑘𝑜; if 𝑘𝑜 = ℎ𝑗,𝑝, then 𝑘𝑜’ = 𝑔𝑗,𝑝; and if
𝑤𝑖,𝑞 = 𝑢𝑗,𝑝, then 𝑤𝑖,𝑞’ = 𝑧𝑗,𝑝. In particular, we have that 𝑤𝑖,𝑞 ∼𝛾 𝑤𝑖,𝑞’ and that
the following path belongs to 𝜉𝛽:

𝑘0’
𝑤𝑖,1’−−−→ 𝑘1’

𝑤𝑖,2’−−−→ ⋯ 𝑤𝑖,𝑛−1’−−−−→ 𝑘𝑛−1’
𝑤𝑖,𝑛’−−−→ 𝑘𝑛’

It follows that the CQ 𝜂𝛽 obtained from 𝛾 by replacing each atom 𝑡𝑖
𝑀𝑖−−→ 𝑠𝑖

by the path 𝑡𝑖
𝑤𝑖’−−→ 𝑠𝑖, where 𝑤’𝑖 = 𝑤𝑖,1’⋯𝑤𝑖,𝑛’ satisfies that 𝜂𝛽

hom−−−→ 𝜉𝛽. It
remains to show that 𝜂𝛽 is actually an expansion of 𝛾, that is, each 𝑤’𝑖 ∈ 𝑀𝑖.
Suppose𝑀𝑖 is represented by theNFA𝒜𝑖. Since𝑤𝑖 ∈ 𝑀𝑖 and𝑤𝑖 = 𝑤𝑖,1⋯𝑤𝑖,𝑛,
there is a sequence 𝑒0, … , 𝑒𝑛 of states of 𝒜𝑖 such that 𝑒0 is initial, 𝑒𝑛 is final,
and 𝑤𝑖,𝑞 is accepted by 𝒜𝑖[𝑒𝑞−1, 𝑒𝑞]. As 𝑤𝑖,𝑞’ ∼𝛾 𝑤𝑖,𝑞, we have that 𝑤𝑖,𝑞’ is also
accepted by 𝒜𝑖[𝑒𝑞−1, 𝑒𝑞], and hence 𝑤’𝑖 = 𝑤𝑖,1’⋯𝑤𝑖,𝑛’ is accepted by 𝒜𝑖.

XX Bounding the size of NFAs in 𝛽. First note that for any equivalence
class 𝐶 of ∼𝛾 the language {𝑧 ∈ 𝔸∗ ∣ [𝑧]∼𝛾 = 𝐶} is accepted by an NFA 𝒜𝐶 of
single-exponential size. Indeed, the class 𝐶 can be described by a set of triples

𝒯𝐶 ⊆ 𝒯 = {(𝒜, 𝑝, 𝑞) ∣ 𝒜 is an NFA in 𝛾, and 𝑝, 𝑞 are states of 𝒜}

in such a way that 𝑣 ∈ 𝐶 iff 𝑣 is accepted by 𝒜[𝑝, 𝑞], for every (𝒜, 𝑝, 𝑞) ∈ 𝒯𝐶,
and 𝑣 is accepted by 𝒜[𝑝, 𝑞]∁, for every (𝒜, 𝑝, 𝑞) ∉ 𝒯𝐶, where 𝒜∁ denotes the
complement NFA of 𝒜. Hence 𝒜𝐶 can be written as the following intersection
of NFAs:

𝒜𝐶 = �
(𝒜,𝑝,𝑞)∈𝒯𝐶

𝒜[𝑝, 𝑞] ∩ �
(𝒜,𝑝,𝑞)∉𝒯𝐶

𝒜[𝑝, 𝑞]∁

The number of states in 𝒜[𝑝, 𝑞]∁ is at most 2𝑟 and |𝒯| ≤ 𝑟2‖𝛾‖at, where 𝑟
is the maximum number of states in an NFA of 𝛾. Hence the number of states
of 𝒜𝐶 is at most 2𝑟3‖𝛾‖at , that is, single-exponential on 𝛾.

Fix 𝑢 ∈ 𝔸∗. We claim that {𝑧 ∈ 𝔸∗ ∣ type𝛾(𝑢) ⊆ type𝛾(𝑧)} can be accepted
by an NFA 𝒜𝑢 of at most double-exponential size on 𝛾. It is easy to see that
for every tuple �̄� = (𝐶1, … , 𝐶ℓ) ∈ type𝛾(𝑢), the language {𝑧 ∈ 𝔸∗ ∣ �̄� ⊆
type𝛾(𝑧)} can be described by an NFA 𝒜�̄� of single-exponential size: we

guess a decomposition 𝑧 = 𝑧1⋯𝑧ℓ of the input word 𝑧 and check that each 𝑧𝑖
is accepted by 𝒜𝐶𝑖 . The number of states of 𝒜�̄� is 𝒪(∑ℓ

𝑖=1 𝑠𝑖), where 𝑠𝑖 is the
number of states of 𝒜𝐶𝑖 . Since ℓ ≤ (‖𝛾‖var + 1), this is 𝒪(‖𝛾‖var2𝑟

3‖𝛾‖at). Now,
the NFA 𝒜𝑢 is simply the intersection of all the NFAs in {𝒜�̄� ∣ �̄� ∈ type𝛾(𝑢)}.

The number of possible equivalence classes of ∼𝛾 is at most 2|𝒯| ≤ 2𝑟2‖𝛾‖at ,
and then the number of possible tuples of the form �̄� = (𝐶1, … , 𝐶ℓ) is 𝑁 =
𝒪(2𝑟2‖𝛾‖at(‖𝛾‖var+1)). It follows that the number of states of 𝒜𝑢 is at most
𝒪(‖𝛾‖var2𝑟

3‖𝛾‖at𝑁), i.e., double-exponential on 𝛾.
Finally, note that the number of possible type𝛾(𝑢) is atmost double-exponential

103

iv. minimization of conjunctive regular path queries

on 𝛾, more precisely, 2𝑁. We conclude that every language �̃� in 𝛽 can be
represented by an NFA 𝒜�̃� which is the union of at most double-exponential
many NFAs of the form 𝒜𝑢, each of these having at most double-exponential
many states. We conclude that the size of 𝒜�̃� can be bounded by a double-
exponential function 𝑓(‖𝛾‖).

Using this lemma, we can then easily deduce the desired 2ExpSpace upper
bound.

Proof of Theorem IV.3.1. The 2ExpSpace algorithm proceeds as follows. Let 𝛾
be a CRPQ over 𝔸 and 𝑘 ∈ ℕ. Let 𝑓 be the double-exponential function from
Lemma IV.3.2. We enumerate all possible directed multigraphs with at most
𝑘 edges. For each of these graphs, we enumerate all the possible CRPQs 𝛽
obtained by labelling each edge with an NFA of size bounded by 𝑓(‖𝛾‖). If for
some of these 𝛽, we have that 𝛽 ≡ 𝛾 then we accept the instance, otherwise
we reject it. Lemma IV.3.2 ensures that this algorithm is correct.

It remains to show that 𝛽 ≡ 𝛾 can be carried out in 2ExpSpace. We use
a proposition from [FM25, Proposition 3.11, p. 17] stating that containment
Γ ⫅ Δ, for UCRPQs Γ and Δ, can be solved in non-deterministic space 𝒪(‖Γ‖ +
‖Δ‖𝑐⋅‖Δ‖at), where 𝑐 is a constant. This implies that 𝛽 ⫅ 𝛾 can be checked in
space 𝒪(‖𝛽‖ + ‖𝛾‖𝑐⋅‖𝛾‖at), and then within 2ExpSpace. The containment 𝛾 ⫅ 𝛽
can be solved in space 𝒪(‖𝛾‖ + ‖𝛽‖𝑐⋅𝑘), and hence also in 2ExpSpace.

IV.4 Minimization of UCRPQs via Approximations

We now focus on minimizations by finite unions of CRPQs. This is a different
problem than the one seen in the previous section, i.e., there is no obvious
reduction in either direction between the minimization problem for CRPQs
and the minimization problem for UCRPQs, and indeed we will solve this
problem using an altogether different approach.

IV.4.1 Unions Allow Further Minimization

As it turns out, having unions may help in minimizing the (maximum) number
of atoms of a query as the next proposition shows.

Proposition IV.4.1. There exist CRPQs which are minimal among CRPQs
but not among UCRPQs.

Proof. The following example is inspired from [FM25, Example 1.2]. Consider
the following CRPQs:

𝑥

𝛾() =̂ 𝑦

𝑧

𝑎

𝑎(𝑏𝑏)+ 𝑎𝑏(𝑏𝑏)∗,

▿

𝑏+

𝑥

𝛿0() =̂ 𝑦

𝑧

𝑎

𝑎𝑏(𝑏𝑏)∗
▿

(𝑏𝑏)+

and

104

iv.4. minimization of ucrpqs via approximations

𝑥

𝛿1() =̂ 𝑦.

𝑧

𝑎

𝑎(𝑏𝑏)+
▿

𝑏(𝑏𝑏)∗

It is easy to see that 𝛾 ≡ 𝛿0 ∨ 𝛿1 by doing a case disjunction on the parity of
the path between 𝑦 and 𝑧—the even case is handled by 𝛿0, the odd case by 𝛿1.
Hence, 𝛾 is not minimal among UCRPQs.

We want to show that 𝛾 is minimal among CRPQs. Let 𝜁() be a CRPQ that
is equivalent to 𝛾, and assume by contradiction that it has at most four atoms.
Given natural numbers 𝑙, 𝑚, 𝑟 ∈ ℕ>0 where 𝑙 is even and 𝑟 is odd, consider
the expansion

𝑥

𝜉𝑙,𝑚,𝑟() =̂ 𝑦

𝑧

𝑎

𝑎𝑏𝑙 𝑎𝑏𝑟,

▿

𝑏𝑚

where squiggly arrows represent paths of atoms.

Claim IV.4.2. The expansion 𝜉𝑙,𝑚,𝑟 is hom-minimal iff 𝑙 = 𝑚 or 𝑚 = 𝑟.

Indeed, if 𝑙 ≠ 𝑚 and 𝑚 ≠ 𝑟, then if 𝑚 is even then 𝜉𝑚,𝑚,𝑟
hom−−−→ 𝜉𝑙,𝑚,𝑟 but

𝜉𝑙,𝑚,𝑟 ���hom−−−→ 𝜉𝑚,𝑚,𝑟 (since 𝑙 ≠ 𝑚) and dually if 𝑚 is odd then 𝜉𝑙,𝑚,𝑚
hom−−−→ 𝜉𝑙,𝑚,𝑟

but 𝜉𝑙,𝑚,𝑟 ���hom−−−→ 𝜉𝑙,𝑚,𝑚 (since 𝑚 ≠ 𝑟). In both cases, 𝜉𝑙,𝑚,𝑟 is not hom-minimal.
Conversely, if 𝑙 = 𝑚 or 𝑚 = 𝑟, assume w.l.o.g., by symmetry, that 𝑙 = 𝑚.

Let 𝑙′, 𝑚′, 𝑟′ ∈ ℕ>0 s.t. 𝑙′ is even and 𝑟′ is odd, and assume that there is a
homomorphism 𝑓∶ 𝜉𝑙′,𝑚′,𝑟′ → 𝜉𝑙,𝑚,𝑟. Because of the ▿-self-loop, 𝑓(𝑦) = 𝑦 and
hence 𝑓(𝑥) = 𝑥. It then follows that 𝑓(𝑧) = 𝑧 because we must have both
an 𝑎(𝑏𝑏)+- and an 𝑎𝑏(𝑏𝑏)∗-path from 𝑓(𝑥) and 𝑓(𝑧). Moreover, we must have
𝑚 = 𝑚′, and since 𝑙′ is even, we must have 𝑙′ = 𝑙 = 𝑚, and dually, since 𝑟′

is odd, we must have 𝑟′ = 𝑟. It follows that ⟨𝑙′, 𝑚′, 𝑟′⟩ = ⟨𝑙, 𝑚, 𝑟⟩, and hence
𝜉𝑙,𝑚,𝑟 is hom-minimal.

Claim IV.4.3. If 𝑚 = 𝑟, then ̌(𝜉𝑙,𝑚,𝑟) equals

𝑥

𝑦.

𝑧

𝑎

𝑎𝑏𝑙

▿

𝑏𝑚

Putting Claims IV.4.2 and IV.4.3 and Theorem IV.2.8 together, we get that
𝒮𝒢(̌(𝜉2,1,1)) is a minor of 𝜁. Since 𝜁 was assumed to have at most four atoms,
it follows that 𝜁() must be exactly of the form

105

iv. minimization of conjunctive regular path queries

𝑥

𝜁() = 𝑦.

𝑧

𝑈

𝐿

𝑆

𝐷

Using the containment 𝜁 ⫅ 𝛾, since the only directed simple cycle in an
expansion of 𝛾 is labelled by ▿, we get 𝑆 = {▿}. Similarly, using again that
𝜁 ⫅ 𝛾 and that any expansion of 𝛾 must have both an 𝑎(𝑏𝑏)+- and an 𝑎𝑏(𝑏𝑏)∗-
path, it can be shown that 𝑈 = {𝑎}.

Now let 𝑙, 𝑚, 𝑟 ∈ ℕ>0 with 𝑙 even and 𝑟 odd. From 𝛾 ⫅ 𝜁, we get that
each 𝜉𝑙,𝑚,𝑟 satisfies 𝜁 and so there is an evaluation map 𝑓∶ 𝜁 → 𝜉𝑙,𝑚,𝑟. Clearly
𝑓(𝑦) = 𝑦 and then using the 𝑎(𝑏𝑏)+- and 𝑎𝑏(𝑏𝑏)∗-paths, we get that 𝑓(𝑥) = 𝑥
and 𝑓(𝑧) = 𝑧. It then follows that
• 𝑏𝑚 ∈ 𝐷, and
• either 𝑎𝑏𝑙 ∈ 𝐿, or 𝑎𝑏𝑟 ∈ 𝐿, or 𝑎▿𝑘𝑏𝑚 for some 𝑘 ∈ ℕ
From the first point we get 𝑏+ ⊆ 𝐷, and in fact using 𝜁 ⫅ 𝛾, 𝐷 = 𝑏+.

Now let 𝑤 ∈ 𝐿 and 𝑚 ∈ ℕ, and consider the expansion

𝑥

𝜉𝜁() =̂ 𝑦.

𝑧

𝑎

𝑤
▿

𝑏𝑚

of 𝜁. Since 𝜁 ⫅ 𝛾, there is an evaluation map 𝑓∶ 𝛾 → 𝜉𝜁. Taking 𝑚 to be
any even value, we get that 𝑤 must be in 𝑎𝑏(𝑏𝑏)∗, say 𝑤 = 𝑎𝑏𝑟 for some odd
𝑟 ∈ ℕ>0. Taking 𝑚 to be any odd value, we get dually that 𝑤 must be in
𝑎(𝑏𝑏)+, say 𝑤 = 𝑎𝑏𝑙 for some even 𝑙 ∈ ℕ>0. Hence, we get {𝑎𝑏𝑙, 𝑎𝑏𝑟} ⊆ 𝐿.

We can now pick𝑚 to be even and 𝑤 = 𝑎𝑏𝑙, and then 𝜉𝜁 should be a model
of 𝛾. But 𝜉𝜁 does cannot satisfy the atom 𝑥 𝑎𝑏(𝑏𝑏)∗−−−−−→ 𝑧. Contradiction. Hence, 𝛾
cannot be equivalent to a single CRPQ with at most four atoms.

IV.4.2 Maximal Under-Approximations

Our approach exploits having unions at our disposal, enabling the possibility
of defining and computing maximal under-approximations for UCRPQs hav-
ing some given underlying shape. This will lead to an ExpSpace upper bound
for UCRPQ minimization.

For a graph class 𝒞 (remember that these are directed multigraphs) we
denote by CQ(𝒞), CRPQ(𝒞), UCRPQ(𝒞), UCRPQ∞(𝒞), the class of CQs, of
CRPQs, of finite unions of CRPQs and of infinite unions of CRPQs 𝛾 such that
𝐺𝛾 ∈ 𝒞. Given a graph class 𝒞 and a UCRPQ Γ, we define App∞𝒞 (Γ) to be the
(infinite) set of all CRPQ(𝒞) queries which are contractions of CQs contained
in Γ. More formally:10

10 Note that the contraction of a CQ
is a CRPQ: this is why App∞𝒞 (Γ) is an
infinite union of CRPQs and not of
CQs.

App∞𝒞 (Γ) =̂ {𝛼 ∈ CRPQ(𝒞) ∣ ∃𝜉 ∈ Exp(Γ), ∃𝜂 ∈ CQ s.t. 𝜉 hom−−−→ 𝜂 and 𝛼 is a contraction of 𝜂}.

106

iv.4. minimization of ucrpqs via approximations

Proposition IV.4.4. If 𝒞 is a graph class closed under taking minors, then
App∞𝒞 (Γ) is a maximal under-approximation of Γ by UCRPQ∞(𝒞) queries, in
the sense that:
1. App∞𝒞 (Γ) ∈ UCRPQ∞(𝒞),
2. App∞𝒞 (Γ) ⫅ Γ, and
3. for any Δ ∈ UCRPQ∞(𝒞), if Δ ⫅ Γ, then Δ ⫅ App∞𝒞 (Γ).

Proof. The first point is trivial. For the second one, observe that if 𝛼 ∈
CRPQ(𝒞) is s.t. there exist 𝜉 ∈ Exp(Γ) and 𝜂 ∈ CQ s.t. 𝜉 hom−−−→ 𝜂 and 𝛼

is a contraction of 𝜂, then 𝜂 ⫅ 𝜉 and 𝜂 is semantically equivalent to 𝛼 by
Fact IV.2.2, and hence 𝛼 ⫅ 𝜉, from which it follows that App∞𝒞 (Γ) ⫅ Γ.

For the third point, let Δ ∈ UCRPQ∞(𝒞) s.t. Δ ⫅ Γ. Let 𝛿 ∈ Δ and 𝜉𝛿 be an
expansion of 𝛿. SinceΔ ⫅ Γ, there exist 𝛾 ∈ Γ and 𝜉𝛾 ∈ Exp(𝛾) s.t. 𝜉𝛾

hom−−−→ 𝜉𝛿.
From the fact that 𝐺𝛿 ∈ 𝒞 and that 𝜉𝛿 ∈ Exp(𝛿), it follows that there exists a
contraction 𝛼𝛿 of 𝜉𝛿 s.t. 𝐺𝛼𝛿 is a minor of 𝐺𝛿, and thus belongs to 𝒞. Hence,
it follows that 𝛼𝛿 ∈ App∞𝒞 (Γ). So 𝜉𝛿 ⫅ App∞𝒞 (Γ) and thus Δ ⫅ App∞𝒞 (Γ).

Remark IV.4.5. If 𝒞 is closed under taking subgraphs and expansions, then

App∞𝒞 (𝛾) ≡ {𝛼 ∈ CQ(𝒞) ∣ ∃𝜉 ∈ Exp(𝛾), 𝜉 hom−−−→→ 𝛼}.

Our ExpSpace upper bound relies on the following technical lemma.

Lemma IV.4.6. If 𝒞 is finite and closed under taking minors, then App∞𝒞 (Γ) is
equivalent to a query Δ ∈ UCRPQ(𝒞) with exponentially many CRPQs, each
CRPQ of Δ being of size polynomial in ‖Γ‖ +max {‖𝐺‖at ∣ 𝐺 ∈ 𝒞}. Further,
the membership 𝛿 ∈? Δ can be tested NP. In particular, this UCRPQ Δ can be
computed in exponential time from Γ.

Proof. We start by observing that App∞𝒞 (Γ) admits an equivalent and more
flexible definition in terms of refinements. This definition will allow us to ef-
fectively compute our desired equivalent query Δ, by considering refinements
of bounded lengths.

For each 𝑚 ∈ ℕ∪ {+∞}, we define the UCRPQ∞(𝒞)

App≤𝑚𝒞 (Γ) =̂ {𝛼 ∈ CRPQ(𝒞) ∣ ∃𝜌 ∈ Ref≤𝑚(Γ), ∃𝜂 ∈ CRPQ s.t. 𝜌 hom−−−→ 𝜂 and 𝛼 is a contraction of 𝜂}.

We have that App∞𝒞 (Γ) ≡ App≤+∞𝒞 (Γ). Indeed, App∞𝒞 (Γ) ⫅ App≤+∞𝒞 (Γ)
as the former is a subset of the latter. On the other hand, App≤+∞𝒞 (Γ) ⫅
App∞𝒞 (Γ) follows from Proposition IV.4.4 and the fact that App≤+∞𝒞 (Γ) ⫅ Γ
by construction.

Let ‖𝒞‖at =̂ max {‖𝐺‖at ∣ 𝐺 ∈ 𝒞} and 𝑟Γ be the maximum number of states
over the NFAs describing the languages appearing in Γ. We claim that
App≤+∞𝒞 (Γ) ≡ App≤𝒪(‖Γ‖at⋅𝑟Γ⋅‖𝒞‖at)

𝒞 (Γ). The right-to-left containment is trivial,
so it suffices to show App≤+∞𝒞 (Γ) ⫅ App≤𝒪(‖Γ‖at⋅𝑟Γ⋅‖𝒞‖at)

𝒞 (Γ).

107

iv. minimization of conjunctive regular path queries

We define an explicit approximation of Γ over𝒞 as a tuple𝛼 = ⟨𝜌, 𝜂, 𝛼, ℎ, orig, contr⟩
consisting of the following:
• queries 𝜌 ∈ Ref(Γ), 𝜂 ∈ CRPQ and 𝛼 ∈ CRPQ(𝒞),
• a homomorphism ℎ∶ 𝜌 hom−−−→ 𝜂,
• witnesses that𝛼 is a contraction of 𝜂, in the form of a function orig ∶ vars(𝛼) →

vars(𝜂), saying from which variable of 𝜂 a variable of 𝛼 originates, and
a function contr ∶ Atoms(()𝜂) → Atoms(()𝛼) saying onto which atom of
𝛼 an atom of 𝜂 is contracted (i.e., the functions orig, contr must meet the
expected properties).

We say that an explicit approximation 𝛼1 is contained in an explicit approxi-
mation 𝛼2 if 𝛼1 ⫅ 𝛼2. For any𝑚, to prove that App≤+∞𝒞 (Γ) ⫅ App≤𝑚𝒞 (Γ), it suf-
fices to prove that any explicit approximation𝛼1 = ⟨𝜌1, 𝜂1, 𝛼1, ℎ1, orig1, contr1⟩
is contained in an explicit approximation 𝛼2 = ⟨𝜌2, 𝜂2, 𝛼2, ℎ2, orig2, contr2⟩
such that 𝜌2 ∈ Ref≤𝑚(Γ).

X 1st step: Bounding the size of 𝜂. We define the contraction length
of an explicit approximation 𝛼 as the size of the longest path in 𝜂 whose
atoms are all sent on the same atom of 𝛼 via contr. In symbols, this is
max {|contr−1(𝜇)| ∶ 𝜇 ∈ Atoms(()𝛼)}. We show that any explicit approxima-
tion 𝛼1 is contained in an explicit approximation 𝛼2 of bounded contraction
length.

Let 𝛼1 be an explicit approximation. Consider a path 𝑥0 −→ 𝑥1 −→ ⋯ −→ 𝑥𝑘
of 𝜂1 whose atoms are all sent on the same atom of 𝛼1 via contr1. If this path
is very long, in particular greater than ‖Γ‖var, it must contain an internal
variable 𝑥𝑖 such that all of its ℎ1-preimages are internal variables of 𝜌1. Then
we will be able to contract 𝑥𝑖 as well as the internal variables of the preimage,
obtaining an explicit approximation which contains 𝛼1.

We now formalize the previous claim: assume that for some 𝑥𝑖, with 𝑖 ∈
⟦1, 𝑘 − 1⟧, all variables in ℎ−11 (𝑥𝑖) are internal in 𝜌1. If 𝑥𝑖−1

𝐿−→ 𝑥𝑖 and 𝑥𝑖
𝐿’−→ 𝑥𝑖+1

are the only atoms containing 𝑥𝑖 in 𝜂1, then for a variable 𝑧 ∈ ℎ−11 (𝑥𝑖), the
only atoms in containing 𝑧 in 𝜌1 must have the form 𝑤 𝐿−→ 𝑧 and 𝑧 𝐿’−→ 𝑤’. Let
𝜂2 be the query resulting from 𝜂1 by contracting the internal variable 𝑥𝑖 and
replacing 𝐿 ⋅ 𝐿’ by 𝐾, where 𝐾 is defined as follows. Since 𝐿 and 𝐿’ appear
consecutively in internal paths of the refinement 𝜌1, there must be an NFA 𝒜
in 𝛾 and three states 𝑝, 𝑞, 𝑟 such that 𝐿 = 𝒜[𝑝, 𝑞] or 𝐿 = {𝑎} with 𝑎 ∈ 𝒜[𝑝, 𝑞],
and 𝐿’ = 𝒜[𝑞, 𝑟] or 𝐿’ = {𝑎} with 𝑎 ∈ 𝒜[𝑞, 𝑟]. We define 𝐾 = 𝒜[𝑝, 𝑟]. Note
that in any case, 𝐿 ⋅ 𝐿’ ⊆ 𝐾. Similarly, define 𝜌2 to be the query resulting
from 𝜌1 by contracting each internal variable 𝑧 ∈ ℎ−11 (𝑥𝑖) and replacing 𝐿 ⋅ 𝐿’
by 𝐾. Note that 𝜌2 is still a refinement of 𝛾 and that the homomorphism
ℎ1 ∶ 𝜌1 → 𝜂1 induces a homomorphism 𝑓2 ∶ 𝜌2 → 𝜂2. Define 𝛼2 be the
contraction of 𝜂2 obtained by contracting all the remaining internal variables
as the contraction 𝛼1 is obtained from 𝜌1. Since 𝛼1 ⫅ 𝛼2 as 𝐿 ⋅ 𝐿’ ⊆ 𝐾, this
defines an explicit approximation 𝛼2 that contains 𝛼1. Note that in the case
ℎ−11 (𝑥𝑖) = ∅, we can take 𝐾 = 𝐿 ⋅ 𝐿’, and 𝛼1 ≡ 𝛼2.

If 𝑘 − 1 > ‖Γ‖var, then path 𝑥0 −→ 𝑥1 −→ ⋯ −→ 𝑥𝑘 contains a variable

108

iv.4. minimization of ucrpqs via approximations

satisfying the condition above, and hence we can apply the simplification.
Overall, this shows that any explicit approximation is contained in an explicit
approximation of contraction length at most 𝒪(‖Γ‖var) ≤ 𝒪(‖Γ‖at).

X 2nd step: bounding the size of 𝜌. We now show that we can bound the
refinement length of an explicit approximation, namely the maximal length of
an atom refinement in 𝜌. Let 𝛼1 be an explicit approximation of contraction
length at most 𝒪(‖Γ‖at). Then 𝜂1 has at most 𝒪(‖Γ‖at ⋅ ‖𝒞‖at) atoms. It follows
then, by the pigeonhole principle, that we can bound the refinement length
of 𝜌1 by 𝒪(‖Γ‖at ⋅ 𝑟Γ ⋅ ‖𝛼‖at). Indeed, if the length of an atom refinement of 𝜌1
is greater than this bound, there are two atoms in the refinement 𝑥 𝐿𝑖−→ 𝑦 and
𝑥’ 𝐿𝑗−→ 𝑦’, with 𝑖 < 𝑗, mapped to the same atom via ℎ1 and whose corresponding
NFA states 𝑞𝑖 and 𝑞𝑗 in the definition of refinements are the same. We can
then remove the path between 𝑦 and 𝑦’. In conclusion, this shows that
App≤+∞𝒞 (Γ) ⫅ App≤𝑂(‖Γ‖at⋅𝑟Γ⋅‖𝒞‖at)𝒞 (Γ).

XConclusion: Expressing& computingApp≤𝒪(‖Γ‖at⋅𝑟Γ⋅‖𝒞‖at)
𝒞 (Γ) as a UCRPQ. In

order to compute App≤𝒪(‖Γ‖at⋅𝑟Γ⋅‖𝒞‖at)
𝒞 (Γ) we can enumerate the finitely many

𝑚-refinements 𝜌 of Γ, where 𝑚 = 𝒪(‖Γ‖at ⋅ 𝑟Γ ⋅ ‖𝒞‖at), and the finitely many
CRPQs 𝜂 with at most 𝒪(‖Γ‖at ⋅ ‖𝒞‖at) atoms such that 𝜌 hom−−−→ 𝜂. The only
issue here is that we have infinitely many possibilities to choose languages
labelling the atoms that are not in the homomorphic image of 𝜌 hom−−−→ 𝜂.
However, we can choose the most general language 𝔸∗ obtaining a query
equivalent to App≤𝑚𝒞 (Γ). Note that each CRPQ has at most 𝒪(‖Γ‖at ⋅ ‖𝒞‖at)
atoms and its languages are concatenations of 𝒪(‖Γ‖at ⋅ ‖𝒞‖at) sublanguages
of Γ or 𝔸∗, and so they can be described by NFAs of polynomial size on ‖Γ‖
and ‖𝒞‖at.

Corollary IV.4.7. Testing whether a UCRPQ is equivalent to a UCRPQ of at
most 𝑘 atoms is ExpSpace-complete.

Proof. It suffices to test if the UCRPQ Γ is equivalent to App≤𝑚𝒞 (Γ) where 𝒞 is
the class of all graphs with at most 𝑘 edges and 𝑚 = 𝒪(‖Γ‖at ⋅ 𝑟Γ ⋅ ‖𝒞‖at) as in
the proof of Lemma IV.4.6. The correctness follows from Proposition IV.4.4
since 𝒞 is trivially closed under minors. Each 𝛼 ∈ App≤𝑚𝒞 (Γ) has at most
𝑘 edges, and App≤𝑚𝒞 (Γ) contains exponentially many queries, so by [FM25,
Proposition 3.11] (see also proof of Theorem IV.3.1), it can be solved in Ex-

pSpace. Finally, ExpSpace-hardness will follow from Theorem IV.5.2.

IV.4.3 CRPQs over Simple Regular Expressions

Let UCRPQ(SRE) (resp. CRPQ(SRE)) be the set of all UCRPQs (resp. CRPQs)
whose languages are expressed via SREs (as defined in Section IX.1). We show
that if we restrict the regular expressions we obtain a much better complexity
for the minimization problem for UCRPQs.

Theorem IV.4.8. Theminimization problem for UCRPQ(SRE) isΠ𝑝
2 -complete.11 11 By this wemean theminimization

problem for UCRPQs whose input
instances are UCRPQ(SRE).Proof. We first begin with an easy small counterexample property.

109

iv. minimization of conjunctive regular path queries

Claim IV.4.9. Let Γ, Δ ∈ UCRPQ containing only atoms with expressions of
the form (i) 𝑎+, or (ii) 𝑎1 +⋯+𝑎𝑘. Additionally, Δmay also have expressions
of the form (iii) 𝔸∗. If Γ " Δ, then there exists 𝜉 ∈ Exp(Γ) such that (a) 𝜉 " Δ
and (b) ‖𝜉‖at ≤ 𝒪(max𝛾∈Γ ‖𝛾‖at ⋅max𝛿∈Δ ‖𝛿‖at).

The intuition is that if a counterexample includes an atom expansion 𝑥 𝑎𝑛−→ 𝑦
of some atom 𝑥 𝑎+−→ 𝑦, where 𝑛 is greater than the maximum number of atoms
inΔ (plus one), then the expansion obtained by replacing 𝑥 𝑎𝑛−→ 𝑦with 𝑥 𝑎𝑛−1−−−→ 𝑦
must also be a counterexample. Hence, a minimal counterexample must have
all atom expansions bounded by the maximum number of atoms in Δ.

Proof. This fact follows from a standard technique as used in, e.g., [Fig+20].
Take any counterexample 𝜉 ∈ Exp(Γ) as in the statement, and suppose it is
of minimal size. By means of contradiction, assume ‖𝜉‖at > max𝛾∈Γ ‖𝛾‖at ⋅
(max𝛿∈Δ ‖𝛿‖at + 1). Then, it contains an atom expansion 𝑥 𝑎𝑚−−→ 𝑦 of size
𝑚 > max𝛿∈Δ ‖𝛿‖at + 1. Consider removing one atom from such expansion
(i.e., replacing 𝑥 𝑎𝑚−−→ 𝑦 with 𝑥 𝑎𝑚−1−−−→ 𝑦), obtaining some expansion 𝜉′ ∈ Exp(Γ)
of smaller size. By minimality 𝜉′ is not a counterexample: in other words
there is 𝜉″ ∈ Exp(𝛿) such that ℎ ∶ 𝜉″ hom−−−→ 𝜉′ for some 𝛿 ∈ Δ and ℎ. Since
𝑥 𝑎𝑚−1−−−→ 𝑦 contains more than ‖𝛿‖at atoms, there must be some 𝑎-atom of
𝑥 𝑎𝑚−1−−−→ 𝑦 which either (1) has no ℎ-preimage or (2) every ℎ-preimage is in an
atom expansion of a 𝔸∗-atom or a 𝑎+-atom of 𝛿. We can then replace the
𝑎-atom with two 𝑎-atoms in 𝜉′ and do similarly in the atom expansions of 𝜉″

in the ℎ-preimage, obtaining that 𝜉′ ⫅ 𝛿. But this is in contradiction with our
hypothesis, hence any minimal counterexample is of size smaller or equal to
max𝛾∈Γ ‖𝛾‖at ⋅ (max𝛿∈Δ ‖𝛿‖at + 1).

Given a UCRPQ(SRE) Γ, the construction of Lemma IV.4.6 yields its maximal
under-approximation by UCRPQs of at most 𝑘 atoms as a UCRPQ ΔApp whose
every regular expression is a concatenation of expressions of the form (i),
(ii) and (iii) above. It suffices then to test 𝛾 ⫅ ΔApp for every CRPQ(SRE)
𝛾 in Γ. Due to Claim IV.4.9 (and observing that equivalent queries without
concatenations can be obtained in polynomial time) its negation 𝛾 " ΔApp

can be tested by guessing a polynomial sized expansion 𝜉 of 𝛾 and then testing
𝜉 " ΔApp. In turn, 𝜉 ⫅ ΔApp can be tested in NP by [Fig+20, Theorem 4.2].12 12 Simply by (1) guessing a polyno-

mial size CRPQ 𝛿, (2) testing 𝛿 ∈
ΔApp in NP by Lemma IV.4.6, and (3)
guessing a (small) expansion 𝜉′ of 𝛿
and testing 𝜉′ hom−−−−→ 𝜉.

This yields aΠ𝑝
2 algorithm for testing 𝛾 ⫅ ΔApp, and thus also for Γ ⫅ ΔApp.

Π𝑝
2 -hardness follows from Corollary IV.5.13.

IV.5 Lower Bounds

In this section we give some underlying ideas for showing lower bounds
for the minimization problems.

110

iv.5. lower bounds

IV.5.1 Equivalence with a Single Atom

Containment of CRPQs is ExpSpace-complete [FLS98; CDLV00]. Somewhat
surprisingly, Figueira [Fig20, Lemma 8] showed that there exists a finite
alphabet 𝔸 s.t. the problem remained ExpSpace-hard even if restricted to
instances with a simple shape. We start by strengthening this result to fit our
needs.

Proposition IV.5.1 (Variation on [Fig20, Lemma 8]). There is a fixed alphabet
over which the containment problem for Boolean CRPQs is ExpSpace-hard
restricted to instances of the form

𝛾1() = • • ⫅? • • = 𝛾2(), where moreover:
𝐾

𝐿1
⋮

𝐿𝑝

1. no language among 𝐾 or the 𝐿𝑖’s is empty or contains the empty word 𝜀,
and

2. there is no 𝑖 such that 𝔸∗𝐿𝑖𝔸∗ = 𝔸∗�⋂𝑗 𝐿𝑗�𝔸
∗.

Proof. By inspecting [Fig20, Proof of Lemma 8, pp. 15–17], it can be noticed
that actually the first condition is satisfied by Figueira’s reduction—using his
notation, neither 𝐸 nor 𝐺𝑖 ∪ 𝐹𝐶 ∪ 𝐹𝐻 with 𝑖 ∈ ⟦0, 𝑛⟧ are empty.

Moreover, we claim that the reduction can be made so that the second
condition also holds. Notice first that the 2𝑛-tiling problem is still ExpSpace-
complete if we restrict it to instances with 𝑛 > 1 and such that all instances
admit one tiling which is “locally valid” but not valid—namely a tiling which
satisfies all vertical and horizontal constraints, but not the initial and final
tiles conditions. This can be achieved e.g. by adding a new tile 𝑡 s.t. (𝑡, 𝑡) is
both a valid horizontal and vertical configuration, but 𝑡 cannot be adjacent to
any other tile. Then, the second condition amounts to showing that there is
no 𝑖 s.t.

𝔸∗(𝐺𝑖 ∪ 𝐹𝐶 ∪ 𝐹𝐻)𝔸∗ = 𝔸∗� �
0≤𝑗≤𝑛

(𝐺𝑗 ∪ 𝐹𝐶 ∪ 𝐹𝐻)�𝔸∗

which is equivalent, by elementary manipulations, to saying that for all
𝑖 ∈ ⟦0, 𝑛⟧

𝔸∗𝐺𝑖𝔸∗ ⊈ 𝔸∗� �
0≤𝑗≤𝑛

𝐺𝑗�𝔸∗ ∪𝔸∗(𝐹𝐶 ∪ 𝐹𝐻)𝔸∗.

For 𝑖 = 0, this holds because we can consider a valid encoding of a tiling
which respects all constraints except that one vertical constraint is violated.
For 𝑖 ∈ ⟦1, 𝑛⟧, we consider the encoding of a tiling which is locally valid.
Then, it has no vertical error, no horizontal error, and no encoding error, so it
does not belong to the right-hand side. However, it belongs to 𝔸∗𝐺𝑖𝔸∗ for
any 𝑖 ∈ ⟦1, 𝑛⟧ since it contains a subword encoding two cells separated by
exactly one row. Hence, the second condition also holds.

We shall use these hard instances to show that the minimization problem

111

iv. minimization of conjunctive regular path queries

for CRPQs is hard.

Theorem IV.5.2. The minimization problem for CRPQs is ExpSpace-hard.
Further, there is a fixed alphabet s.t. the problem of, given a Boolean CRPQ
on this alphabet with only four variables is equivalent to a Boolean CRPQ
with a single atom is ExpSpace-hard.

A formal proof follows the proof sketch.

Proof sketch. We reduce an instance of the problem of Proposition IV.5.1 to
the instance 𝛿, where

𝛿() = • •.
• •𝔸∗

𝐾
𝐿1
⋮

𝐿𝑝

𝔸∗

First, it is easy to see that if 𝛾1 ⫅ 𝛾2 then 𝛿 ≡ 𝛾1. Conversely, if 𝛿 is equivalent
to a Boolean CRPQ with at most one atom, then 𝛾1 ⫅ 𝛾2. The conditions
imposed by Proposition IV.5.1 are necessary to discard one-atom queries
which are self-loops and that whenever 𝛾1 " 𝛾2 there is an expansion of 𝛿 to
which any 𝛿-equivalent single-atom query expansion cannot be mapped.

Proof. We reduce an instance of the problem of Proposition IV.5.1 to the
instance 𝛿, where

𝛿() = • •.
• •𝔸∗

𝐾
𝐿1
⋮

𝐿𝑝

𝔸∗

Claim IV.5.3. If 𝛾1 ⫅ 𝛾2 then 𝛿 ≡ 𝛾1.

Note first that 𝛿 ⫅ 𝛾1. Then, if 𝛾1 ⫅ 𝛾2, then every word of 𝐾 contains a
factor which belongs to each 𝐿𝑖 for 𝑖 ∈ ⟦1, 𝑝⟧, and hence 𝛾1 ⫅ 𝛿 i.e. 𝛿 ≡ 𝛾1,
and so 𝛿 is equivalent to a CRPQ with a single atom.

Claim IV.5.4. Conversely, if 𝛿 is equivalent to a Boolean CRPQ with at most
one atom, then 𝛾1 ⫅ 𝛾2.

Let 𝜁 be the Boolean CRPQ with at most one atom which is equivalent to 𝛿.
Assume first, by contradiction, that it is a self-loop, i.e. 𝜁() = 𝑥 𝑀−→ 𝑥 for some
language𝑀. Then by assumption on 𝐾, there exists a word 𝑢 ∈ 𝐾 of size at
least one. Since none of the 𝐿𝑖 are empty, there exists a canonical database 𝐺𝑢𝛿
where the atom • 𝐾−→ • yielded a 𝑢-labelled path. Since 𝛿 ⫅ 𝜁, the database
𝐺𝑢𝛿 must satisfy 𝜁() = 𝑥 𝑀−→ 𝑥. Since every strongly connected component of
𝐺𝑢𝛿 is trivial—we assumed that none of the languages of 𝛿 contained 𝜀—, it
must be that 𝜀 ∈ 𝑀, and hence 𝜁 is the query which is always satisfied, which
contradicts the equivalence 𝛿 ≡ 𝜁.

Similarly, it can be shown that 𝜁 cannot have zero atoms since 𝛿 is non-
trivial. Hence, 𝜁 is exactly of the form 𝜁() = 𝑥 𝑀−→ 𝑦 for some language𝑀.

112

iv.5. lower bounds

First, note that from 𝜁 ⫅ 𝛿, it follows that

𝑀 ⊆ 𝔸∗��
𝑗
𝐿𝑗�𝔸∗. (IV.2)

Assume then, by contradiction, that there exists an 𝑖 s.t. every word of 𝐿𝑖 has
a factor in𝑀, i.e. 𝐿𝑖 ⊆ 𝔸∗𝑀𝔸∗. Then (IV.2) implies 𝔸∗𝐿𝑖𝔸∗ = 𝔸∗�⋂𝑗 𝐿𝑗�𝔸

∗

which contradicts the second assumption of Proposition IV.5.1. Therefore, for
every 𝑖, there is a word 𝑣𝑖 ∈ 𝐿𝑖 which contains no factor in𝑀.

We are now ready to show that 𝛾1 ⫅ 𝛾2, by first observing that it boils
down to showing 𝐾 ⊆ 𝔸∗(⋂𝑗 𝐿𝑗)𝔸

∗. Let 𝑢 ∈ 𝐾. Consider the following
canonical database of 𝛿, where the 𝑣𝑖’s are words defined as in the paragraph
above:

• •.

𝑢
𝑣1
⋮

𝑣𝑝

Since 𝛿 ⫅ 𝜁, it must contain a path labelled by a word of𝑀. But no 𝑣𝑖 contains
a factor in𝑀, hence it has to be 𝑢 that does. Hence, 𝐾 ⊆ 𝔸∗𝑀𝔸∗. Together
with Equation (IV.2), we get 𝐾 ⊆ 𝔸∗�⋂𝑗 𝐿𝑗�𝔸

∗, which concludes the proof of
Claim IV.5.4.

Overall, we showed that 𝛾1 ⫅ 𝛾2 iff 𝛿 is equivalent to a CRPQ with at
most one atom, which concludes the proof.

Note that the assumption of 𝔸∗𝐿𝑖𝔸∗ = 𝔸∗�⋂𝑗 𝐿𝑗�𝔸
∗ in Proposition IV.5.1

in necessary for the reduction to be correct, otherwise 𝛿()would be equivalent
to

𝛿′() =̂ 𝑥 𝐾−→ 𝑦∧ 𝑥 𝔸∗𝐿𝑖𝔸∗

−−−−−→ 𝑦,

and so we could have 𝔸∗𝐿𝑖𝔸∗ ⊊ 𝐾, implying that (1) 𝐾 ⊈ 𝔸∗𝐿𝑖𝔸∗ and hence
𝛾1 " 𝛾2 but (2) 𝛿 would be equivalent to a CRPQ with a single atom, namely
𝛿″() =̂ 𝑥 𝔸∗𝐿𝑖𝔸∗

−−−−−→ 𝑦.

IV.5.2 Minimization is Harder than Containment

We show that, under some technical conditions, the containment problem
can be reduced to the minimization problem. This allows to transfer known
lower bounds from the containment problem of CRPQ classes. Due to space
constraints we only state the key definitions and lemmas. We first introduce
an intermediary technical property called “canonization”, which ensures the
feasibility of the reduction.

Canonization. We say that an expansion 𝜉 of a CRPQ 𝛾 is non-degenerate if
no atom refinement in 𝜉 was obtained using the empty word.

Fact IV.5.5. If 𝜉 is a non-degenerate expansion of 𝛾 and 𝛾 is fully contracted,
then ‖𝜉‖seg = ‖𝛾‖at.

113

iv. minimization of conjunctive regular path queries

Given a class of CRPQs 𝒬, the 𝒬-canonization problem is the functional
problem taking an alphabet 𝔸 and two Boolean CRPQs ⟨𝛾1, 𝛾2⟩ in 𝒬𝔸, and
outputting an alphabet 𝕄, two other Boolean CRPQs ⟨𝛿1, 𝛿2⟩, in 𝒬𝔸⊔𝕄, such
that:
(Cnz)monotonic: 𝛾1 ⫅ 𝛾2 iff 𝛿1 ⫅ 𝛿2,
(Cnz)str-onto: there exists a non-degenerate 𝐷1 ∈ Exp(𝛿1) s.t., for every 𝐷′

1 ∈
Exp(𝛿1) and 𝑓 ∶ 𝐷′

1
hom−−−→ 𝐷1 we have (i) 𝐷′

1 is non-degenerate, (ii) 𝑓 is
strong onto, and (iii) 𝑓(𝑥) = 𝑥 for every 𝑥 ∈ vars(𝛿1),

(Cnz)non-red: for each 𝐷1 ∈ Exp(𝛿1), for each 𝑥, 𝑦 ∈ vars(𝛿1), there cannot be
an atom refinement in 𝐷1 from 𝑥 to 𝑦 and another path from 𝑥 to 𝑦 in 𝐷1,
disjoint from the atom refinement that share the same label,

(Cnz)contracted: 𝛿1 is fully contracted,
(Cnz)containment: 𝛾2 ⫅ 𝛿2, and
(Cnz)marking: each connected component of 𝛿1 must contain at least one atom

labelled by a language 𝐿 s.t. every word of 𝐿 must contain at least one
letter from 𝕄.
The𝒬-strong canonization problem is defined similarly to the𝒬-canonization

problem, except that (Cnz)str-onto is replaced by the axiom
(SCnz)str-onto: for every non-degenerate 𝐷1 ∈ Exp(𝛿1), every 𝐷′

1 ∈ Exp(𝛿1),
and 𝑓 ∶ 𝐷′

1
hom−−−→ 𝐷1 we have (i) 𝐷′

1 is non-degenerate, (ii) 𝑓 is strong onto,
and (iii) 𝑓(𝑥) = 𝑥 for every 𝑥 ∈ vars(𝛿1),
We show that assuming we can solve the 𝒬-canonization problem (resp.

𝒬-strong canonization problem) this problem, then the CRPQ (resp. UCRPQ)
minimization problem restricted to CRPQs of 𝒬 (resp. to UCRPQs whose
disjuncts are all in 𝒬) is harder than the containment problem over 𝒬.

In the following statement, a 𝒬-canonization oracle (resp. 𝒬-strong can-
onization oracle) is an oracle to any algorithm solving the 𝒬-canonization
problem (resp. 𝒬-strong canonization problem).

Lemma IV.5.6. For any class 𝒬 of CRPQs closed under disjoint conjunction,
there is a polynomial-time algorithm using a 𝒬-canonization oracle (resp.
𝒬-strong canonization oracle) from the containment problem for Boolean
queries of 𝒬 to the CRPQ (resp. UCRPQ) minimization problem restricted
to CRPQs in 𝒬 (resp. UCRPQs whose disjuncts are all in 𝒬). The reduction
also applies under the restriction that the target query must also be in 𝒬.

Once again, we start by giving a proof sketch before giving the full proof.

Proof sketch. The construction reduces some restriction of the containment
problem to some variant of the minimization problem. The main idea is,
given an instance 𝛾1 ⫅? 𝛾2, to build CRPQs 𝛿1 and 𝛿2 with some desirable
properties s.t. the following are equivalent: (i) 𝛾1 ⫅ 𝛾2, (ii) 𝛿1 ⫅ 𝛿2, (iii)
𝛿1 ∧○ 𝛿2 ≡ 𝛿1, where ∧○ denotes the disjoint conjunction (i.e., the conjunction
of atoms of both queries making sure that variables are disjoint), and (iv)
𝛿1 ∧○𝛿2 is equivalent to a CRPQ whose size is at most the size of 𝛿1. Of course,
(ii)⇔ (iii) always holds, as well as (iii)⇒ (iv).

114

iv.5. lower bounds

All the difficulty lies in guaranteeing the converse property: (iv)⇒ (iii).
We will use the constructions 𝛾𝑖 ↦ 𝛿𝑖, given by the canonization problem,
to enforce it while respecting (i)⇔ (ii). The main idea of this approach is to
add some ‘marking’ (with fresh alphabet symbols) of either the variables or
the atoms of 𝛾1 in 𝛿1, ensuring that 𝛿1 has some strong structure implying
that—loosely speaking—any query equivalent to 𝛿1 ∧○𝛿2 must contain 𝛿1 as a
subquery. Using the assumption that 𝛿1 ∧○𝛿2 is equivalent to a CRPQ whose
size is at most the size of 𝛿1, we conclude that in fact 𝛿1 ∧○𝛿2 ≡ 𝛿1, i.e. 𝛿1 ⫅ 𝛿2
and so 𝛾1 ⫅ 𝛾2.

Proof. X Minimization in the class of CRPQs. Let 𝛾1 ⫅? 𝛾2 be an instance
of the containment problem for Boolean queries of 𝒬. We apply the 𝒬-
canonization oracle to obtain a pair ⟨𝛿1, 𝛿2⟩ as in the axioms (Cnz)∗. We then
map the instance 𝛾1 ⫅? 𝛾2 to ⟨𝛿1 ∧○𝛾2, ‖𝛿1‖at⟩.

The reduction works in logarithmic space with a 𝒬-canonization oracle,
and clearly 𝛿1 ∧○𝛿2 ∈ 𝒬 since both 𝛿1 and 𝛿2 are in 𝒬 and 𝒬 is closed under
disjoint conjunction. We need to show that 𝛾1 ⫅ 𝛾2 iff 𝛿1 ∧○𝛾2 is equivalent
to a CRPQ with at most ‖𝛿1‖at atoms.

Claim IV.5.7. If 𝛾1 ⫅ 𝛾2, then 𝛿1 ∧○𝛿2 ≡ 𝛿1 and so 𝛿1 ∧○𝛿2 is equivalent to a
CRPQ with at most ‖𝛿1‖at atoms.

This follows from (Cnz)monotonic. The converse hold for the same reason,
but we actually need a stronger property.

Claim IV.5.8. If 𝛿1 ∧○ 𝛿2 is equivalent to a CRPQ with at most ‖𝛿1‖at atoms,
then 𝛾1 ⫅ 𝛾2.

We write 𝜁 as 𝜁+ ∧○𝜁− where 𝜁+ is the disjoint conjunction of all connected
components of 𝜁 containing an atom whose language contains a word con-
taining a ‘𝕄’-letter, and 𝜁− is the disjoint conjunction of all other components.
We want to show that 𝜁− is actually empty.

Let 𝐷1 be a canonical database of 𝛿1 as in (Cnz)str-onto. Then pick any
canonical database 𝐺2 of 𝛾2. By (Cnz)containment, there exists 𝐷2 ⊨⋆ 𝛿2 s.t.
𝐷2

hom−−−→ 𝐺2. Then 𝐷1 ⊕𝐷2 ⊨⋆ 𝛿1 ∧○ 𝛿2, so from 𝛿1 ∧○ 𝛿2 ≡ 𝜁 it follows that
there exists 𝑍+ ⊨⋆ 𝜁+, 𝑍− ⊨⋆ 𝜁−, 𝐷′

1 ⊨⋆ 𝛿1 and 𝐷′
2 ⊨⋆ 𝛿2 such that we have

homomorphisms

𝐷′
1 ⊕𝐷′

2
𝑓
−→ 𝑍+ ⊕𝑍−

𝑔
−→ 𝐷1 ⊕𝐷2

ℎ
−→ 𝐷1 ⊕𝐺2.

By (Cnz)marking, every connected component of 𝐷′
1 must contain at least

one edge labelled by a letter of 𝕄, and so the homomorphism 𝑓�𝐷′1 ∶ 𝐷
′
1

hom−−−→
𝑍+ ⊕𝑍− is actually a homomorphism from𝐷′

1 to 𝑍+. Note then that (ℎ ∘ 𝑔)�𝑍+
maps 𝑍+ onto 𝐷1 ⊕𝐺2 but since 𝐺2 contains no letter 𝕄, the image of this
homomorphism is included in 𝐷1. Overall, we have homomorphisms

𝐷′
1
𝑖
−→ 𝑍+

𝑗
−→ 𝐷1.

115

iv. minimization of conjunctive regular path queries

By (Cnz)str-onto, 𝑗 ∘ 𝑖 be strong onto and for every 𝑥 ∈ vars(𝛿1), 𝑗(𝑖(𝑥)) = 𝑥.
We claim that for each 𝑥 external in 𝐷′

1, then 𝑖(𝑥) is external. First, since
𝑥 ∈ vars(𝛿1) is external, then 𝑥 ∈ vars(𝛿1) and so 𝑗(𝑖(𝑥)) = 𝑥. Then 𝑗 ∘ 𝑖 is
strong onto and so 𝑗 be also be strong onto. It follows that the in-degree
(resp. out-degree) of 𝑖(𝑥) is lower bounded by the in-degree (resp. out-degree)
𝑗(𝑖(𝑥)) = 𝑥. So, if 𝑥 has in-degree or out-degree at least 2, so does 𝑖(𝑥).
Moreover, if 𝑥 has in-degree (resp. out-degree 0), then so must 𝑖(𝑥) because
otherwise, 𝑗(𝑖(𝑥)) = 𝑥 should also have an incoming edge. Overall, by letting
𝑖[𝐷′

1] be the image of𝐷′
1 by 𝑖, we get that the natural embedding 𝑖[𝐷′

1]
hom−−−→ 𝑍+

satisfies the assumption of Corollary IV.2.12 and so ‖𝑖[𝐷′
1]‖seg ≤ ‖𝑍+‖seg.

Now observe that 𝑖 ∶ 𝐷′
1 → 𝑖[𝐷′

1] is injective on vars(𝛿1) because 𝑗(𝑖(𝑥)) for
any 𝑥 ∈ vars(𝛿1). Moreover, by (Cnz)non-red, 𝑖 cannot identity an atom with
another path of atoms and so 𝐷′

1 is actually isomorphic to 𝑖[𝐷′
1], from which

we get ‖𝑖[𝐷′
1]‖seg = ‖𝛿1‖at and so ‖𝑍+‖seg ≥ ‖𝛿1‖at. By Proposition IV.2.7

‖𝜁+‖at ≥ ‖𝑍+‖seg, and so 𝜁+ has at least ‖𝛿1‖at atoms, but since we assumed
that 𝜁 has at most ‖𝛿1‖at atoms, it follows that 𝜁− is trivial and 𝜁 ≡ 𝜁+.

We are now ready to prove that 𝛿1 ⫅ 𝛿2. Let 𝐷1 ⊨⋆ 𝛿1. Pick any 𝐺2 ⊨⋆

𝛾2. By (Cnz)containment, there exists 𝐷2 ⊨⋆ 𝛿2 s.t. 𝐷2
hom−−−→ 𝐺2. Then since

𝛿1 ∧○𝛿2 ≡ 𝜁+, there exists 𝑍+ ⊨⋆ 𝜁+, 𝐷′
1 ⊨⋆ 𝛿1 and 𝐷′

2 ⊨⋆ 𝛿2 s.t.

𝐷′
1 ⊕𝐷′

2
hom−−−→ 𝑍+

hom−−−→ 𝐷1 ⊕𝐷2
hom−−−→ 𝐷1 ⊕𝐺2.

Because of 𝕄, the homomorphism 𝑍+
hom−−−→ 𝐷1 ⊕𝐺2 must in fact be a homo-

morphism 𝑍+
hom−−−→ 𝐷1, and so by composition we obtain a homomorphism

𝐷′
1 ⊕𝐷′

2
hom−−−→ 𝐷1, which can be restricted to𝐷′

2, yielding𝐷′
2

hom−−−→ 𝐷1. Hence,
𝛿1 ⫅ 𝛿2, and so by (Cnz)monotonic, 𝛾1 ⫅ 𝛾2.

Putting Claims IV.5.7 and IV.5.8 together shows that the reduction is correct.
We now prove that this reduction also works for the other variations of the
problem.

X Minimization in the class of UCRPQs. If we allow 𝜁 to be a UCRPQ, then
Claim IV.5.7 still holds, and we need to adapt Claim IV.5.8. Assume that this
“small” UCRPQ is of the form 𝜁1 ∨ 𝜁2 ∨⋯∨ 𝜁𝑘 where each 𝜁𝑖 has at most
‖𝛿1‖at atoms. We say that a disjunct 𝜁𝑖 is relevant when it has at least one
canonical database 𝑍𝑖 appearing in a pattern of the form

𝐷′
1 ⊕𝐷′

2
hom−−−→ 𝑍𝑖

hom−−−→ 𝐷1 ⊕𝐷2
hom−−−→ 𝐷1 ⊕𝐺2.

for some 𝐷1, 𝐷′
1 ⊨⋆ 𝛿1, 𝐷2, 𝐷′

2 ⊨⋆ 𝛿2 and 𝐺2 ⊨⋆ 𝛾2. Using (SCnz)str-onto on
𝐷1, the same proof as in the case of CRPQs apply. We can then conclude that
w.l.o.g. 𝜁𝑖 ≡ (𝜁𝑖)+ for all relevant disjunct. The proof of 𝛿1 ⫅ 𝛿2—and hence
𝛾1 ⫅ 𝛾2—then goes through as before, which concludes the proof.

X If 𝜁 is restricted to be in 𝒬. Then Claim IV.5.8 still holds. To adapt
Claim IV.5.7, it suffices to remark that 𝛿1 ∈ 𝒬.

Lemma IV.5.9. The strong canonization problem can be solved in non-

116

iv.5. lower bounds

deterministic logarithmic space for the class of all CRPQs, or more generally
for all classes of CRPQs defined by restricting the underlying multigraph class,
provided that this class is closed under disjoint union.

Proof. Given a pair ⟨𝛾1, 𝛾2⟩ of Boolean queries we assume w.l.o.g. that 𝛾1
is fully contracted using Fact IV.2.2—which works in non-deterministic log-
arithmic space—, and we reduce it to the pair ⟨𝛿1, 𝛿2⟩, where 𝛿1 is defined
as

𝛿1() =̂ �
𝛼=𝑥

𝐿−→𝑦∈𝛾1

𝑥 ▷𝛼𝐿◁𝛼−−−−−→ 𝑦

where ▷𝛼 and ◁𝛼 are fresh letters for each atom 𝛼 of 𝛾1, and

𝛿2() =̂ �
𝑥
𝐿−→𝑦∈𝛾2

𝑥 𝜙−1−𝕄[𝐿]−−−−−→ 𝑦,

where 𝛼1, … , 𝛼𝑘 are all the atoms of 𝛾1, 𝕄 =̂ {▷𝛼1 , ◁𝛼1 , … , ▷𝛼𝑘 , ◁𝛼𝑘} and
𝜙−𝕄 ∶ (𝔸 ∪𝕄)∗ → 𝔸∗ is the monoid morphism that maps letters of 𝔸 to
themselves and letters of 𝕄 to the empty word.

In other words, 𝛿1 is similar to 𝛾1 except that it must read the special
symbol ▷𝛼 before satisfying atom 𝛼 ∈ 𝛾1, and read symbol ◁𝛼 after. On other
hand, 𝛿2 is obtained from 𝛾2 by relaxing the constraints: instead of having to
read a path labelled by some language 𝐿, we now must read a path such that,
when we ignore these new symbols ▷𝛼 and ◁𝛼, then it belongs to 𝐿.

We now need to prove that properties (Cnz)∗ and (SCnz)str-onto hold.

Claim IV.5.10. If 𝛾1 ⫅ 𝛾2 then 𝛿1 ∧○𝛿2 ≡ 𝛿1.

Showing that 𝛿1 ∧○ 𝛿2 ≡ 𝛿1 amounts to showing 𝛿1 ⫅ 𝛿2. Let 𝐷1 be a
canonical database of 𝛿1. Consider the canonical database of 𝛾1 obtained by
removing every edge of the form 𝑥 ▷𝛼−−→ 𝑦 or 𝑥 ◁𝛼−−→ 𝑦, and merging variables
𝑥 and 𝑦. Since 𝛾1 ⫅ 𝛾2, there exists a canonical database 𝐺2 of 𝛾2 and a
homomorphism 𝑓∶ 𝐺2 → 𝐺1. We then define a canonical database 𝐷2 of
𝛿2 together with a homomorphism 𝑔∶ 𝐷2 → 𝐷1 as follows: given an atom
refinement

𝑥0
𝑏1−→ 𝑥1

𝑏2−→ ⋯ 𝑏𝑛−→ 𝑥𝑛 in 𝐺2.

we look at its image

𝑓(𝑥0)
𝑏1−→ 𝑓(𝑥1)

𝑏2−→ ⋯ 𝑏𝑛−→ 𝑓(𝑥𝑛) in 𝐺1.

Now some 𝑓(𝑥𝑖)’s might be variables of 𝛾1 and hence this might not a path
in 𝐺1. We let 𝑖1 < … < 𝑖𝑘 denote the indices 𝑖 s.t. 𝑥𝑖 ∈ 𝑉(𝛾1), so that we can

117

iv. minimization of conjunctive regular path queries

split the path in 𝐺1 into multiples atom refinements of atoms of 𝛾1:

𝑓(𝑥0)
𝑏1−→ 𝑓(𝑥1)

𝑏2−→ ⋯ 𝑏𝑖1−−→���������������������������������
end of an atom refinement of 𝛼0

𝑓(𝑥𝑖1)
𝑏𝑖1+1−−−→ 𝑓(𝑥𝑖1+1)

𝑏𝑖1+2−−−→ ⋯ 𝑏𝑖2−−→���������������������������������
atom refinement of 𝛼1

𝑓(𝑥𝑖2)
𝑏𝑖2+1−−−→ 𝑓(𝑥𝑖2+1)

𝑏𝑖2+2−−−→ ⋯

⋯ 𝑏𝑖𝑘−−→ 𝑓(𝑥𝑖𝑘)
𝑏𝑖𝑘+1−−−→ 𝑓(𝑥𝑖𝑘+1)

𝑏𝑖𝑘+2−−−→ ⋯ 𝑏𝑛−→ 𝑓(𝑥𝑛)���
beginning of an atom refinement of 𝛼𝑘

in 𝐺1. For 𝑖 ∈ ⟦1, 𝑘⟧, we let 𝑓(𝑥𝑖𝑗)
𝑟 (resp. 𝑓(𝑥𝑖𝑗)

𝑙) denote the unique variable
of 𝐷1 s.t. there is an edge from 𝑓(𝑥𝑖𝑗) to 𝑓(𝑥𝑖𝑗)

𝑟 labelled by ▷𝛼𝑖 (resp. from
𝑓(𝑥𝑖𝑗)

𝑙 to 𝑓(𝑥𝑖𝑗) labelled by ◁𝛼𝑖−1), we obtain a path

𝑓(𝑥0)
𝑏1−→ 𝑓(𝑥1)

𝑏2−→ ⋯ 𝑏𝑖1−−→���������������������������������
end of an atom refinement of 𝛼0

𝑓(𝑥𝑖1)
𝑙 ◁𝛼0−−→ 𝑓(𝑥𝑖1)

▷𝛼1−−→ 𝑓(𝑥𝑖1)
𝑟

𝑏𝑖1+1−−−→ 𝑓(𝑥𝑖1+1)
𝑏𝑖1+2−−−→ ⋯ 𝑏𝑖2−−→���������������������������������

atom refinement of 𝛼1

𝑓(𝑥𝑖2)
𝑙 ◁𝛼1−−→ 𝑓(𝑥𝑖2)

▷𝛼1−−→ 𝑓(𝑥𝑖2)
𝑟 𝑏𝑖2+1−−−→ 𝑓(𝑥𝑖2+1)

𝑏𝑖2+2−−−→ ⋯

⋯ 𝑏𝑖𝑘−−→ 𝑓(𝑥𝑖𝑘)
𝑙 ◁𝛼𝑘−1−−−−→ 𝑓(𝑥𝑖𝑘)

▷𝛼𝑘−−→ 𝑓(𝑥𝑖𝑘)
𝑟 𝑏𝑖𝑘+1−−−→ 𝑓(𝑥𝑖𝑘+1)

𝑏𝑖𝑘+2−−−→ ⋯ 𝑏𝑛−→ 𝑓(𝑥𝑛)���
beginning of an atom refinement of 𝛼𝑘

in 𝐷1. Hence, we build 𝐷2 by replacing each atom refinement 𝑥0
𝑏1−→ 𝑥1

𝑏2−→
⋯ 𝑏𝑛−→ 𝑥𝑛 in 𝐺2 by

𝑥0
𝑏1−→ 𝑥1

𝑏2−→ ⋯ 𝑏𝑖1−−→ 𝑥𝑙𝑖1
◁𝛼0−−→ 𝑥𝑖1

▷𝛼1−−→ 𝑥′𝑖1
𝑏𝑖1+1−−−→ 𝑥𝑖1+1

𝑏𝑖1+2−−−→ ⋯ 𝑏𝑖2−−→ 𝑥𝑙𝑖2
◁𝛼1−−→ 𝑥𝑖2

▷𝛼2−−→ 𝑥′𝑖2
𝑏𝑖2+1−−−→ 𝑥𝑖2+1

𝑏𝑖2+2−−−→ ⋯ 𝑏𝑖𝑘−−→ 𝑥𝑙𝑖𝑘
◁𝛼𝑘−1−−−−→ 𝑥𝑖𝑘

▷𝛼𝑘−−→ 𝑥′𝑖𝑘
𝑏𝑖𝑘+1−−−→ 𝑥𝑖𝑘+1

𝑏𝑖𝑘+2−−−→ ⋯ 𝑏𝑛−→ 𝑥𝑛,

where 𝑥𝑙𝑖1 , 𝑥
𝑟
𝑖1 , … , 𝑥

𝑙
𝑖𝑘
, 𝑥𝑟𝑖𝑘 are new fresh variables. By construction, 𝐷2 comes

equipped with a homomorphism 𝑔∶ 𝐷2 → 𝐷1 which sends 𝑥𝑖 to 𝑓(𝑥𝑖), 𝑥𝑙𝑖𝑗 to
𝑓(𝑥𝑖𝑗)

𝑙 and 𝑥𝑟𝑖𝑗 to 𝑓(𝑥𝑖𝑗)
𝑟. Since 𝐷2 is—by construction—a canonical database

of 𝛿2, this concludes the proof that 𝛿1 ⫅ 𝛿2.

Claim IV.5.11. If 𝛿1 ⫅ 𝛿2 then 𝛾1 ⫅ 𝛾2.

The construction is dual to Claim IV.5.10 and left to the reader. Both claims
yield (Cnz)monotonic.

We now show that (SCnz)str-onto holds: pick a canonical database𝐷1 ⊨⋆ 𝛿1.
For any 𝐷′

1 ⊨⋆ 𝛿1, if 𝐷′
1

hom−−−→ 𝐷1, then because of the letters in 𝕄, it follows
that for each atom 𝛼𝑖 of 𝛾1, the atom refinement of 𝛼𝑖 in 𝐷′

1 must be sent
bijectively on the atom refinement of 𝛼𝑖 in𝐷1, and so they are equal. It follows
that the homomorphism 𝐷′

1 → 𝐷1 must actually be the identity, and hence
𝐷1 is hom-minimal. The same argument applied to 𝐷′

1 =̂ 𝐷1 shows that the
only homomorphism from 𝐷1 itself is the identity, and so in particular 𝐷′

1 is
a core. Lastly, because of the letters of 𝕄, no atom of 𝛿1 contains the empty
word, and so in particular 𝐷1 must be non-degenerate. Hence, (SCnz)str-onto
holds.

118

iv.5. lower bounds

Since 𝛾1 is fully contracted, so is 𝛿1, which proves (Cnz)contracted. For any
language 𝐿, we have 𝐿 ⊆ 𝜙−1−𝕄[𝐿], and so we have (Cnz)containment. Finally,
(Cnz)non-red and (Cnz)marking trivially hold.

Together with that fact that ⟨𝛾1, 𝛾2⟩ ↦ ⟨𝛿1, 𝛿2⟩ preserves the underlying
multigraphs, this shows that this is a solution to strong canonization problem
for any class of CRPQs defined by restring the underlying class of multigraphs.
Note also that an NFA for𝜙−1−𝕄[𝐿] can be obtained from anNFA for 𝐿 by adding
on every state a self-loop labelled by every possible letter of 𝕄 and hence,
this algorithm can be implemented in logarithmic space.

Note however that if 𝐿 is a simple regular expression, then 𝜙−1−𝕄[𝐿] does
not need to be. Hence, the construction above does not work for CRPQs over
positive simple regular expressions.

Lemma IV.5.12. The strong canonization problem can be solved in polyno-
mial time for the class of CRPQs over positive simple regular expressions.

Given a CRPQ 𝛾, we say that an atom 𝑥 𝐿−→ 𝑦 is locally redundant if there
exists a path of atoms 𝑧0

𝐿1−→ 𝑧1
𝐿2−→ ⋯ 𝐿𝑛−→ 𝑧𝑛 in which 𝑥 𝐿−→ 𝑦 does not occur,

and with 𝑧0 = 𝑥 and 𝑧𝑛 = 𝑥 where 𝐿1𝐿2⋯𝐿𝑛 ⊆ 𝐿.

Proof of Lemma IV.5.12. Fix a pair ⟨𝛾1, 𝛾2⟩ of CRPQs. From 𝛾1, we start by
picking a locally redundant atom (if any), and remove it. We iterate this pro-
cess, until we get a CRPQ with no locally redundant atom 𝛾′1. By construction,
it is equivalent to 𝛾1.13 Moreover, 𝛾′1 can be computed in polynomial time. 13 Note however that in general 𝛾′1

cannot be obtained by only keeping
all atoms of 𝛾1 which are not locally
redundant: for instance, if 𝛾1() =
𝑥 𝐿−→ 𝑦 ∧ 𝑥 𝐿−→ 𝑦, then all atoms are
locally redundant. Instead, we need
to remove such atoms one after the
other.

We then refine in 𝛾′1 each atom so that each atom is either labelled by 𝑎 or 𝑎+

for some 𝑎 ∈ 𝔸.
We then define ⟨𝛿1, 𝛿2⟩, where 𝛿2 =̂ 𝛾2 and

𝛿1 = � �
𝑥
𝐿−→𝑦∈𝛾′1

𝑥 𝐿−→ 𝑦� ∧ � �
𝑥∈𝑉(𝛾′1)

𝑥 ▿𝑥−→ 𝑥�,

and we let 𝕄 =̂ {▿𝑥 ∣ 𝑥 ∈ 𝑉(𝛾′1)}.
Next, we show that (Cnz)monotonic holds: if 𝛾1 ⫅ 𝛾2 then 𝛿1 ⫅ 𝛾′1 ≡ 𝛾1 ⫅

𝛾2 = 𝛿2, and dually if 𝛿1 ⫅ 𝛿2 then let 𝐺1 ⊨⋆ 𝛾′1, and let 𝐷1 be the associated
canonical database. Since 𝛿1 ⫅ 𝛿2, there exists 𝐷2 ⊨⋆ 𝛿2 s.t. 𝐷2

hom−−−→ 𝐷1
but since 𝐷2 contains no letter from 𝕄, we actually get a homomorphism
𝐷2

hom−−−→ 𝐺1, and so 𝛾′1 ⫅ 𝛿2 i.e. 𝛾1 ⫅ 𝛾2.
For (SCnz)str-onto, by definition of positive simple regular expressions, no

language labelling an atom of 𝛿1 contains the empty word, and hence every
canonical database of 𝛿1 is non-degenerate. Then, let 𝑓∶ 𝐷′

1 → 𝐷1 be a
homomorphism between canonical databases of 𝛿1. Because of the letters
of 𝕄, 𝑓 must send 𝑥 ∈ 𝑉(𝛿1) ⊆ 𝑉(𝐷1) onto 𝑥 ∈ 𝑉(𝐷′

1). We then claim that
𝑓 is strong onto. Let 𝛼 =̂ 𝑥 𝐿−→ 𝑦 be an atom of 𝛿1. We consider its atom
refinement in 𝐷1, and we want to show that it is included in the image of the
atom refinement of 𝛼 in 𝐷′

1:
• if 𝐿 = {▿𝑥}, this is trivial;

119

iv. minimization of conjunctive regular path queries

• if 𝐿 = {𝑎} for some letter 𝑎, then since 𝛼 is not locally redundant in 𝛾′1,
there are no other 𝑎-edge from 𝑥 to 𝑦 in 𝐷1 (or 𝐷′

1), and so the unique
𝑎-edge from 𝑥 to 𝑦 in 𝐷′

1 must be sent on the unique 𝑎-edge from 𝑥 to 𝑦 in
𝐷1;

• if 𝐿 = 𝑎+ for some letter 𝑎, then the atom refinement of 𝛼 in𝐷′
1, say 𝑥

𝑎𝑘−→ 𝑦
(𝑘 ≥ 1) is sent via 𝑓 on a path from 𝑥 to 𝑦 in 𝐷1. If the atom refinement of
𝛼 in 𝐷1 is included in this path, we are done; otherwise, when lifting this
path to 𝛿1, we would obtain a path of atoms 𝑥 𝐿1−→ ⋯ 𝐿𝑛−→ 𝑦 s.t. 𝑎𝑘 ∈ 𝐿1⋯𝐿𝑛.
By definition of positive simple regular expressions, all 𝐿𝑖’s must be either
𝑎 or 𝑎+, and hence in all cases 𝐿1⋯𝐿𝑛 ⊆ 𝑎+, contradicting that 𝛼 is not
locally redundant in 𝛾′1.

Thus, we have (SCnz)str-onto.
Similarly, (Cnz)non-red holds because all atoms of 𝛾′1 are labelled by 𝑎 or

𝑎+ and we removed locally redundant atoms. Thanks to the self-loops, 𝛿1 is
fully contracted and so (Cnz)contracted holds. Moreover, (Cnz)containment holds
trivially since 𝛾2 = 𝛿2, and so does (Cnz)marking by definition of 𝛿1.

Motivated by Lemma IV.5.6 we show that several reasonable classes ad-
mit a polynomial-time algorithm for the strong canonization problem—see
Lemmas IV.5.9 and IV.5.12.

Corollary IV.5.13. The CRPQ and UCRPQ minimization problems are:
1. ExpSpace-hard, even if restricted to queries of path-width at most 1,
2. PSpace-hard when restricted to forest-shaped CRPQs,14 14 By forest-shaped CRPQs we mean

queries whose underlying graph has
no undirected cycle.

3. Π𝑝
2 -hard when restricted to CRPQs over positive simple regular expres-

sions.
All hardness results are under polynomial-time reductions.

Proof. From Lemmas IV.5.6, IV.5.9 and IV.5.12 we can derive the stated hard-
ness results when combined with known hardness results for the contain-
ment problem: Item 1 follows from the ExpSpace lower bound of [Fig20,
Lemma 8] (or its strengthening Proposition IV.5.1). Item 2 follows from the
trivial PSpace lower bound from regular language containment which is also
the lower bound for one-atom CRPQs. Item 3 follows from the known Π𝑝

2 -
lower bound for CRPQ(SRE) queries implied by [Fig+20, Theorem 4.2].

IV.6 Discussion

Several open problems are left by our work, more prominently, the com-
plexity gap for CRPQ minimization. Below we discuss further avenues for
future research.

IV.6.1 Variable minimization

120

iv.6. discussion

Another approach for an algorithm for query answering of a (U)CRPQs 𝛾
on a graph database𝐺 is by first guessing a variable assignment 𝑓 ∶ vars(𝛾) →
𝑉(𝐺) and then checking, for each atom 𝑥 𝐿−→ 𝑦 of 𝛾, that there is a path in 𝐺
from 𝑓(𝑥) to 𝑓(𝑦) with label in 𝐿.

This implementation approach privileges minimizing the number of vari-
ables as opposed to the number of atoms of a (U)CRPQ, and gives rise to
the corresponding variable-minimization problem(s). From a practical
perspective, as already mentioned in the Introduction, systems commonly
evaluate CRPQs via join algorithms. Recent worst-case optimal joins algo-
rithms work by ordering the variables and assigning potential values to these,
and hence the number of variables may also be a relevant parameter in these
cases [CRV23; Vrg+24].

Variable-minimization problem for CRPQs (resp. for UCRPQ)
Input : A finite alphabet 𝔸, a CRPQ (resp. UCRPQ) 𝛾 over 𝔸

and 𝑘 ∈ ℕ.
Question: Does there exists a CRPQ (resp. UCRPQ) 𝛿 over 𝔸 with

at most 𝑘 variables (resp. whose every CRPQ has at most
𝑘 variables) s.t. 𝛾 ≡ 𝛿?

As before, a (U)CRPQ is variable minimal if there is no equivalent (U)CRPQ
smaller in the number of variables.

It is worth observing that for conjunctive queries (and for tree patterns)
minimizing the number of variables or minimizing the number of atoms is
equivalent: a query is minimal in the number of variables iff it is minimal in
the number of atoms. However, for CRPQs and UCRPQs it is not: 𝛾(𝑥, 𝑦) =
𝑥 𝑎−→ 𝑦∧ 𝑥 𝑎 + 𝑏−−−→ 𝑦 is variable minimal, but it is not (atom) minimal since it is
equivalent to 𝛾′(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑦. We further conjecture that there are (atom)
minimal CRPQs which are not variable minimal.

Conjecture IV.6.1. There exist (atom) minimal CRPQs which are not variable
minimal.

By adaptations of the algorithms of Sections IV.3 and IV.4 we can derive
some upper bounds, which are likely to be sub-optimal.

Theorem IV.6.2. The variable-minimization problem for CRPQs is in
4ExpSpace and for UCRPQs in 2ExpSpace. Both problems are ExpSpace-hard.

Proof. For the case of CRPQ variable-minimization problem, it suffices to
observe, in the proof of Lemma IV.3.2, that since each NFA of the proof has
size double-exponential, there there cannot be more than a triply-exponential
number of distinct NFA, and hence that the underlying multigraph of queries
to be considered has a triply-exponential number of edges. Thus, there are
‘only’ a quadruply-exponential number of such triply-exponential queries. For
each such query we test if it is equivalent to the original query in 4ExpSpace.

For the case of UCRPQ variable-minimization problem, let 𝒞𝑘 be the
(infinite) set of multigraphs having at most 𝑘 vertices. Via the same argument

121

iv. minimization of conjunctive regular path queries

as in the proof of Lemma IV.4.6, we obtain that each CRPQ(𝒞𝑘) in the union
of CRPQs expressing App∞𝒞𝑘

(Γ) = App≤𝒪(‖Γ‖at⋅𝑟Γ‖𝒞‖at)
𝒞𝑘

(Γ) has atoms consisting
in a concatenation of at most 𝒪(‖Γ‖at ⋅ ‖𝒞‖at) sublanguages of Γ. Hence,
there cannot be more than 2𝒪(‖Γ‖at⋅‖𝒞‖at) distinct atoms between two variables,
and App≤𝒪(‖𝛾‖at⋅𝑟Γ⋅‖𝒞‖at)

𝒞𝑘
(Γ) ≡ App≤𝒪(‖Γ‖at⋅𝑟Γ‖𝒞‖at)

𝒞′𝑘
(Γ) for 𝐶′𝑘 being the finite

subclass of 𝒞𝑘 having graphs with no more than 2𝒪(‖Γ‖at⋅‖𝒞‖at) parallel edges.
Hence, there is a double-exponential number of exponential queries to test
for equivalence with Γ, which yields a 2ExpSpace upper bound.

The lower bounds follow by a similar idea to Theorem IV.5.2 and can be
found in Section IV.A.

IV.6.2 Tree patterns

We believe that the techniques of Section IV.4 should also yield a method to
compute maximal under-approximations for unions of tree patterns, as well
as aΠ𝑝

2 upper bound for the minimization problem of unions of tree patterns,
contrasting with theΣ𝑝

2 -completeness of minimization of tree patterns proven
by Czerwiński, Martens, Niewerth & Parys [CMNP18, Theorem 3.1].

A tree pattern—see e.g. [CMNP18, §2.2]—over node variables 𝔸 is a directed
tree, whose nodes have a label from 𝔸⊔ {∗}, and whose edges are partition
into simple edges and transitive edges.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Minimizing Conjunctive Regular Path !eries 35

→

𝐿 → 𝑀

𝑁

(a) A tree pa"ern 𝑂 . Double arrows represent tran-
sitive edges.

•

• • •

•

↭ ↭
+ ↭

𝐿

↭
+

𝑀

𝑁

(b) Its encoding Enc(𝑂) as a CRPQ.

Fig. 4. Encoding a tree pa"ern into a CRPQ.

consisting in a concatenation of at most 𝑃 (↑ω↑at · ↑C↑at) sublanguages of ω. Hence, there cannot
be more than 2𝑂 (↑ω↑at ·↑C ↑at) distinct atoms between two variables, and App↫𝑂 (↑𝑃 ↑at ·𝑄ω ·↑C ↑at)C𝐿 (ω) ↓
App↫𝑂 (↑ω↑at ·𝑄ω ↑C ↑at)C↔

𝐿
(ω) for 𝑄↔

𝑅 being the !nite subclass of C𝑅 having graphs with no more than
2𝑂 (↑ω ↑at ·↑C ↑at) parallel edges. Hence, there is a double-exponential number of exponential queries
to test for equivalence with ω, which yields a 2ExpSpace upper bound.

The lower bounds follows by a similar idea as Theorem 6.2 and can be found in Theorem E.3 of
the Appendix. ↬

G TREE PATTERNS
A tree pattern—see e.g. [6, §2.2]—over node variables A is a directed tree, whose nodes have a label
from A ↗ {→}, and whose edges are partition into simple edges and transitive edges.

We encode a tree pattern 𝑂 into a CRPQ over A ↗ {↭}, denoted by Enc(𝑂), obtained as follows:
• we start from the underlying tree of the tree pattern, and replace simple edges by an atom
• ↭↘≃ •, and transitive edges by an atom • ↭+↘↘≃ •;

• for any node 𝑅 with a node label 𝐿 ⇐ A, we add an atom 𝑅 𝐿↘≃𝑅 ;
• for any node with a wildcard label →, we do not add any atom.

See Figure 4 for an example. Note that this encoding is injective.

P!"#"$%&%"’ G.1. Given two tree patterns 𝑂1, 𝑂2 over A, the following are equivalent:
• 𝑂1 ⊜ 𝑂2 as tree patterns—in the sense of [6, De!nition 2.2], and
• Enc(𝑂1) ⊜ Enc(𝑂2) as CRPQs.

P!""($)*&+,. This follows from the characterization of containment for tree patterns using
“canonical tree models”—see [6, §4.2]16—and the characterization of containment for CRPQs via
canonical databases (a.k.a. expansions)—see Proposition 2.1. ↬

16Note however that the authors assume the set of labels to be in!nite, and label ‘→’-nodes by 𝑆-nodes where 𝑆 is a new
label: this assumption can be removed by allowed unlabelled nodes in the model.

, Vol. 1, No. 1, Article . Publication date: December 2024.

(a) A tree pattern 𝜏. Dou-
ble arrows represent tran-
sitive edges.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Minimizing Conjunctive Regular Path !eries 35

→

𝐿 → 𝑀

𝑁

(a) A tree pa"ern 𝑂 . Double arrows represent tran-
sitive edges.

•

• • •

•

↭ ↭
+ ↭

𝐿

↭
+

𝑀

𝑁

(b) Its encoding Enc(𝑂) as a CRPQ.

Fig. 4. Encoding a tree pa"ern into a CRPQ.

consisting in a concatenation of at most 𝑃 (↑ω↑at · ↑C↑at) sublanguages of ω. Hence, there cannot
be more than 2𝑂 (↑ω↑at · ↑C ↑at) distinct atoms between two variables, and App↫𝑂 (↑𝑃 ↑at ·𝑄ω ·↑C ↑at)C𝐿 (ω) ↓
App↫𝑂 (↑ω↑at ·𝑄ω ↑C ↑at)C↔

𝐿
(ω) for 𝑄↔

𝑅 being the !nite subclass of C𝑅 having graphs with no more than
2𝑂 (↑ω ↑at ·↑C ↑at) parallel edges. Hence, there is a double-exponential number of exponential queries
to test for equivalence with ω, which yields a 2ExpSpace upper bound.

The lower bounds follows by a similar idea as Theorem 6.2 and can be found in Theorem E.3 of
the Appendix. ↬

G TREE PATTERNS
A tree pattern—see e.g. [6, §2.2]—over node variables A is a directed tree, whose nodes have a label
from A ↗ {→}, and whose edges are partition into simple edges and transitive edges.

We encode a tree pattern 𝑂 into a CRPQ over A ↗ {↭}, denoted by Enc(𝑂), obtained as follows:
• we start from the underlying tree of the tree pattern, and replace simple edges by an atom
• ↭↘≃ •, and transitive edges by an atom • ↭+↘↘≃ •;

• for any node 𝑅 with a node label 𝐿 ⇐ A, we add an atom 𝑅 𝐿↘≃𝑅 ;
• for any node with a wildcard label →, we do not add any atom.

See Figure 4 for an example. Note that this encoding is injective.

P!"#"$%&%"’ G.1. Given two tree patterns 𝑂1, 𝑂2 over A, the following are equivalent:
• 𝑂1 ⊜ 𝑂2 as tree patterns—in the sense of [6, De!nition 2.2], and
• Enc(𝑂1) ⊜ Enc(𝑂2) as CRPQs.

P!""($)*&+,. This follows from the characterization of containment for tree patterns using
“canonical tree models”—see [6, §4.2]16—and the characterization of containment for CRPQs via
canonical databases (a.k.a. expansions)—see Proposition 2.1. ↬

16Note however that the authors assume the set of labels to be in!nite, and label ‘→’-nodes by 𝑆-nodes where 𝑆 is a new
label: this assumption can be removed by allowed unlabelled nodes in the model.

, Vol. 1, No. 1, Article . Publication date: December 2024.

(b) Its encoding Enc(𝜏) as a CRPQ.

Figure IV.4: Encoding a tree pattern
into a CRPQ.

We encode a tree pattern 𝜏 into a CRPQ over 𝔸⊔ {▿}, denoted by Enc(𝜏),
obtained as follows:
• we start from the underlying tree of the tree pattern, and replace simple

edges by an atom • ▿−→ •, and transitive edges by an atom • ▿+−−→ •;
• for any node 𝑥 with a node label 𝑎 ∈ 𝔸, we add an atom 𝑥 𝑎−→ 𝑥;
• for any node with a wildcard label ∗, we do not add any atom.
See Figure IV.4 for an example. Note that this encoding is injective.

Proposition IV.6.3. Given two tree patterns 𝜏1, 𝜏2 over 𝔸, the following are
equivalent:
• 𝜏1 ⫅ 𝜏2 as tree patterns—in the sense of [CMNP18, Definition 2.2], and
• Enc(𝜏1) ⫅ Enc(𝜏2) as CRPQs.

Proof sketch. This follows from the characterization of containment for tree

122

iv.6. discussion

patterns using “canonical tree models”—see [CMNP18, §4.2]15—and the char- 15 Note however that the authors as-
sume the set of labels to be infinite,
and label ‘∗’-nodes by 𝑧-nodes where
𝑧 is a new label: this assumption can
be removed by allowed unlabelled
nodes in the model.

acterization of containment for CRPQs via canonical databases (a.k.a. expan-
sions)—see Proposition III.2.12.

We do not fully understand the relation between tree pattern minimization
and CRPQminimization, and conjecture that this encoding actually preserves
minimality, but we have failed so far to prove this.

Conjecture IV.6.4. If a tree pattern is minimal among tree patterns, then its
encoding as a CRPQ should also be minimal among CRPQs, up to contracting
internal variables.

123

iv. minimization of conjunctive regular path queries

Appendices

IV.A Lower Bounds for Variable Minimization

IV.A.1 Equivalence with a Single Variable

Theorem IV.A.1. There is a fixed alphabet s.t. the problem of, given a
Boolean CRPQ on this alphabet with only five variables is equivalent to a
Boolean CRPQ with a single variable is ExpSpace-hard.

Proof. We use same idea as in Theorem IV.5.2. We reduce the problem of
Proposition IV.5.1 to the instance 𝛿, where

𝑥

𝛿() = • •,

• •

▷

▿

𝔸∗

𝐾
◁

𝐿1
⋮

𝐿𝑝

𝔸∗

where ▷, ▿ and ◁ are new symbols. Note that despite being named, variable
𝑥 is also existentially quantified.

Claim IV.A.2. If 𝛾1 ⫅ 𝛾2 then 𝛿 ≡ 𝛾′1 where 𝛾′1() =̂ 𝑥
▷𝐾◁−−−→ 𝑥∧ 𝑥 ▿−→ 𝑥.

If 𝛾1 ⫅ 𝛾2 then any word of 𝐾 contains a factor which belongs to ⋂𝑗 𝐿𝑗
and so 𝛾′1 ⫅ 𝛿. The converse 𝛿 ⫅ 𝛾′1 always holds.

Claim IV.A.3. Conversely, if 𝛿 is equivalent to a Boolean CRPQ with a single
variable, then 𝛾1 ⫅ 𝛾2.

Let 𝜁() = ⋀𝑛
𝑖=0 𝑥

𝑀𝑖−−→ 𝑥 be a single-variable Boolean CRPQ that is equivalent
to 𝛿.

We first claim that there is some 𝑖 ∈ ⟦0, 𝑛⟧ s.t. 𝑀𝑖 = {▿}. Every canonical
database of 𝛿 contains a ▿-self loop and so from 𝜁 ⫅ 𝛿 it follows that any
canonical database of 𝜁 contains a ▿-self loop, which in turns implies that
𝑀𝑖 = {▿} for some 𝑖. W.l.o.g., assume that𝑀0 = {▿}.

Observe that any evaluation map from 𝜁 to a canonical database of 𝛿 must
send 𝑥 ∈ 𝜁 to 𝑥 ∈ 𝛿 because of the ▿-self loop, and conversely, any evaluation
map from 𝛿 to a canonical database of 𝜁 must send 𝑥 ∈ 𝛿 to 𝑥 ∈ 𝜁.

We remove from 𝜁 all atoms 𝑥 𝑀𝑖−−→ 𝑥 s.t. 𝑖 ≠ 0 and𝑀𝑖 ∩ ▿∗ ≠ ∅. Thanks
to the ▿-self loop, this transformation preserve the semantics of 𝜁. More
generally, if𝑀𝑖 contains a word in which the letter ‘▿’ occurs, we get remove
the atom associated to 𝑀𝑖 altogether. The query obtained 𝜁′ is clearly s.t.
𝜁 ⫅ 𝜁′, but dually for any canonical database𝐺𝜁′ of 𝜁′, extend it to a canonical
database 𝐺𝜁 of 𝜁 by picking, for any atom that was removed, any word
containing the letter ‘▿’. Since 𝜁 ⫅ 𝛿, there is an evaluation map from 𝛿 to 𝐺𝜁.
Now the atoms of 𝛿 except the ▿-self loop do not use the letter ▿, and so it

124

iv.a. lower bounds for variable minimization

follows that the evaluation map from 𝛿 to 𝐺𝜁 actually yields an evaluation
map from 𝛿 to 𝐺𝜁′ . Hence, 𝜁′ ⫅ 𝛿 and thus 𝜁′ ≡ 𝛿.

The same argument works for atoms containing a word that does not
start with ◁, or that does not end ▷, or that contain strictly more than one
occurrence of these symbols. Overall, it implies that w.l.o.g. 𝜁 is equivalent to

𝑥 ▿−→ 𝑥∧
𝑚
�
𝑗=1
𝑥 ▷𝑁𝑗◁−−−−→ 𝑥

where 𝑚 ≥ 0 and the 𝑁𝑗’s are languages over 𝔸.
Assume now, by contradiction, that for all 𝑗 ∈ ⟦1,𝑚⟧ s.t. 𝑁𝑗 ⊈ 𝐾 ∩

𝔸∗�⋀𝑖 𝐿𝑖�𝔸
∗. Pick for each 𝑗 a word 𝑢𝑗 witnessing this. The canonical

database of 𝜁 induced by these words ⟨𝑛1, … , 𝑛𝑚⟩, namely

𝑥 ▿−→ 𝑥∧
𝑚
�
𝑗=1
𝑥 ▷𝑛𝑗◁−−−→

must satisfy 𝛿. But this implies that at least one 𝑛𝑗 must belong to 𝐾 ∩
𝔸∗�⋂𝑖 𝐿𝑖�𝔸

∗. Contradiction.
In fact, a argument similar to what we claimed before shows that we can

remove all atoms s.t. 𝑁𝑗 ⊈ 𝐾∩𝔸∗�⋂𝑖 𝐿𝑖�𝔸
∗ without changing the semantics.

Hence, w.l.o.g., for each 𝑗, we have 𝑁𝑗 ⊆ 𝐾 ∩𝔸∗�⋂𝑖 𝐿𝑖�𝔸
∗.

We then claim that each word of 𝐾 must belong to all 𝑁𝑗. Indeed, let 𝑢 be
a word of 𝐾. Let 𝑣𝑖 be a word in 𝐿𝑖 ∖𝔸∗�⋂𝑘 𝐿𝑘�𝔸

∗—recall that such words
exist by an assumption of Proposition IV.5.1—and consider the canonical
database of 𝛿 obtained by expanding 𝐾 into 𝑢 and 𝐿𝑖 into 𝑣𝑖. Now 𝛿 ⫅ 𝜁 so
this database must satisfy 𝜁. Hence, for each 𝑗, 𝑁𝑗 must contain one word
among 𝑢, 𝑣1, … , 𝑣𝑚. It cannot be any 𝑣𝑖 since otherwise we would have
𝑣𝑖 ∈ 𝑁𝑗 ⊆ 𝐾 ∩𝔸∗�⋂𝑘 𝐿𝑘�𝔸

∗ ⊆ 𝔸∗�⋂𝑘 𝐿𝑘�𝔸
∗, which is a contradiction.

And so 𝑢 ∈ 𝑁𝑗. Therefore, we have

𝐾 ⊆�
𝑗
𝑁𝑗 ⊆ 𝐾 ∩𝔸∗��

𝑖
𝐿𝑖�𝔸∗

from which it follows that 𝐾 ⊆ �⋂𝑘 𝐿𝑘� and hence 𝛾1 ⫅ 𝛾2.
Overall, Claims IV.A.2 and IV.A.3 imply that 𝛾1 ⫅ 𝛾2 iff it is equivalent to

a CRPQ with a single variable, in which case it is actually equivalent to

𝛾′1() =̂ 𝑥
▷𝐾◁−−−→ 𝑥∧ 𝑥 ▿−→ 𝑥,

which concludes the correctness of the reduction.

IV.A.2 Variable Minimization is Harder than Containment

We say that the class is closed under disjoint conjunction if 𝛾 ∈ 𝒬𝔸 and 𝛿 ∈ 𝒬𝔹

imply 𝛾 ∧○ 𝛿 ∈ 𝒬𝔸∪𝔹.
Lastly, we say that the class is closed under variable marking if one of the

125

iv. minimization of conjunctive regular path queries

three following properties holds:
(VM)loop for any 𝛾 ∈ 𝒬𝔸, if 𝑦 is a variable of 𝛾, if 𝑎 ∉ 𝔸, then 𝛾′ =̂ 𝛾∧ 𝑦 𝑎−→ 𝑦

is in 𝒬𝔸⊔{𝑎}, or
(VM)out for any 𝛾 ∈ 𝒬𝔸, if 𝑦 is a variable of 𝛾, if 𝑎 ∉ 𝔸, then 𝛾′ =̂ 𝛾∧ 𝑦 𝑎−→ 𝑦′

is in 𝒬𝔸⊔{𝑎}, where 𝑦′ is a new variable not occurring in 𝛾, or
(VM)in for any 𝛾 ∈ 𝒬𝔸, if 𝑦 is a variable of 𝛾, if 𝑎 ∉ 𝔸, then 𝛾′ =̂ 𝛾 ∧ 𝑦′ 𝑎−→ 𝑦

is in 𝒬𝔸⊔{𝑎}, where 𝑦′ is a new variable not occurring in 𝛾.
We will sometimes write 𝛾 ∈ 𝒬 to mean that 𝛾 ∈ 𝒬𝔸 for some alphabet 𝔸.

Fact IV.A.4. Any class defined by restricting the class of languages allowed
to label the atoms is both closed under disjoint conjunction and closed under
variable marking, assuming that languages of the form {𝑎} are allowed, where
𝑎 is a single letter.

Theorem IV.A.5. For any class of CRPQs closed under disjoint conjunction
and closed under variable marking 𝒬, there is a polynomial-time reduction
from the containment problem for Boolean queries of 𝒬 to the CRPQ
minimization problem restricted to queries of 𝒬. The same bound applies if
we add the constraint that the target CRPQ must also belong to 𝒬.

Say that a CRPQ is degenerate if it contains an atom labelled the language
{𝜀}. Equivalently, it is non-degenerate if it has at least one canonical database
which is non-degenerate.

Fact IV.A.6. One can turn a degenerate CRPQ into a non-degenerate one
by iteratively identifying variables adjacent to an atom {𝜀}−−→. This can be
implemented in polynomial time.

Proof of Theorem IV.A.5. Weassume for now that𝒬 satisfies the axiom (VM)loop.
Given an instance 𝛾1() ⫅? 𝛾2() of the containment problem for Boolean
queries of 𝒬, we assume w.l.o.g. that 𝛾1 is non-degenerate using Fact IV.A.6,
and we reduce it to the instance ⟨𝛿1 ∧○𝛾2, ‖𝛿1‖var⟩, where 𝛿1 is defined as:

𝛿1() =̂ 𝛾1 ∧ �
𝑥∈𝑉(𝛾1)

𝑥 ▿𝑥−→ 𝑥

where ▿𝑥 is a fresh letter for each 𝑥 ∈ 𝑉(𝛾1). The reduction works clearly in
logarithmic-space, and clearly 𝛿1 ∧○𝛾2 ∈ 𝒬 since 𝒬 is closed under disjoint
conjunction and (VM)loop. Moreover, for it to be correct we need to show that
𝛾1 ⫅ 𝛾2 iff 𝛿1 ∧○𝛾2 is equivalent to a CRPQ with at most ‖𝛿1‖var variables.

Claim IV.A.7. If 𝛾1 ⫅ 𝛾2 then 𝛿1 ∧○𝛾2 ≡ 𝛿1.

Indeed, 𝛾1 ⫅ 𝛾2 implies 𝛿1 ⫅ 𝛾1 ⫅ 𝛾2 and so 𝛿1 ∧○𝛾2 ≡ 𝛿1.
Actually this property is an “if and only if”. For the converse, we will prove

a stronger statement.

Claim IV.A.8. If 𝛿1 ∧○𝛾2 is equivalent to a CRPQwith at most ‖𝛿1‖var variables,
then 𝛾1 ⫅ 𝛾2.

Let 𝜁 be a CRPQ with at most ‖𝛿1‖var variables that is equivalent to 𝛿1 ∧○𝛾2.

126

iv.a. lower bounds for variable minimization

We claim first that for each 𝑥 ∈ 𝑉(𝜁) there is a unique variable in 𝜁with a ▿𝑥-
self-loop. Indeed, consider any canonical database 𝑍 of 𝜁: since 𝜁 ⫅ 𝛿1 ∧○𝛾2,
there exists a canonical database 𝐷1 of 𝛿1 and 𝐺2 of 𝛾2 s.t. 𝐷1 ⊕𝐺2

hom−−−→ 𝑍
where ⊕ denotes the disjoint union. Since 𝐷1 contains a ▿𝑥-self loop for each
𝑥 ∈ 𝑉(𝛾1), so does 𝑍. Since this property holds for every 𝑍, it follows that 𝜁
must have a self-loop atom labelled by the singleton language {▿𝑥} for each
𝑥 ∈ 𝑉(𝛾1).

Now observe that no variable of 𝜁 can be labelled by two ▿𝑥-self-loops with
𝑥 ∈ 𝑉(𝛾1). Indeed, 𝛾1 is non-degenerate, and so 𝛿1 is also non-degenerate,
and so there exists a canonical database 𝐷1 of 𝛿1 which is non-degenerate.
Then, pick any canonical database 𝐺2 of 𝛾2. 𝐷1 ⊕𝐺2 is a canonical database
of 𝛿1 ∧○𝛾2, which is equivalent to 𝜁, so there is an evaluation map from 𝜁 to
𝐷1 ⊕𝐺2. If a variable of 𝜁 had both a ▿𝑥- and a ▿𝑦-self-loop for 𝑥 ≠ 𝑦 ∈ 𝑉(𝛾1),
then so would either 𝐷1 or 𝐺2. 𝐺2 contains no such letters, and so it would
have to be 𝐷1. This contradicts the definition of 𝐷1. Hence, no variable of 𝜁
can be labelled by two ▿𝑥-self-loops. Together with the previous paragraph
and the fact that 𝜁 has at most ‖𝛿1‖var = ‖𝛾1‖var variables, it follows that we
can assume w.l.o.g.—up to renaming the variables of 𝜁—that 𝑉(𝜁) = 𝑉(𝛾1)
and for each 𝑥 ∈ 𝑉(𝛾1), 𝑥

▿𝑥−→ 𝑥 is an atom of 𝜁. Moreover, this is the only
self-loop in 𝜁 labelled by {▿𝑥}, and for any self-loop atom 𝑥 𝐿−→ 𝑥 we cannot
have ▿𝑦 ∈ 𝐿 for any 𝑦 ≠ 𝑥 ∈ 𝑉(𝛾1).

We are now ready to prove that 𝛾1 ⫅ 𝛾2. Let 𝐺1 be a canonical database
of 𝛾1, and let 𝐷1 be the associated canonical database of 𝛿1—it is obtained
by adding an ▿𝑥-self-loop on every 𝑥 ∈ 𝑉(𝛾1). Pick any canonical database
𝐺2 of 𝛾2. Since 𝛿1 ∧○ 𝛾2 ⫅ 𝜁, there exists a canonical database 𝑍 of 𝜁 s.t.
𝑍 hom−−−→ 𝐷1 ⊕𝐺2. But then, since 𝜁 ⫅ 𝛿1 ∧○𝛾2, there exists 𝐷′

1 and 𝐺′2, which
are canonical databases of 𝛿1 and 𝛾2, respectively, s.t.

𝐷′
1 ⊕𝐺′2

hom−−−→ 𝑍 hom−−−→ 𝐷1 ⊕𝐺2.

Restrict this homomorphism to 𝐺′2: we obtain

𝐺′2
hom−−−→ 𝑍 hom−−−→ 𝐷1 ⊕𝐺2.

Now note that, because of the previous paragraph, the homomorphism 𝑍 hom−−−→
𝐷1 ⊕𝐺2 must map 𝑥 ∈ 𝑉(𝑍) to 𝑥 ∈ 𝑉(𝐷1)—because of the ▿𝑥-self-loop. Since
𝐷1 ⊕𝐺2 is a disjoint union, it follows that image of this homomorphism is
actually included in 𝐷1, and so obtain a homomorphism

𝐺′2
hom−−−→ 𝑍 hom−−−→ 𝐷1.

Now of course ▿𝑥-self-loop will occur in the image of any homomorphism
𝑍 hom−−−→ 𝐷1. However, in the composition 𝐺′2

hom−−−→ 𝑍 hom−−−→ 𝐷1, since 𝐺′2 does
not use any letter of the form ▿𝑥, 𝑥 ∈ 𝑉(𝛾1), we conclude we actually get a

127

iv. minimization of conjunctive regular path queries

homomorphism
𝐺′2

hom−−−→ 𝐺1,

which concludes the proof that 𝛾1 ⫅ 𝛾2 and hence of Claim IV.A.8.
Now Claims IV.A.7 and IV.A.8 imply that 𝛾1 ⫅ 𝛾2 iff 𝛿1 ∧○𝛾2 is equivalent

to a CRPQ with at most ‖𝛿1‖var variables, which concludes the reduction
under the assumption that 𝒬 satisfies (VM)loop.

To conclude, note that if 𝒬 satisfies either (VM)out or (VM)in then exactly
the same proof works, except that the definition of 𝛿1 should be changed:
variables will be marked using outgoing and incoming edges, respectively.
Lastly, since 𝛿1 ∈ 𝒬, then we have as a by-product of our proof that 𝛿1 ∧○𝛾2
is equivalent to a CRPQ with at most 𝑘 atoms iff it is equivalent to a CRPQ of
𝒬 with at most 𝑘 atoms. It follows that this reduction also works it we add
the constraint that 𝛿 must be in 𝒬.

128

Chapter V
Semantic Tree-Width and Path-Width

of Conjunctive Regular Path Queries

Abstract

We show that the problem of whether a query is equivalent to a query of tree-width
𝑘 is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-
way navigation (UC2RPQs). A previous result by Barceló, Romero, and Vardi [BRV16]
has shown decidability for the case 𝑘 = 1, and here we extend this result showing
that decidability in fact holds for any arbitrary 𝑘 ≥ 1. The algorithm is in 2ExpSpace,
but for the restricted but practically relevant case where all regular expressions of
the query are of the form 𝑎∗ or (𝑎1 +⋯+ 𝑎𝑛) we show that the complexity of the
problem drops to Π𝑝

2 .
We also investigate the related problem of approximating a UC2RPQ by queries of
small tree-width. We exhibit an algorithm which, for any fixed number 𝑘, builds the
maximal under-approximation of tree-width 𝑘 of a UC2RPQ. The maximal under-
approximation of tree-width 𝑘 of a query 𝛾 is a query 𝛾′ of tree-width 𝑘 which is
contained in 𝛾 in a maximal and unique way, that is, such that for every query 𝛾″ of
tree-width 𝑘, if 𝛾″ is contained in 𝛾 then 𝛾″ is also contained in 𝛾′.
Our approach is shown to be robust, in the sense that it allows also to test equivalence
with queries of a given path-width, it also covers the previously known result for
𝑘 = 1, and it allows testing whether a (one-way) UCRPQ is equivalent to a UCRPQ of
a given tree-width (or path-width).

Acknowledgements

This chapter is mostly a reproduction of the eponymous paper that was published in
LMCS [FM25], as a selected paper from ICDT ’23 [FM23]. Part of the preliminaries
and of the introductions have been moved to Chapter III. It is a joint work with Diego
Figueira.

129

Contents

V.1 Introduction 131

V.1.1 Conjunctive Regular Path Queries of Small Tree Width 131

V.1.2 Related Work 132

V.1.3 Contributions 133

V.2 Preliminaries 136

V.3 Maximal Under-Approximations 138

V.4 Intermezzo: Tagged Tree Decompositions 143

V.5 Key Lemma: Maximal Under Approximations are Semantically Fi-
nite 148

V.5.1 Local Acyclicity 148

V.5.2 Short Paths 151

V.5.3 Proof of Lemma V.3.8 157

V.6 Semantic Tree-Width for Simple Queries 158

V.6.1 Summary Queries 158

V.6.2 Semantic Tree-Width Problem 161

V.7 Acyclic Queries: the Case 𝑘 = 1 163

V.7.1 Contracted Tree-Width 163

V.7.2 The Key Lemma for Contracted Tree-Width One 164

V.8 Semantic Path-Width 167

V.8.1 Path-Width of Queries 167

V.8.2 Deciding Bounded Semantic Path-Width 168

V.8.3 Evaluation of Queries of Bounded Semantic Path-Width 171

V.9 Lower Bounds for Deciding Semantic Tree-Width and Path-Width
172

V.10 Discussion 175

V.10.1 Complexity 175

V.10.2 Characterization of Tractability 175

V.10.3 Larger Classes 179

V.10.4 Different Notions 179

V.A Alternative Upper Bound for Containment of UC2RPQs 181

V.B Path-Width is not Closed under Refinements 181

130

v.1. introduction

V.1 Introduction

V.1.1 Conjunctive Regular Path Queries of Small Tree Width

In this chapter, we consider the problem of, given a C2RPQ, deciding if it
is equivalent to a query of small tree-width. We depict the relationship of
the different notions of tree-width and path-width of C2RPQs in Figure V.1,
where we denote by 𝒯𝑤𝑘 (resp. 1𝒯𝑤𝑘) the set of all C2RPQs (resp. CRPQs) of
tree-width at most 𝑘. Similarly, 𝒫𝑤𝑘 (resp. 1𝒫𝑤𝑘) is the set of all C2RPQs (resp.
CRPQs) of path-width at most 𝑘. Note that 1𝒯𝑤𝑘 and 1𝒫𝑤𝑘 are not explicitly
drawn, but correspond to the intersection of 𝒯𝑤𝑘 (resp. 𝒫𝑤𝑘) with the class of
CRPQs. Lastly, the tree-width (resp. path-width) of a UC2RPQ is simply the
maximum of the tree-width (resp. path-width) of its disjuncts.

𝒫𝑤1

𝒫𝑤𝑘
𝒯𝑤1

𝒯𝑤𝑘

CRPQs

C2RPQs

Figure V.1: Clickable taxonomy of
syntactic classes studied in this chap-
ter.

Similar statements of the following proposition can be considered Folklore
(see e.g. [RBV17, Theorem IV.3]). It can be proven is the same fasion as
Proposition III.1.22.

Proposition V.1.1. crpqboundtwupperbound For each 𝑘 ≥ 1, the evaluation
problem for UC2RPQs of tree-width at most 𝑘 can be solved in time 𝒪(‖Γ‖ ⋅
|𝐺|𝑘+1 ⋅ log |𝐺|) on a Turing machine, or 𝒪(‖Γ‖ ⋅ |𝐺|𝑘+1) under a RAM model,
where Γ and 𝐺 are the input UC2RPQ and graph database, respectively.

In practice, graph databases tend to be huge and often changing, while
queries are in comparison very small and fixed. This motivates the following
question, given some natural 𝑘 ≥ 1:

Given a UC2RPQ Γ, is it equivalent to a UC2RPQ Γ ′ of tree-width at most 𝑘?
That is, does it have semantic tree-width at most 𝑘?

This problem is called the semantic tree-width 𝑘 problem. Should it be decidable
in a constructive way—that is, decidable, and if the answer is positive, we can
compute a witnessing Γ ′ from Γ—, then one could, once and for all, compute

131

v. semantic tree-width and path-width of conjunctive regular path queries

Γ ′ from Γ and, whenever one wants to evaluate Γ on a database, evaluate Γ ′

instead.
We will also study the restriction of these notions to one-way queries:

a UCRPQ has one-way semantic tree-width at most 𝑘 if it is equivalent to a
UCRPQ of tree-width at most 𝑘. The one-way semantic tree-width 𝑘 problem is
the problem of, given a UCRPQ Γ, whether it has one-way semantic tree-width
at most 𝑘.

Example V.1.2. Consider the following CRPQs, where �̄� = (𝑥0, 𝑥1, 𝑦, 𝑧):

𝑥0 𝑥1 𝑥0 𝑥1 𝑥0 𝑥1

𝛾(�̄�) =̂ 𝑦 𝛿(�̄�) =̂ 𝑦 𝛿′(�̄�) =̂ 𝑦

𝑧 𝑧 𝑧

𝑎

𝑐

𝑎(𝑏𝑏)+

𝑎

𝑎𝑏(𝑏𝑏)∗

𝑎

𝑐

𝑎(𝑏𝑏)+

𝑎 𝑎

𝑐

𝑎

𝑎𝑏(𝑏𝑏)∗𝑏+ 𝑏(𝑏𝑏)∗ (𝑏𝑏)+

The underlying graph of 𝛾(�̄�) being the directed 4-clique, 𝛾(�̄�) has tree-width
3. We claim that 𝛾(�̄�) is equivalent to the UCRPQ 𝛿(�̄�) ∨ 𝛿′(�̄�), and hence has
one-way semantic tree-width at most 2.

Indeed, given a graph database satisfying 𝛾(�̄�) via some mapping 𝜇, it
suffices to make a case disjunction on whether the number of 𝑏-labelled
atoms in the path from 𝜇(𝑦) to 𝜇(𝑧) is even or odd. In the first case, the atom
𝑥0

𝑎(𝑏𝑏)+−−−−→ 𝑧 becomes redundant since we can deduce the existence of such a
path from the conjunction 𝑥 𝑎−→ 𝑦 (𝑏𝑏)+−−−→ 𝑧, and hence the database satisfies
𝛿(�̄�) via 𝜇. Symmetrically, in the second case, the atom 𝑥1

𝑏(𝑏𝑏)∗−−−−→ 𝑧 becomes
redundant, and the database satisfies 𝛿′(�̄�) via 𝜇. Thus, 𝛾(�̄�) is contained,
and hence equivalent (the other containment being trivial), to the UCRPQ
𝛿(�̄�) ∨ 𝛿′(�̄�) of tree-width 2.

V.1.2 Related Work

On the class conjunctive queries, the semantic tree-width 𝑘 problem becomes
the coNP-complete problem of finding out whether the retraction of a query
has tree-width at most 𝑘. In fact, CQs enjoy the effective existence of unique
minimal queries [CM77, Theorem 12], which happen to also minimize the
tree-width. For CRPQs and UC2RPQs, the question is far more challenging,
and it has only been solved for the case 𝑘 = 1 by Barceló, Romero, and Vardi
[BRV16, Theorem 6.1]; the case 𝑘 > 1 was left widely open [BRV16, §7].

Furthermore, classes of CQs of bounded semantic tree-width precisely char-
acterize tractable (and FPT) evaluation problem [Gro07, Theorem 1.1]. This
result is on bounded-arity schemas, which was later generalized [CGLP20,
Theorem 1] for characterizing FPT evaluation on arbitrary schemas—by re-
placing semantic tree-width with semantic “submodular width” [Mar13].

The problem of computing maximal under-approximations of CQs of a
given tree-width has been explored in [BLR14]. Amaximal under-approximations
of tree-width at most 𝑘 of a CQ 𝛾 consists of a CQ 𝛿𝑘 of tree-width at most 𝑘,
which under-approximates it, i.e. 𝛿𝑘 is contained in 𝛾, and which is maximal,

132

v.1. introduction

in the sense that for every CQ 𝛿′, if 𝛿′ has tree-width at most 𝑘 and is con-
tained in 𝛾, then 𝛿′ is contained in 𝛿𝑘. Maximal under-approximations of a
given tree-width for CQs always exist [BLR14] and thus, a CQ is semantically
equivalent to a CQ of tree-width at most 𝑘 if, and only if, it is equivalent to
its maximal under-approximation of tree-width at most 𝑘. Our solution to
decide the semantic tree-width 𝑘 problem for UC2RPQs is based on this idea.

While maximal under-approximations always exist for CQs, this is not the
case for the dual notion of “minimal over-approximations”. The problem of
when these exist is still unknown to be decidable, aside for some the special
cases of acyclic CQs and Boolean CQs over binary schemas [BRZ20].

V.1.3 Contributions

Here we solve both the semantic tree-width 𝑘 problem and one-way semantic
tree-width 𝑘 problem for every 𝑘 with one unifying approach.

Theorem V.1.3. For each 𝑘 ≥ 1, the semantic tree-width 𝑘 problem and
the one-way semantic tree-width 𝑘 problem are decidable. Moreover, these
problems are in 2ExpSpace and are ExpSpace-hard. When 𝑘 = 1, the problems
are in fact ExpSpace-complete.

In Section V.3 (Lemma V.3.9), we prove the upper bound for 𝑘 ≥ 2, by
relying on the so-called “Key Lemma”, which is our main technical result, and
is proven in Sections V.4 and V.5. The upper bound for the case 𝑘 = 1—which
was already proven in [BRV16] for the (two-way) semantic tree-width 1
problem—is shown in Section V.7 (Corollary V.7.8). The lower bound is shown
in Section V.9 (Lemma V.9.1).

The Key Lemma (Lemma V.3.8) essentially states that every UC2RPQ has
a computable “maximal under-approximation” by a UC2RPQ of tree-width
𝑘 and that this approximation is well-behaved with respect to the class of
languages used to label the queries under some mild assumptions on it (being
“closed under sublanguages”). Let us first explain this assumption before
formalizing the statement above (stated as Section V.3).

For a class ℒ of languages, let UC2RPQ(ℒ) denote the class of all UC2RPQs
whose atoms are all labelled by languages from ℒ. We say that ℒ is closed
under sublanguages if (i) it contains every language of the form {𝑎}, where
𝑎 ∈ 𝔸 is any (positive) letter such that either 𝑎 or 𝑎− occur in a word of a
language of ℒ, and (ii) for every language 𝐿 ∈ ℒ there exists an NFA 𝒜𝐿
accepting 𝐿 such that every sublanguage 𝒜𝐿[𝑞, 𝑞′] distinct from ∅ and {𝜀}
belongs to ℒ.

To the best of our knowledge, all classes of regular expressions that have
been considered in the realm of regular path queries (see, e.g., [Fig+20, §1])
are closed under sublanguages. In particular, this is the case for the class
�{𝑎1 + … + 𝑎𝑛} ∣ 𝑎1, … , 𝑎𝑛 ∈ 𝔸� ∪ �𝑎∗ ∣ 𝑎 ∈ 𝔸�, which will be our focus
of study in Section V.6. Moreover, even if some class ℒ is not closed under
sublanguages, such as {(𝑎𝑎)∗}, then it is contained in a minimal class closed

133

v. semantic tree-width and path-width of conjunctive regular path queries

under sublanguages—{𝑎, 𝑎(𝑎𝑎)∗, (𝑎𝑎)∗} in this example.
We can now state the main implication of the Key Lemma (whose formal

statement requires some extra definitions). [Existence of the maximal under-
approximation] For each 𝑘 ≥ 2, for each class ℒ closed under sublanguages,
and for each query Γ ∈ UC2RPQ(ℒ), there exists Γ ′ ∈ UC2RPQ(ℒ) of tree-
width at most 𝑘 such that Γ ′ ⫅ Γ, and for every Δ ∈ UC2RPQ, if Δ has
tree-width at most 𝑘 and Δ ⫅ Γ, then Δ ⫅ Γ ′. Moreover, Γ ′ is computable
from Γ in ExpSpace.

As a consequence of Section V.3 and Proposition V.1.1, we have that
queries of bounded semantic tree-width have tractable evaluation. [FPT
evaluation for bounded semantic tree-width] For each 𝑘 ≥ 1, the evaluation
problem for C2RPQs of semantic tree-width at most 𝑘 is fixed-parameter
tractable—FPT—when parametrized in the size of the query. More precisely
on input ⟨Γ, 𝐺⟩, the algorithm runs in time 𝒪(𝑓(‖Γ‖) ⋅ |𝐺|𝑘+1 ⋅ log |𝐺|) on a Tur-
ing machine, where 𝑓 is a doubly-exponential function—or 𝒪(𝑓(‖Γ‖) ⋅ |𝐺|𝑘+1)
under a RAM model. Note that [FGM24, Theorem 22] shows that the
statement above can be improved to have a single-exponential function 𝑓.

Moreover, we also show that for any class ℒ of regular languages closed
under sublanguages, if Γ ∈ UC2RPQ(ℒ) has semantic tree-width 𝑘 > 1,
then Γ is equivalent to a UC2RPQ(ℒ) of tree-width at most 𝑘. Analogous
characterizations hold for 𝑘 = 1 and/or path-width, see Corollaries V.8.7
and V.7.9.

Theorem V.3.12. Assume that ℒ is closed under sublanguages. For any
𝑘 > 1 and any query Γ ∈ UC2RPQ(ℒ), the following are equivalent:

(1) Γ is equivalent to an infinitary union of conjunctive queries of tree-width
at most 𝑘;

(2) Γ has semantic tree-width at most 𝑘;
(3) Γ is equivalent to a UC2RPQ(ℒ) of tree-width at most 𝑘.

The implications (3) ⇒ (2) ⇒ (1) immediately follow from the definition
of the semantic tree-width. On the other hand, the implications (1) ⇒ (2) and
(2) ⇒ (3) are surprising, since they are both trivially false when 𝑘 = 1. We
defer the proof of this last claim to Remark V.3.13 as we first need a few tools
to manipulate CRPQs.

The previous theorem, together with the high complexity of semantic
tree-width 𝑘 problem, motivates us to focus on the case of CRPQs using some
simple regular expressions (SRE) in Section V.6, where we show that the
complexity of this problem is much lower.

TheoremV.6.1. For 𝑘 ≥ 2, the semantic tree-width 𝑘 problem for UCRPQ(SRE)
is in Π𝑝

2 .

We then study the problem of 𝑘 = 1: at first glance, our proof for 𝑘 ≥ 2 of
Theorem V.1.3 does not capture this case, for a technical—yet crucial—reason.
In Section V.7, we explain how to adapt our proof to capture it: and show the
decidability the semantic tree-width 1 problem—which was already studied by

134

v.1. introduction

Barceló, Romero and Vardi [BRV16]—and of the one-way semantic tree-width
1 problem.

Building on the same idea, we show in Section V.8 that our results extend
to path-width.

Theorem V.8.6. For each 𝑘 ≥ 1, the semantic path-width 𝑘 problems are
decidable. Moreover, they lie in 2ExpSpace and are ExpSpace-hard. Moreover,
if 𝑘 = 1, these problems are in fact ExpSpace-complete.

In turn, this leads to an evaluation algorithm with a remarkably low com-
plexity.

Theorem V.8.8. For each 𝑘 ≥ 1, the evaluation problem, restricted to
UC2RPQs of semantic path-width at most 𝑘 is in paraNL when parametrized
in the size of the query. More precisely, the problem, on input ⟨Γ, 𝐺⟩, can
be solved in non-deterministic space 𝑓(|Γ|) + log(|𝐺|), where 𝑓 is a single
exponential function.

1way sem.
tw 1

1way
sem.
tw 𝑘

sem.
tw 1

sem.
tw 𝑘

CR
PQ

s

C2RPQs

(a) Semantic classes of C2RPQs related to
tree-width.

1way sem.
pw 1

1way
sem.
pw 𝑘

sem
. pw

1

sem.
pw 𝑘

CR
PQ

s

C2RPQs

(b) Semantic classes of C2RPQs related to
path-width.

Figure V.2: Clickable taxonomy of
semantic classes studied in this paper,
where 𝑘 ≥ 2.

Interestingly, the proof for tree-width 1 and path-width 𝑘 (𝑘 ≥ 1) can be
derived from the proof from tree-width 𝑘 ≥ 2 but necessitates an additional
technical trick which yields different closure properties (or lack thereof). We
show that a UCRPQ has semantic tree-width at most 𝑘 if, and only if, it has one-
way semantic tree-width at most 𝑘whenever 𝑘 ≥ 2 (Corollary V.3.14). In other
words, if the original query does not use two-way navigation, then considering
UC2RPQs does not help to further minimize the tree-width. Interestingly,
this is false for 𝑘 = 1 (cf. Remark V.3.13, also [BRV16, Proposition 6.4]) and
for path-width, no matter the value of 𝑘 ≥ 1 (see Section V.8.2). Overall, this
leads to the landscape depicted in Figure V.2.

Finally, we conclude in Section V.10. We provide a partial characterization
à la Grohe of classes of UC2RPQs which admit a tractable evaluation in
Section V.10.2.

Theorem V.10.5. Assuming W[1] ≠ FPT, for any recursively enumerable

135

v. semantic tree-width and path-width of conjunctive regular path queries

class 𝒞 of finitely-redundant Boolean UC2RPQs, the evaluation problem for
𝒞 is FPT if, and only if, 𝒞 has bounded semantic tree-width.

We also discuss open questions, ranging from complexity questions (Sec-
tion V.10.1) to extensions of our results to bigger classes or larger settings
(Sections V.10.3 and V.10.4).

V.2 Preliminaries

Some intuitions on maximal under-approximations Given a conjunctive query
𝛾, the union of all conjunctive queries that are contained in 𝛾 is semantically
equivalent to the union⋁{𝛾′ ∣ 𝛾 ↠ 𝛾′}. Naturally, this statement borders
on the trivial since 𝛾′ belongs to this union. It becomes interesting when
we add a restriction: given a class 𝒞 of CQs (to which 𝛾 may not belong)
closed under subqueries, then Γ ′ =̂ ⋁{𝛾′ ∈ 𝒞 ∣ 𝛾 ↠ 𝛾′} is the maximal
under-approximations of 𝛾 by finite unions of conjunctive queries of 𝒞, in
the following sense:
i. (finite) Γ ′ is a finite union of CQs of 𝒞,
ii. (under-approximation) Γ ′ ⫅ 𝛾, and
iii. (maximality) for any finite union Δ of CQs of 𝒞, if Δ ⫅ 𝛾, then Δ ⫅ Γ ′.

Proof. Only the last point is non-trivial, and follows from the fact that if
Δ ⫅ 𝛾, then for each 𝛿 ∈ Δ, 𝛿 ⫅ 𝛾, so there is a homomorphism 𝑓∶ 𝛾 → 𝛿.
The image 𝛿′ of 𝑓 is a subquery of 𝛿, and 𝒞 is closed under subqueries, so it
belongs to 𝒞, and hence to Γ ′. Since there is a trivial homomorphism from 𝛿′

to 𝛿, we moreover have that 𝛿 ⫅ 𝛿′. Hence, for each CQ 𝛿 ∈ Δ, there is a CQ
𝛿′ ∈ Γ ′ such that 𝛿 ⫅ 𝛿′, and hence Δ ⫅ Γ ′.

As a consequence, we deduce that for each 𝑘 ≥ 1, the maximal under-
approximation of a CQ by a finite union of CQs of tree-width at most 𝑘 is
computable, and hence we can effectively decide if some CQ is equivalent
to a query of tree-width at most 𝑘 by testing the equivalence with this maxi-
mal under-approximation. For more details on approximations of CQs, see
[BLR14]. Note that interestingly, changing Γ ′ from⋁{𝛾′ ∈ 𝒞 ∣ 𝛾 ↠ 𝛾′} to
⋁{𝛾′ ∈ 𝒞 ∣ 𝛾′ ⫅ 𝛾} preserves both under-approximation and maximality,
but Γ ′ is now an infinite union of CQs of 𝒞.

Unfortunately, these results cannot be straightforwardly extended to con-
junctive regular path queries since the previous proof implicitly relied on two
points:
1. the equivalence between the containment 𝛾′ ⫅ 𝛾 and the existence of a

homomorphism 𝛾 hom−−−→ 𝛾′, and
2. the possibility to restrict 𝛾′ to its image 𝛾 hom−−−→ 𝛾′ while obtaining a

semantically bigger query.
These two crucial ingredients is what allows us to build a finite set Γ ′ from 𝛾.
For CRPQs, the second point still holds, but not the first one. For instance,
the CQ 𝛾(𝑥, 𝑦) = 𝑥 𝑎−→ 𝑧 𝑏−→ 𝑦 is contained in (in fact equivalent to) the CRPQ

136

v.2. preliminaries

𝛾′(𝑥, 𝑦) = 𝑥 𝑎𝑏−→ 𝑦, but there is no homomorphism from 𝛾′(𝑥, 𝑦) to 𝛾(𝑥, 𝑦). Our
main result shows that to find maximal under-approximations of C2RPQs, it
suffices to take homomorphic images of so-called “refinements” of 𝛾, instead
of homomorphic images of 𝛾 itself. The next paragraphs are devoted to
introducing refinements and tools related to them.

Refinements and Tree-Width. Our approach to proving TheoremsV.1.3 andV.3.12
and the Key Lemma heavily rely on refinements. One crucial property that
these objects satisfy is that they preserve tree-width 𝑘, unless 𝑘 = 1, as
illustrated in Figure V.3.

Fact V.2.1. Let 𝑘 ≥ 2 and let 𝛾 be a C2RPQ of tree-width at most 𝑘. Then any
refinement of 𝛾 has tree-width at most 𝑘.

(a) A multigraph together with a tree
decomposition of width 𝑘.

(b) A refinement of the multigraph of Figure V.3a
together with a tree decomposition of width
max(𝑘, 2).

Figure V.3: Refinements and ex-
pansions preserve tree-width at most
𝑘 ≥ 2.

Proof. The underlying graph of a refinement of 𝛾 is obtained from the un-
derlying graph of 𝛾 by either contracting some edges (when dealing with
equality atoms), or by replacing a single edge by a path of edges (where the
non-extremal nodes are new nodes).

This first operation preserves tree-width at most 𝑘 (even if 𝑘 = 1), see e.g.
[Bod98, Lemma 16]. The second operation preserves tree-width at most 𝑘,
assuming 𝑘 > 1: if a graph 𝐺′ is obtained from a graph 𝐺 by replacing an
edge 𝑥0 −→ 𝑥𝑛 by a path 𝑥0 −→ 𝑥1 −→ ⋯ −→ 𝑥𝑛, then from a tree decomposition
of 𝐺 it suffices to pick a bag containing both 𝑥0 and 𝑥𝑛, and add a branch to
the tree, rooted at this bag, and containing bags with nodes

{𝑥0, 𝑥1, 𝑥𝑛}, {𝑥1, 𝑥2, 𝑥𝑛}, … , {𝑥𝑖, 𝑥𝑖+1, 𝑥𝑛}, … , {𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛},

as depicted in Figure V.3. All bags contain exactly three nodes, so we obtain
tree decomposition of 𝐺′ whose width is the maximum between 2 and the
width of the original tree decomposition of 𝐺.

For 𝑘 = 1, the property fails: for instance the CRPQ 𝛾(𝑥) = 𝑥 𝑎∗−→ 𝑥
has tree-width at most 1 (in fact it has tree-width 0), but its refinement
𝜌(𝑥) = 𝑥 𝑎∗−→ 𝑡1

𝑎∗−→ 𝑡2
𝑎∗−→ 𝑥 has tree-width 2.

Fine tree decompositions For technical reasons—the proof of Lemma V.5.4—,
we will use a restrictive class of tree decompositions which we call “fine”1. A 1 This is similar—but orthogonal—to

the classical notion of “nice tree de-
composition”, see e.g. [Klo94, Defini-
tion 13.1.4, page 149].137

v. semantic tree-width and path-width of conjunctive regular path queries

fine tree decomposition is a tree decomposition ⟨𝐓, v⟩ in which:

every non-root bag can be obtained from its parent
bag by either adding or removing a non-empty set
of vertices.

(V.1)

In the context of a fine tree decomposition of width 𝑘, a full bag is any bag of
size 𝑘 + 1.

A C2RPQ has tree-width 𝑘 if and only if it has a fine tree decomposition of
width at most 𝑘. Indeed, from a tree decomposition, it suffices to:
1. first merge every consecutive pair of bags that contain exactly the same

variables;
2. between every pair of bags that does not satisfy (V.1), add a bag whose set

of vertices correspond to the intersection of the two adjacent bags.

V.3 Maximal Under-Approximations

In this section, we state our key technical result, Lemma V.3.8, which we
will refer to as the “Key Lemma”. Essentially, we follow the same structure
as Theorem V.3.12: given a C2RPQ 𝛾 and a natural number 𝑘 > 1, we start
by considering its maximal under-approximation by infinitary unions of
conjunctive queries of tree-width 𝑘 (Definition V.3.1), and then show that this
query can in fact be expressed as a UC2RPQ of tree-width 𝑘 whose atoms
contain sublanguages of those in 𝛾 (Key Lemma V.3.8).

For the first definitions of this section, let us fix any class 𝒞 of C2RPQs—we
will later apply these results to the class 𝒯𝑤𝑘 of C2RPQs of tree-width at most
𝑘.

Definition V.3.1 (Maximal under-approximation). Let 𝛾 be a C2RPQ. The
maximal under-approximation of𝛾 by infinitary unions of𝒞-queries is App𝒞(𝛾) =̂
{𝛼 ∈ 𝒞 ∣ 𝛼 ⫅ 𝛾}.

For intuition, we refer the reader back to paragraph “Some intuitions on
maximal under-approximations” at the beginning of Section V.2.

Remark V.3.2. Observe that App𝒞(𝛾) is an infinitary union of 𝒞-queries,
that App𝒞(𝛾) ⫅ 𝛾, and that for every infinitary union of 𝒞-queriesΔ, ifΔ ⫅ 𝛾,
then Δ ⫅ App𝒞(𝛾) (i.e., it is the unique maximal under-approximation up to
semantical equivalence). Similarly, the maximal under-approximation of a
UC2RPQ is simply the union of the maximal under-approximations of the
C2RPQs thereof.

Unfortunately, the fact that a query 𝛼 is part of this union, namely 𝛼 ∈
App𝒞(𝛾), does not yield any useful information on the shape of 𝛼—we merely
know that 𝛼 ⫅ 𝛾. We thus introduce another infinitary union of 𝒞-queries of a
restricted shape, namely App⋆𝒞(𝛾) ⊆ App𝒞(𝛾), in which queries 𝛼 ∈ App⋆𝒞(𝛾)
come together with a witness of their containment in 𝛾.

138

v.3. maximal under-approximations

DefinitionV.3.3. Themaximal under-approximation of𝛾 by infinitary unions
of homomorphically-smaller 𝒞-queries is

App⋆𝒞(𝛾) =̂ {𝛼 ∈ 𝒞 ∣ ∃𝜌 ∈ Ref(𝛾), ∃𝑓∶ 𝜌 ↠ 𝛼}. (V.2)

For a basic example of approximation (with no constraint on 𝒞), we refer
the reader to ??. The resulting query 𝛼(𝑥, 𝑦) is the homomorphic image of a
refinement of 𝛾(𝑥, 𝑦). Hence, 𝛼(𝑥, 𝑦) ∈ App⋆𝒞(𝛾) if 𝒞 is, for instance, the class
of all C2RPQs—or more generally, if 𝒞 contains 𝛼(𝑥, 𝑦).

Example V.3.4 (Example V.1.2, cont’d). Both 𝛿(�̄�) and 𝛿′(�̄�) are semantically
equivalent to queries in App⋆𝒯𝑤2

(𝛾(�̄�)). Indeed, starting from 𝛾(�̄�), we can
refine

𝑥0
𝑎(𝑏𝑏)+−−−−→ 𝑧 into 𝑥1

𝑎−→ 𝑡 (𝑏𝑏)+−−−→ 𝑧.

Denote by 𝜌(�̄�) the query obtained:

𝑥0 𝑥1 𝑥0 𝑥1 𝑥0 𝑥1

𝜌(�̄�) =̂ 𝑡 𝑦 𝛿′app(�̄�) =̂ 𝑦 𝛿′(�̄�) = 𝑦

𝑧 𝑧 𝑧

𝑎

𝑐

𝑎 𝑎

𝑎𝑏(𝑏𝑏)∗

𝑎

𝑐

𝑎

𝑎𝑏(𝑏𝑏)∗

𝑎

𝑐

𝑎

𝑎𝑏(𝑏𝑏)∗(𝑏𝑏)+ 𝑏+ 𝑏+(𝑏𝑏)+ (𝑏𝑏)+

Then merge variables 𝑡 and 𝑦: this new query 𝛿′app(�̄�) is equivalent to 𝛿′(�̄�).
Moreover, since 𝛿′app(�̄�) has tree-width at most 2 and was obtained as a homo-
morphic image of a refinement of 𝛾(�̄�), we have that 𝛿′app(�̄�) ∈ App⋆𝒯𝑤2

(𝛾(�̄�)).
A similar argument applies to 𝛿, by refining the atom between 𝑥1 and 𝑧
instead.

Clearly, App⋆𝒞(𝛾)—whose queries are informally called approximations—is
included, and thus semantically contained, in App𝒞(𝛾), since 𝜌 ⫅ 𝛾 and 𝛼 ⫅ 𝜌
in (V.2). In fact, under some assumptions on 𝒞, the converse containment
also holds.

Fact V.3.5. If 𝒞 is closed under expansions and subqueries, then for any
C2RPQ 𝛾, we have App𝒞(𝛾) ≡ App⋆𝒞(𝛾).

Proof. SinceApp𝒞(𝛾) ⊇ App⋆𝒞(𝛾), it suffices to show that App𝒞(𝛾) ⫅ App⋆𝒞(𝛾).
Pick 𝛼 ∈ App𝒞(𝛾). Let 𝜉 be an expansion of 𝛼. Since 𝛼 ⫅ 𝛾, there exists
by Proposition III.2.12 an expansion 𝜉𝛾 of 𝛾 such that 𝜉𝛾

hom−−−→ 𝜉. Consider
the restriction 𝜉′ of 𝜉 to its homomorphic image. Since 𝛼 ∈ 𝒞 and 𝒞 is
closed both under expansions and subqueries, 𝜉′ ∈ 𝒞. Since moreover, by
construction, 𝜉′ is the (strong onto) homomorphic image of an expansion
(hence refinement) of 𝛾, then 𝜉′ ∈ App⋆𝒞(𝛾). Hence, we have shown that for
every expansion of App𝒞(𝛾), there is an expansion of App⋆𝒞(𝛾) with a strong
onto homomorphism from the latter to the former, which concludes the proof
by Proposition III.2.12.

Note that in the definition of App⋆𝒞(𝛾) we work with strong onto homo-
morphisms: changing the definition to have any homomorphism would yield

139

v. semantic tree-width and path-width of conjunctive regular path queries

a slightly bigger but semantically equivalent class of queries—though having
untamed shapes.

Observe then, by Fact V.2.1, that the class 𝒯𝑤𝑘of all C2RPQs of tree-width at
most 𝑘 is closed under refinements and hence under expansions, provided that
𝑘 is greater or equal to 2. Moreover, 𝒯𝑤𝑘 is always closed under subqueries
for each 𝑘.

Corollary V.3.6. For 𝑘 ≥ 2, for all C2RPQ 𝛾, App𝒯𝑤𝑘
(𝛾) ≡ App⋆𝒯𝑤𝑘

(𝛾).

Example V.3.7 (counterexample for 𝑘 = 1). Consider the following query:

𝑧

𝛾(𝑥) =̂

𝑥 𝑦.

𝑏𝑐

𝑎

Weclaim that App𝒯𝑤1
(𝛾) " App⋆𝒯𝑤1

(𝛾). First, we claim that𝛾 ∈ Exp(App𝒯𝑤1
(𝛾))

since 𝛾 is an expansion of 𝛿(𝑥) = 𝑥 𝑎𝑏𝑐−−→ 𝑥, which clearly belongs to App𝒯𝑤1
(𝛾).

Then, observe that 𝛾(𝑥) has a single refinement: itself! It follows that
App⋆𝒯𝑤1

(𝛾) is finite, and consists precisely of all homomorphic images of
𝛾(𝑥) of tree-width at most 1, which are:

𝛼1(𝑤) =̂ 𝑤 𝑧𝑎
𝑏

𝑐
, 𝛼2(𝑤) =̂ 𝑤 𝑦𝑐

𝑎

𝑏

𝛼3(𝑥) =̂ 𝑥 𝑤
𝑎

𝑐
𝑏 , 𝛼4(𝑤) =̂ 𝑤𝑎

𝑏

𝑐

which correspond to the case when the following variable are merged: {𝑥, 𝑦},
{𝑥, 𝑧}, {𝑦, 𝑧} and {𝑥, 𝑦, 𝑧}, respectively. Note that all of these queries are CQs,
from which it follows that every expansion of a query in App⋆𝒯𝑤1

(𝛾) is one
of the 𝛼𝑖, and has a self-loop. In particular, such an expansion cannot have
a homomorphism to 𝛾. Hence, we showed that there is an expansion of
App𝒯𝑤1

(𝛾) s.t. no expansion of App⋆𝒯𝑤1
(𝛾) can be homomorphically mapped

to it. Hence, by Proposition III.2.12, App𝒯𝑤1
(𝛾) " App⋆𝒯𝑤1

(𝛾).

In general, by definition, App⋆𝒯𝑤𝑘
(𝛾) is an infinitary union of C2RPQs. Our

main technical result shows that, in fact, App⋆𝒯𝑤𝑘
(𝛾) is always equivalent

to a finite union of C2RPQs. This is done by bounding the length of the
refinements occurring in the definition of App⋆𝒯𝑤𝑘

(𝛾). For any 𝑚 ≥ 1, we

define:

App⋆,≤𝑚𝒞 (𝛾) =̂ {𝛼 ∈ 𝒞 ∣ ∃𝜌 ∈ Ref≤𝑚(𝛾), ∃𝑓∶ 𝜌 ↠ 𝛼}.

Lemma V.3.8 (Key Lemma). For 𝑘 ≥ 2 and C2RPQ 𝛾, we have App⋆𝒯𝑤𝑘
(𝛾) ≡

App⋆,≤`𝒯𝑤𝑘
(𝛾), where ` = Θ(‖𝛾‖2at ⋅ (𝑘 + 1)‖𝛾‖at).

By construction, App𝒯𝑤𝑘
(𝛾) is the maximal under-approximation of 𝛾 by

infinitary unions of C2RPQs of tree-width at most 𝑘. Using the equiva-

140

v.3. maximal under-approximations

lence above and Corollary V.3.6, it follows that it is also the maximal under-
approximation of 𝛾 by a UC2RPQ of tree-width at most 𝑘. [Existence of
the maximal under-approximation] For each 𝑘 ≥ 2, for each class ℒ closed
under sublanguages, and for each query Γ ∈ UC2RPQ(ℒ), there exists Γ ′ ∈
UC2RPQ(ℒ) of tree-width at most 𝑘 such that Γ ′ ⫅ Γ, and for every Δ ∈
UC2RPQ, if Δ has tree-width at most 𝑘 and Δ ⫅ Γ, then Δ ⫅ Γ ′. Moreover,
Γ ′ is computable from Γ in ExpSpace.

Proof. The algorithm to compute Γ ′ is straightforward: it enumerates `-
refinements, enumerates its homomorphic images, and keeps the result only
if it has tree-width at most 𝑘—which can be done in linear time using Bod-
laender’s algorithm (Proposition III.1.23).

Using the Key Lemma as a black box—which will be proven in Section V.5—,
we can now give a proof of the upper bound of Theorem V.1.3 for all cases
𝑘 ≥ 2—the case 𝑘 = 1 will be the object of Section V.7.

Lemma V.3.9 (Upper bound for Theorem V.1.3 for 𝑘 ≥ 2). For 𝑘 ≥ 2, the
semantic tree-width 𝑘 problem for UC2RPQ is in 2ExpSpace.

Note that App⋆,≤`𝒯𝑤𝑘
(𝛾) has double-exponential size in ‖𝛾‖, so testing equiva-

lence of 𝛾with this UC2RPQ yields an algorithm in triple-exponential space in
‖𝛾‖ since (U)C2RPQ equivalence is ExpSpace [CDLV00, Theorem 5] —see also
[FLS98, § after Theorem 4.8] for a similar result on CRPQs without inverses
but with an infinite alphabet. To get a better upper bound, we first need the
following proposition:

Proposition V.3.10. The containment problem Γ ⫅ Δ between two
UC2RPQs can be solved in non-deterministic space 𝒪(‖Γ‖ + ‖Δ‖𝑐⋅𝑛Δ), for
some constant 𝑐, and where 𝑛Δ is the maximal number of atoms of a disjunct
of Δ, namely 𝑛Δ = max {‖𝛿‖at ∣ 𝛿 ∈ Δ}.

Proof. The proposition follows from the following claim.

Claim V.3.11 (implicit in [Fig20]). The containment problem Γ ⫅ Δ between
two UC2RPQs can be solved in non-deterministic space 𝒪(‖Γ‖ + ‖Δ‖𝑐⋅bw(Δ)),
where bw(Δ) is the bridge-width of Δ and 𝑐 is a constant.

In the statement above, a bridge of a C2RPQ is a minimal set of atoms
whose removal increases the number of connected components of the query,
and the bridge-width of a C2RPQ is the maximum size of a bridge therein. The
bridge-width of a union of C2RPQs is the maximum bridge-width among the
C2RPQs it contains. In particular, the maximal number of atoms of a disjunct
is an upper bound for bridge-width.

We provide an alternative upper bound in Proposition V.A.1 (Section V.A),
which also yields a 2ExpSpace upper bound for Lemma V.3.9.

Proof of Lemma V.3.9. To test whether a query Γ is of semantic tree-width 𝑘,
it suffices to test the containment Γ ⫅ Γ ′, where Γ ′ is the maximal under-

141

v. semantic tree-width and path-width of conjunctive regular path queries

approximation⋃𝛾∈Γ App⋆,≤`𝒯𝑤𝑘
(𝛾) given by Section V.3: a double-exponential

union of single-exponential sized C2RPQs. Thus, by the bound of Proposi-
tion V.3.10 (and Savitch’s Theorem), we obtain a double-exponential space
upper bound.

Moreover, from the equivalences App𝒯𝑤𝑘
(𝛾) ≡ App⋆𝒯𝑤𝑘

(𝛾) andApp⋆𝒯𝑤𝑘
(𝛾) ≡

App⋆,≤`𝒯𝑤𝑘
(𝛾) of Corollary V.3.6 and Lemma V.3.8, we can derive new charac-

terizations for queries of bounded semantic tree-width.

Theorem V.3.12. Assume that ℒ is closed under sublanguages. For any
𝑘 > 1 and any query Γ ∈ UC2RPQ(ℒ), the following are equivalent:

(1) Γ is equivalent to an infinitary union of conjunctive queries of tree-width
at most 𝑘;

(2) Γ has semantic tree-width at most 𝑘;
(3) Γ is equivalent to a UC2RPQ(ℒ) of tree-width at most 𝑘.

Proof of Theorem V.3.12. The implications (3) ⇒ (2) ⇒ (1) are straightfor-
ward: they follow directly from Fact V.2.1. For (1) ⇒ (3), note that (1) implies
that Γ ≡ App𝒯𝑤𝑘

(Γ), and by Lemma V.3.8, App𝒯𝑤𝑘
(Γ) ≡ Δ =̂ ⋁𝛾∈Γ App⋆,≤`𝒯𝑤𝑘

(𝛾),
so Γ is equivalent to the latter. Since queries of Δ are obtained as homomor-
phic images of refinements of Γ, all of which are labelled by sublanguages of
ℒ, and since ℒ is closed under sublanguages, it follows that Γ is equivalent
to a UC2RPQ(ℒ) of tree-width 𝑘.

Remark V.3.13. The statement of Theorem V.3.12 does not hold for 𝑘 = 1.
(2) ⇏ (1) when 𝑘 = 1: consider the CRPQ 𝛾(𝑥, 𝑦) = 𝑥 𝑎∗−→ 𝑦 ∧ 𝑦 𝑏−→ 𝑥 of

tree-width 1, and hence of semantic tree-width 1, and observe that it is not
equivalent to any infinitary union of conjunctive queries of tree-width 1—this
can be proven by considering, for example, the expansion 𝑥 𝑎−→ 𝑧 𝑎−→ 𝑦∧ 𝑦 𝑏−→ 𝑥
of 𝛾(𝑥, 𝑦) and applying Proposition III.2.12.

(3) ⇏ (2) when 𝑘 = 1: by [BRV16, Proposition 6.4] the CRPQ of semantic
tree-width 1 𝛾(𝑥) =̂ 𝑥 𝑎←− 𝑧 𝑎−→ 𝑦∧ 𝑥 𝑏−→ 𝑦 ≡ 𝑥 𝑏𝑎−𝑎−−−→ 𝑥 is not equivalent to any
UCRPQ of tree-width 1. Hence, the implication is false when ℒ is the class of
regular languages over 𝔸± that do not use any letter of the form 𝑎−.

See Corollary V.7.9 for a similar (but different) characterization of queries of
semantic tree-width at most 1. As an immediate corollary of Theorem V.3.12,
by taking ℒ to be the class of all regular languages over 𝔸, we obtain the
following result.

Corollary V.3.14. Let 𝑘 ≥ 2. A UCRPQ has semantic tree-width at most 𝑘 if
and only if it has one-way semantic tree-width at most 𝑘.

Lastly, using Section V.3 as a black box, we can obtain an FPT algorithm
for the evaluation problem. [FPT evaluation for bounded semantic tree-
width] For each 𝑘 ≥ 1, the evaluation problem for C2RPQs of semantic
tree-width at most 𝑘 is fixed-parameter tractable—FPT—when parametrized
in the size of the query. More precisely on input ⟨Γ, 𝐺⟩, the algorithm runs

142

https://en.wikipedia.org/wiki/Savitch%27s_theorem

v.4. intermezzo: tagged tree decompositions

in time 𝒪(𝑓(‖Γ‖) ⋅ |𝐺|𝑘+1 ⋅ log |𝐺|) on a Turing machine, where 𝑓 is a doubly-
exponential function—or 𝒪(𝑓(‖Γ‖) ⋅ |𝐺|𝑘+1) under a RAM model.

Proof. First, compute from Γ its maximal under-approximation Γ ′ using Sec-
tion V.3 in single-exponential space, and hence double-exponential time. Then,
evaluate 𝐺 on Γ ′ using Proposition V.1.1.

This improves the database-dependency from the previously best (and first)
known upper bound, which was 𝒪(𝑓′(‖Γ‖) ⋅ |𝐺|2𝑘+1) for a single-exponential
𝑓′ [RBV17, Theorem IV.11 & Lemma IV.13]. We discuss open questions related
to this in Section V.10.2.

We are left with the proof of the Key Lemma. But before doing so, we will
need to introduce in the next Section V.4 some basic notions that we will need
in the proof, which is deferred to Section V.5.

V.4 Intermezzo: Tagged Tree Decompositions

In this section we introduce some technical tools necessary for the proof of
the Key Lemma. Remember that its statement deals with

App⋆,≤𝑚𝒯𝑤𝑘
(𝛾) =̂ {𝛼 ∈ 𝒯𝑤𝑘 ∣ ∃𝜌 ∈ Ref≤𝑚(𝛾), ∃𝑓∶ 𝜌 ↠ 𝛼},

and consequently its proof needs to manipulate homomorphisms from re-
finements onto C2RPQs of tree-width ≤ 𝑘. The proof will “massage” the
homomorphism 𝑓 and queries 𝛼, 𝜌 in order to reduce the size of 𝑚, while
preserving (a) the existence of a homomorphism between the two queries, (b)
the tree-width of the right-hand side, (c) the fact that the left-hand side is a
refinement, and (d) some semantic properties of the queries. Our construction
will be guided by the tree decomposition of 𝛼, and more importantly by how
𝜌 is mapped onto such decomposition.

Definition V.4.1. Let 𝑓∶ 𝜌 hom−−−→ 𝛼 be a homomorphism between two C2RPQs.
A tagged tree decomposition of 𝑓 is a triple (𝑇, v, t) where ⟨𝐓, v⟩ is a tree
decomposition of 𝛼, and t is a mapping t ∶ Atoms(𝜌) → 𝑉(𝐓), called tagging,
such that for each atom 𝑒 = 𝑥 𝜆−→ 𝑦 ∈ Atoms(𝜌), we have that v(t(𝑒)) contains
both 𝑓(𝑥) and 𝑓(𝑦).

In other words, t gives, for each atom of 𝜌, a witnessing bag that contains
it, in the sense that it contains the image by 𝑓 of the atom’s source and target.
By definition, given a tree decomposition ⟨𝐓, v⟩ of 𝛼 and a homomorphism
𝑓∶ 𝜌 ↠ 𝛼, there is always one way (usually many) of extending ⟨𝐓, v⟩ into a
tagged tree decomposition of 𝑓.

We provide an example of homomorphism 𝑓∶ 𝜌 ↠ 𝛼 in Figure V.4. Note
that in this example, 𝜌 is defined as the refinement of a query, and 𝑓 is
strong onto—for now this is innocuous, but we will always work under these
assumptions in Section V.5. In Figure V.5, we give a tagged tree decomposition
of this homomorphism. Each bag is given a name, written in the bottom left

143

v. semantic tree-width and path-width of conjunctive regular path queries

(a) A query 𝛾 of
tree-width 3.

<latexit sha1_base64="z4ncSxUzcoG8zHi9jME7bn9UXvo=">AAACyXicjVHLTsJAFD3UF+ILdemmkZi4ME0LiHVH4sbEDSbySICYtgxYKW1tp0QkrvwBt/pjxj/Qv/DOWBJdEJ2m7Z1zzzkz91479NyY6/p7RllYXFpeya7m1tY3Nrfy2zuNOEgih9WdwAuilm3FzHN9Vucu91grjJg1sj3WtIdnIt8csyh2A/+KT0LWHVkD3+27jsUJanTGvYDH1/mCrpmnul42VV0zSkbFKFJQNEvlkqkami5XAemqBfk3dNBDAAcJRmDwwSn2YCGmpw0DOkLCupgSFlHkyjzDI3KkTYjFiGEROqTvgHbtFPVpLzxjqXboFI/eiJQqDkgTEC+iWJymynwinQU6z3sqPcXdJvS3U68RoRw3hP6lmzH/qxO1cPRhyhpcqimUiKjOSV0S2RVxc/VHVZwcQsJE3KN8RLEjlbM+q1ITy9pFby2Z/5BMgYq9k3ITfIpb0oBnU1TnB42iZlS048tyoXqUjjqLPezjkOZ5girOUUOdvG/xjBe8KhfKnXKvPHxTlUyq2cWvpTx9Ab5akf4=</latexit>...
<latexit sha1_base64="U947FTf33VvMcSyp91DS5S3sNzw=">AAACyXicjVLLSsNAFD2Nr1pfVZdugkVwIWWifbkruBHcVLAPaIsk6bTGpklMJsVaXPkDbvXHxD/Qv/DOmIIuik5Icufcc87MnTtW4DqRYOw9pS0sLi2vpFcza+sbm1vZ7Z1G5Mehzeu27/phyzIj7joerwtHuLwVhNwcWS5vWsMzmW+OeRg5vnclJgHvjsyB5/Qd2xQENTrjni+i62yO5Y3SqWEUdJY/YaVyUQYVxiqVom7kmRo5JKPmZ9/QQQ8+bMQYgcODoNiFiYieNgwwBIR1MSUspMhReY5HZEgbE4sTwyR0SN8BzdoJ6tFcekZKbdMqLr0hKXUckMYnXkixXE1X+Vg5S3Se91R5yr1N6G8lXiNCBW4I/Us3Y/5XJ2sR6KOianCopkAhsjo7cYnVqcid6z+qEuQQECbjHuVDim2lnJ2zrjSRql2eranyH4opUTm3E26MT7lLavCsi/r8oHFMlyBfvCzkqkdJq9PYwz4OqZ9lVHGOGurkfYtnvOBVu9DutHvt4ZuqpRLNLn4N7ekLyY6SAw==</latexit>...

(b) A refinement 𝜌 of 𝛾.

<latexit sha1_base64="8VE00YpRgESHiiw0IxrdULXUoPg=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISHpe1lwI7ipYB9giyTptMbmZTIp1uLKH3CrPyb+gf6Fd8YUdFF0QpI7555zZu69Vug6Mdf194yytLyyupZdz21sbm3v5Hf32nGQRDZr2YEbRF3LjJnr+KzFHe6ybhgx07Nc1rHGpyLfmbAodgL/kk9D1vfMke8MHdvkBLV7k0HA4+t8QdfKlVK1rqu6ViwWq1WDglqtZBi6ami6XAWkqxnk39DDAAFsJPDA4INT7MJETM8VDOgICetjRlhEkSPzDI/IkTYhFiOGSeiYviPaXaWoT3vhGUu1Tae49EakVHFEmoB4EcXiNFXmE+ks0EXeM+kp7jalv5V6eYRy3BD6l27O/K9O1MIxRF3W4FBNoUREdXbqksiuiJurP6ri5BASJuIB5SOKbamc91mVmljWLnpryvyHZApU7O2Um+BT3JIGPJ+iujhoFzWjqlUuyoXGSTrqLA5wiGOaZw0NnKGJFnnf4hkveFXOlTvlXnn4piqZVLOPX0t5+gKuh5H3</latexit>...

(c) A homomorphic image
𝛼 of 𝜌 of tree-width 2. See
Figure V.5 for a tree de-
composition of 𝛼 (ignor-
ing the dashed blue lines).

Figure V.4: An example of a homo-
morphism 𝑓∶ 𝜌 ↠ 𝛼. The strong
onto homomorphism 𝑓 is implicitly
defined: it sends the two yellow ver-
tices of 𝜌 on the unique yellow vertex
of 𝛼, and identifies some blue and
red vertices of 𝜌—thus creating pur-
ple vertices in 𝛼.

corner. The tagging is represented as follows: if an atom is tagged in a bag,
then it is drawn as a solid bold arrow in this bag. Note that by definition, a
given atom is tagged in exactly one bag. For now, blue dashed arrow between
bags can be ignored—they will illustrate Definition V.4.3.

Fact V.4.2. Let (𝑇, v, t) be a tagged tree decomposition of some strong onto
homomorphism 𝑓∶ 𝜌 ↠ 𝛼. Let 𝑇′ be the smallest connected subset of 𝑇
containing the image of t. Then (𝑇′, v|𝑇′ , t) is still a tagged tree decomposition
of 𝑓, whose width is at most the width of (𝑇, v, t).

In the following paragraphs, we extend the notion of tagging to paths. We
illustrate this notion in Figure V.5, where we describe the path induced by
the blue path of Figure V.4b—which starts at the top-most vertex, follows the
blue atoms, and reaches the bottom-most vertex. Informally, in the context of
a tagged tree decomposition (𝑇, v, t) of 𝑓∶ 𝜌 hom−−−→ 𝛼, given a path 𝜋 of 𝜌, say
𝑥0

𝜆1−−→ 𝑥1
𝜆2−−→ ⋯ 𝜆𝑛−−→ 𝑥𝑛, the path induced by 𝜋, denoted by t[𝜋], is informally

defined as the following “path” in 𝑇 × 𝛼, seen as a sequence of pairs of bags
and variables from 𝑉(𝑇) × vars(𝛼):
• it starts with the bag t(𝑥0

𝜆1−−→ 𝑥1) of 𝑇 and the variable 𝑓(𝑥0) of 𝛼; in
Figure V.5, this corresponds to bag 𝑏blue1 ;

• it then goes to ⟨t(𝑥0
𝜆1−−→ 𝑥1), 𝑓(𝑥1)⟩;

• it then follows the shortest path in 𝑇 (unique, since it is a tree) that goes to
the bag t(𝑥1

𝜆2−−→ 𝑥2), while staying in 𝑓(𝑥1) in 𝛼—in Figure V.5, this bag is

144

v.4. intermezzo: tagged tree decompositions

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="jTzRUVU7LTozEAE6KPZ2P0cdoMk=">AAACyXicjVHLSsNAFD2N7/qqunQTLIILCZM2vnYFN4KbCrYWbJFkOmpsXiYTsYorf8Ct/pj4B/oX3hlT0IXohCR3zj3nzNx7vSTwM8nYW8kYG5+YnJqeKc/OzS8sVpaW21mcp1y0eBzEacdzMxH4kWhJXwaik6TCDb1AnHiDfZU/uRFp5sfRsRwmohe6F5F/7nNXEtTu8n4ss7NKlVm1ul1jjsmsur3H2BYFjkPYtmlbTK8qitWMK6/ooo8YHDlCCESQFAdwkdFzChsMCWE93BOWUuTrvMADyqTNiSWI4RI6oO8F7U4LNKK98sy0mtMpAb0pKU2skyYmXkqxOs3U+Vw7K/Q373vtqe42pL9XeIWESlwS+pduxPyvTtUicY5dXYNPNSUaUdXxwiXXXVE3N79VJckhIUzFfcqnFHOtHPXZ1JpM16566+r8u2YqVO15wc3xoW5JAx5N0fw9aNcse9vaOnKqjc1i1NNYxRo2aJ47aOAATbTI+wpPeMaLcWhcG7fG3RfVKBWaFfxYxuMnYC6R1g==</latexit>· · ·

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="FEJtrfhNzZuVE23AUVfYcnt5c+E=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9t1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9RskAA=</latexit>

b0
<latexit sha1_base64="1/rAxDC+3KeXXRwcdiWQ17GYIwI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9r1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9bMkAE=</latexit>

b1
<latexit sha1_base64="5TcySsgzF+E8bNQjyCUNXjQH9Ws=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFZLia1lw02VF+4BaSpJOa2heTCZKKYI/4FY/TfwD/QvvjFNQi+iEJGfOvefM3Hu9NAwyYduvBWNhcWl5pbhaWlvf2Nwqb++0siTnPmv6SZjwjudmLAxi1hSBCFkn5cyNvJC1vfG5jLdvGc+CJL4Sk5T1IncUB8PAdwVRl16/2i9XbMtWy5wHjgYV6NVIyi+4xgAJfOSIwBBDEA7hIqOnCwc2UuJ6mBLHCQUqznCPEmlzymKU4RI7pu+Idl3NxrSXnplS+3RKSC8npYkD0iSUxwnL00wVz5WzZH/znipPebcJ/T3tFRErcEPsX7pZ5n91shaBIc5UDQHVlCpGVudrl1x1Rd7c/FKVIIeUOIkHFOeEfaWc9dlUmkzVLnvrqvibypSs3Ps6N8e7vCUN2Pk5znnQqlrOiXV8cVSpWXrURexhH4c0z1PUUEcDTfIe4RFPeDbqRmzkxt1nqlHQml18W8bDB9kskAI=</latexit>

b2
<latexit sha1_base64="hPKy8prCG0VYUWgwHuQSgEcbNBI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0jE17LgxoWLCrYVainJdFpD82IyEUrozh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xi8J/FTa9mvJmJtfWFwqL1dWVtfWN6qbW600zgTjTRYHsbjx3JQHfsSb0pcBv0kEd0Mv4G1vdK7i7XsuUj+OruU44d3QHUb+wGeuJKrt9fLowJn0qjXbsvUyZ4FTgBqK1YirL7hFHzEYMoTgiCAJB3CR0tOBAxsJcV3kxAlCvo5zTFAhb0YqTgqX2BF9h7TrFGxEe5Uz1W5GpwT0CnKa2CNPTDpBWJ1m6nimMyv2t9y5zqnuNqa/V+QKiZW4I/Yv31T5X5+qRWKAM12DTzUlmlHVsSJLpruibm5+qUpShoQ4hfsUF4SZdk77bGpPqmtXvXV1/E0rFav2rNBmeFe3pAE7P8c5C1qHlnNiHV8d1epWMeoydrCLfZrnKeq4QANNXeUjnvBsXBrCGBv5p9QoFZ5tfFvGwwcyGJG8</latexit>

bn�1

<latexit sha1_base64="TLt2HcpKNiEjeZlMuTnrCCJNa7A=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy4EVcVTFuopSTTaR3Mi2SilNKNP+BWv0z8A/0L74wpqEV0QpIz595zZu69fhKITNr2a8mYm19YXCovV1ZW19Y3qptbzSzOU8ZdFgdx2va9jAci4q4UMuDtJOVe6Ae85d+eqXjrjqeZiKMrOUp4N/SGkRgI5kmiXL83jia9as22bL3MWeAUoIZiNeLqC67RRwyGHCE4IkjCATxk9HTgwEZCXBdj4lJCQsc5JqiQNqcsThkesbf0HdKuU7AR7ZVnptWMTgnoTUlpYo80MeWlhNVppo7n2lmxv3mPtae624j+fuEVEitxQ+xfumnmf3WqFokBTnUNgmpKNKOqY4VLrruibm5+qUqSQ0Kcwn2Kp4SZVk77bGpNpmtXvfV0/E1nKlbtWZGb413dkgbs/BznLGgeWM6xdXR5WKtbxajL2MEu9mmeJ6jjHA245C3wiCc8GxdGYtwbo89Uo1RotvFtGQ8fA1iRSg==</latexit>

bn

<latexit sha1_base64="cQDmOq8rq3AyGKPJoLFF3h2qu1s=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVRLxtSy4cVnBPqCtJUmnNZgXk0mxhO7ErT/gVn9J/AP9C++MKahFdEKSM+fec2buvU7se4kwzdeCNje/sLhUXC6trK6tb+ibW40kSrnL6m7kR7zl2AnzvZDVhSd81oo5swPHZ03n5kzGmyPGEy8KL8U4Zt3AHobewHNtQVRP152rrCPYrcg4608mPaunl82KqZYxC6wclJGvWqS/oIM+IrhIEYAhhCDsw0ZCTxsWTMTEdZERxwl5Ks4wQYm0KWUxyrCJvaHvkHbtnA1pLz0TpXbpFJ9eTkoDe6SJKI8TlqcZKp4qZ8n+5p0pT3m3Mf2d3CsgVuCa2L9008z/6mQtAgOcqho8qilWjKzOzV1S1RV5c+NLVYIcYuIk7lOcE3aVctpnQ2kSVbvsra3ibypTsnLv5rkp3uUtacDWz3HOgsZBxTquHF0clquVfNRF7GAX+zTPE1Rxjhrq5D3CI57wrDW1iXan3X+maoVcs41vS3v4APr6ll4=</latexit>

bred1

<latexit sha1_base64="2zSl9ByCirCLVX75h4KQC3WdqS8=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVZLia1lw47KCfUBbS5JOa2iahMmkWEp24tYfcKu/JP6B/oV3xhTUIjohyZlz7zkz914n8r1YmOZrTltYXFpeya8W1tY3Nrf07Z16HCbcZTU39EPedOyY+V7AasITPmtGnNkjx2cNZ3gu440x47EXBldiErHOyB4EXt9zbUFUV9ed62lbsFsx5ayXpt1yVy+aJVMtYx5YGSgiW9VQf0EbPYRwkWAEhgCCsA8bMT0tWDAREdfBlDhOyFNxhhQF0iaUxSjDJnZI3wHtWhkb0F56xkrt0ik+vZyUBg5IE1IeJyxPM1Q8Uc6S/c17qjzl3Sb0dzKvEbECN8T+pZtl/lcnaxHo40zV4FFNkWJkdW7mkqiuyJsbX6oS5BARJ3GP4pywq5SzPhtKE6vaZW9tFX9TmZKVezfLTfAub0kDtn6Ocx7UyyXrpHR8eVSslLJR57GHfRzSPE9RwQWqqJH3GI94wrPW0FLtTrv/TNVymWYX35b28AH9WpZf</latexit>

bred2

<latexit sha1_base64="8WqaMEU37Y9BSqK9mJLstUqQjKY=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyyCG0sivpYFNy4r2Ae0tSTptIamSZhMxBq6cCdu/QG3+kPiH+hfeGdMQS2iE5KcOfeeM3PvtUPPjYRhvGa0qemZ2bnsfG5hcWl5Jb+6Vo2CmDus4gRewOu2FTHP9VlFuMJj9ZAza2B7rGb3T2S8dsV45Ab+uRiGrDWwer7bdR1LENXOb9gXSVOwa5Fw1hmN2om/a47a+YJRNNTSJ4GZggLSVQ7yL2iigwAOYgzA4EMQ9mAhoqcBEwZC4lpIiOOEXBVnGCFH2piyGGVYxPbp26NdI2V92kvPSKkdOsWjl5NSxzZpAsrjhOVpuorHylmyv3knylPebUh/O/UaECtwSexfunHmf3WyFoEujlUNLtUUKkZW56QuseqKvLn+pSpBDiFxEncozgk7Sjnus640kapd9tZS8TeVKVm5d9LcGO/yljRg8+c4J0F1r2geFg/O9gulYjrqLDaxhR2a5xFKOEUZFfK+wSOe8Kw1tFvtTrv/TNUyqWYd35b28AFt0pgZ</latexit>

bredn�1

<latexit sha1_base64="ha4WfMk8xhhBaQJuTmlMKsY+9l0=">AAAC13icjVHLSsNAFD2Nr1pfsS7dBIvgqqTia1lw47KCfUhbS5JOa2iahMlEWkJxJ279Abf6R+If6F94Z0xBLaITkpw5954zc++1Q8+NhGm+ZrS5+YXFpexybmV1bX1D38zXoiDmDqs6gRfwhm1FzHN9VhWu8Fgj5Mwa2h6r24NTGa/fMB65gX8hxiFrD62+7/ZcxxJEdfS8fZW0BBuJhLPuZNJJ/ElHL5hFUy1jFpRSUEC6KoH+gha6COAgxhAMPgRhDxYiepoowURIXBsJcZyQq+IME+RIG1MWowyL2AF9+7RrpqxPe+kZKbVDp3j0clIa2CVNQHmcsDzNUPFYOUv2N+9Eecq7jelvp15DYgWuif1LN838r07WItDDiarBpZpCxcjqnNQlVl2RNze+VCXIISRO4i7FOWFHKad9NpQmUrXL3loq/qYyJSv3Tpob413ekgZc+jnOWVDbL5aOiofnB4VyMR11FtvYwR7N8xhlnKGCKnmP8IgnPGuX2q12p91/pmqZVLOFb0t7+AAzTJen</latexit>

bredn

<latexit sha1_base64="c11vt0Z14uuUr56YijdoDZTHbyA=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgKiTia1lw47KCfWBbS5JOa2iahGQilhBwJ279Abf6ReIf6F94Z4ygFtEJSc6ce8+ZuffaoefG3DBeCsrM7Nz8QnGxtLS8srqmrm804iCJHFZ3Ai+IWrYVM8/1WZ273GOtMGLW2PZY0x4di3jzikWxG/hnfBKy7tga+u7AdSxOVE8t2xdph7NrntpewrKsl/pZT60YuiGXNg3MHFSQr1qgPqODPgI4SDAGgw9O2IOFmJ42TBgIiesiJS4i5Mo4Q4YSaRPKYpRhETui75B27Zz1aS88Y6l26BSP3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Sb0t3OvMbEcl8T+pfvM/K9O1MIxwJGswaWaQsmI6pzcJZFdETfXvlTFySEkTuA+xSPCjlR+9lmTmljWLnpryfirzBSs2Dt5boI3cUsasPlznNOgsaubB/r+6V6lquejLmITW9iheR6iihPUUCfvCR7wiCflXLlRbpW7j1SlkGvK+LaU+3djy5ge</latexit>

bbluen

<latexit sha1_base64="kpUupocieNpbAOU24aoqsITne1I=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlgEN5ZEfC0LblxWsA9oa0nSaQ3mRTIRS8jGnbj1B9zqB4l/oH/hnTEFtYhOSHLm3HvOzL3XCl0n5rr+WlCmpmdm54rzpYXFpeUVdXWtEQdJZLO6HbhB1LLMmLmOz+rc4S5rhREzPctlTevqRMSb1yyKncA/56OQdT1z6DsDxzY5UT11w7pIO5zd8NRyE5ZlvdTfNbKeWtYrulzaJDByUEa+aoH6gg76CGAjgQcGH5ywCxMxPW0Y0BES10VKXETIkXGGDCXSJpTFKMMk9oq+Q9q1c9anvfCMpdqmU1x6I1Jq2CZNQHkRYXGaJuOJdBbsb96p9BR3G9Hfyr08Yjkuif1LN878r07UwjHAsazBoZpCyYjq7NwlkV0RN9e+VMXJISRO4D7FI8K2VI77rElNLGsXvTVl/E1mClbs7Tw3wbu4JQ3Y+DnOSdDYqxiHlYOz/XK1ko+6iE1sYYfmeYQqTlFDnbxTPOIJz0pHuVXulPvPVKWQa9bxbSkPH58vmJA=</latexit>

bbluen�1

<latexit sha1_base64="hp5x72jkZC7Ok4kiZ7s/UFjjolw=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgKqTF17LgxmUF+8C2liSd1tA0CclELCHgTtz6A271i8Q/0L/wzpiCWkQnJDlz7j1n5t5rBa4TccN4zSlz8wuLS/nlwsrq2vqGurnViPw4tFnd9l0/bFlmxFzHY3XucJe1gpCZY8tlTWt0IuLNaxZGju+d80nAumNz6DkDxzY5UT21aF0mHc5ueGK5MUvTXlJJe2rJ0A25tFlQzkAJ2ar56gs66MOHjRhjMHjghF2YiOhpowwDAXFdJMSFhBwZZ0hRIG1MWYwyTGJH9B3Srp2xHu2FZyTVNp3i0huSUsMuaXzKCwmL0zQZj6WzYH/zTqSnuNuE/lbmNSaW44rYv3TTzP/qRC0cAxzLGhyqKZCMqM7OXGLZFXFz7UtVnBwC4gTuUzwkbEvltM+a1ESydtFbU8bfZKZgxd7OcmO8i1vSgMs/xzkLGhW9fKgfnO2Xqno26jy2sYM9mucRqjhFDXXynuART3hWLpRb5U65/0xVcpmmiG9LefgA1QCX4g==</latexit>

bblue2

<latexit sha1_base64="dAP+oeLP/H6qjAX8dtYPF02sLsA=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgKiTia1lw47KCfWBbS5JOa2iahGQilhBwJ279Abf6ReIf6F94Z4ygFtEJSc6ce8+ZuffaoefG3DBeCsrM7Nz8QnGxtLS8srqmrm804iCJHFZ3Ai+IWrYVM8/1WZ273GOtMGLW2PZY0x4di3jzikWxG/hnfBKy7tga+u7AdSxOVE8t2xdph7NrntpewrKsl5pZT60YuiGXNg3MHFSQr1qgPqODPgI4SDAGgw9O2IOFmJ42TBgIiesiJS4i5Mo4Q4YSaRPKYpRhETui75B27Zz1aS88Y6l26BSP3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Sb0t3OvMbEcl8T+pfvM/K9O1MIxwJGswaWaQsmI6pzcJZFdETfXvlTFySEkTuA+xSPCjlR+9lmTmljWLnpryfirzBSs2Dt5boI3cUsasPlznNOgsaubB/r+6V6lquejLmITW9iheR6iihPUUCfvCR7wiCflXLlRbpW7j1SlkGvK+LaU+3fSn5fh</latexit>

bblue1

Figure V.5: A fine tagged tree decom-
position of 𝛼 (see Figure V.4) of width
2. (Recall that some bags are omit-
ted for the sake of readability. These
bags are there to make the decompo-
sition fine.)

145

v. semantic tree-width and path-width of conjunctive regular path queries

the same as before, namely 𝑏blue1 , so we do nothing;
• then, it goes to ⟨t(𝑥1

𝜆2−−→ 𝑥2), 𝑓(𝑥2)⟩ in a single step;
• it then follows the shortest path in 𝑇 (unique, since it is a tree) that goes to

the bag t(𝑥2
𝜆𝜆−−→ 𝑥3), while staying in 𝑓(𝑥2) in 𝛼—in our running example,

we go from 𝑏blue𝑖 to 𝑏𝑖, and then to 𝑏𝑖+1 before reaching 𝑏blue𝑖+1 ;
• it continues in the same way for all other atoms of the path, ending up
with the bag t(𝑥𝑛−1

𝜆𝑛−−→ 𝑥𝑛) and the variable 𝑓(𝑥𝑛) of 𝛼.
By construction, note that the constructed sequence (𝑏𝑖, 𝑧𝑖)𝑖, also denoted by
(�𝑏𝑖𝑧𝑖�)𝑖, is such that 𝑧𝑖 ∈ v(𝑏𝑖). Moreover, the values taken by the sequence (𝑧𝑖)𝑖
are (𝑓(𝑥𝑗))0≤𝑗≤𝑛, in the same order but potentially with repetitions. Graphi-
cally, this sequence corresponds to a path in the tagged tree decomposition,
where one can not only move along the bags, but also along the variables they
contain. In our example, the path induced by the blue path of Figure V.4b
corresponds in Figure V.5 to the blue path consisting of both solid and dashed
edges. Moreover, note that a single atom 𝑥0

𝜆−→ 𝑥1 of 𝜌 induces the path:

��t(𝑥0
𝜆−→𝑥1)
𝑥0

�, �t(𝑥0
𝜆−→𝑥1)
𝑥1

��. (V.3)

Definition V.4.3 (Path induced in a tagged tree decomposition—formal
definition). Given a homomorphism 𝑓∶ 𝜌 hom−−−→ 𝛼 and a tagged tree de-
composition (𝑇, v, t) of 𝑓, the link from an atom 𝐴 = 𝑥 𝜆−→ 𝑦 to an atom
𝐵 = 𝑦 𝜆′−→ 𝑧 of 𝜌 is the unique (possibly empty) sequence � 𝑏1𝑓(𝑦)�, … , �

𝑏𝑛
𝑓(𝑦)�,

where t(𝐴), 𝑏1, … , 𝑏𝑛, t(𝐵) is the unique simple path from t(𝐴) to t(𝐵) in 𝑇.
The path induced by a path 𝜋 = 𝑥0

𝜆1−−→ 𝑥1
𝜆2−−→ ⋯ 𝜆𝑛−−→ 𝑥𝑛 of 𝜌 is the unique

sequence

t[𝜋] =̂ � 𝑏0
𝑓(𝑥0)

�� 𝑏0
𝑓(𝑥1)

� 𝐿1 �
𝑏1
𝑓(𝑥1)

�� 𝑏1
𝑓(𝑥2)

� 𝐿2⋯� 𝑏𝑛−2
𝑓(𝑥𝑛−2)

�𝐿𝑛−1 �
𝑏𝑛−1
𝑓(𝑥𝑛−1)

�� 𝑏𝑛−1𝑓(𝑥𝑛)
�

where 𝑏𝑖 = t(𝑥𝑖
𝜆𝑖+1−−−→ 𝑥𝑖+1) and 𝐿𝑖 is the link from 𝑥𝑖−1

𝜆𝑖−→ 𝑥𝑖 to 𝑥𝑖
𝜆𝑖+1−−−→ 𝑥𝑖+1,

for every 𝑖.

Moreover, given a bag 𝑏 of 𝑇 and a variable 𝑧 of 𝛼, we say that t[𝜋] leaves
𝑏 at 𝑧 when �𝑏𝑧� belongs to t[𝜋], and this is either the last element of the
sequence t[𝜋], or the next element of the sequence has a bag distinct from 𝑏.

For example, in Figure V.5, t[𝜋] leaves 𝑏blue1 at the first purple vertex. Simi-
larly, it leaves 𝑏1 and 𝑏2 at this same vertex. Moreover, it also leaves 𝑏2 at the
second purple vertex.

We say that an induced path is cyclic if it contains two positions 𝑖, 𝑗 such
that 𝑖 + 2 ≤ 𝑗 and 𝑏𝑖 = 𝑏𝑗. We say that it is acyclic otherwise, meaning that if
we visit a bag for the first time, we can visit it again at most once, in which
case it must be precisely at the next time step. For instance, the path induced
by the blue atom refinement in Figure V.5 is cyclic. However, the path induced
by a single atom—see (V.3)— is always acyclic.

Fact V.4.4. If an induced path t[𝜋] is acyclic, for any bag 𝑏, there is at most
one variable 𝑧 of 𝛼 such that t[𝜋] leaves 𝑏 at 𝑧.

146

v.4. intermezzo: tagged tree decompositions

Lastly, we define a fine tagged tree decomposition of 𝑓∶ 𝜌 hom−−−→ 𝛼 to be a
tagged tree decomposition of 𝑓 that is also a fine tree decomposition of 𝛼.
We abuse the notation and talk about the fine tagged tree decomposition of
a C2RPQ 𝛾 to talk about the fine tagged tree decomposition of the identity
homomorphism id ∶ 𝛾 ↠ 𝛾.

One of the key properties of fine tagged tree decompositions is that in any
of its non-branching paths—i.e. paths in 𝑇 whose non-extremal bags have
degree exactly 2—, at least half of the bags are non-full, i.e. they contain at
most 𝑘 variables2. Such bags will prove useful in the next section because of 2 Recall that in a decomposition of

width 𝑘, bags are allowed to contain
at most 𝑘 + 1 variables.

the following property.

<latexit sha1_base64="41Z2fWFbd5M2NWxH0Do9Xh2Pb3Q=">AAACyXicjVHLSsNAFD3G97vq0k2wCC4kJLHWuiu4Edwo2Ae0RSbptMbmZTIRa3HlD7jVHxP/QP/CO2MKuig6ITN3zj3nzNy5Tux7qTDN9yltemZ2bn5hcWl5ZXVtvbCxWU+jLHF5zY38KGk6LOW+F/Ka8ITPm3HCWeD4vOEMTmS+cceT1IvCSzGMeSdg/dDreS4TBNXbfRYE7KpQNA3bOi6bFd00SubBsW1TUKHVKuuWYapRRD7Oo8Ib2ugigosMAThCCIp9MKT0tWDBRExYByPCEoo8led4xBJpM2JxYjBCBzT3adfK0ZD20jNVapdO8elPSKljlzQR8RKK5Wm6ymfKWaKTvEfKU95tSKuTewWEClwT+pduzPyvTtYi0ENF1eBRTbFCZHVu7pKpV5E3139UJcghJkzGXconFLtKOX5nXWlSVbt8W6byH4opUbl3c26GT3lLavC4i/rkoG4bVtk4vCgVq/t5qxewjR3sUT+PUMUpzlEj7xs84wWv2pl2q91rD99UbSrXbOHX0J6+AFxBkdU=</latexit>�

<latexit sha1_base64="l52jJXovJeZgkBx9E9ehDZ+zZ/Q=">AAACynicjVHLSsNAFD3GV31XXboJFtGFhCS11u4ENy5cKNgHVJFJOq2heTGZCKW48wfc6oeJf6B/4Z0xBV0UnZDkzrnnnJl7r5eGQSZt+33GmJ2bX1gsLS2vrK6tb5Q3t1pZkgufN/0kTETHYxkPg5g3ZSBD3kkFZ5EX8rY3PFP59gMXWZDE13KU8tuIDeKgH/hMEtS+GbAoYvt35YptNVyndtwwbcutOtV6lYJqzW0cOaZj2XpVUKzLpPyGG/SQwEeOCBwxJMUhGDJ6unBgIyXsFmPCBEWBznM8Ypm0ObE4MRihQ/oOaNct0Jj2yjPTap9OCekVpDSxR5qEeIJidZqp87l2Vug077H2VHcb0d8rvCJCJe4J/Us3Yf5Xp2qR6ONE1xBQTalGVHV+4ZLrrqibmz+qkuSQEqbiHuUFxb5WTvpsak2ma1e9ZTr/oZkKVXu/4Ob4VLekAU+maE4PWq7lHFu1q6PK6WEx6hJ2sIsDmmcdpzjHJZq6yme84NW4MIQxMsbfVGOm0Gzj1zKevgDhYJIG</latexit>

�0

<latexit sha1_base64="g+PYZ1Iw4Cux0H2tj4oarZuWRaM=">AAAC4nicjVFBS9xAGH1Gba3VdrXHIgwuBU8hybraxYvgpUcFVwVXlmR21GA2CcmksIgnb97Eq3/Aq/0xxX9g/0XfjFnQg+iEJG/e9703831flCdxqT3vYcKZnJr+8HHm0+znufkvXxsLi3tlVhVSdWWWZMVBFJYqiVPV1bFO1EFeqHAYJWo/Otsy8f3fqijjLN3Vo1wdDcOTND6OZahJ9RtLo74vehu9DTHqBwSiJweZLoUlGG96bifw22sd4blBy2+ttwha7aCz6gvf9exqol7bWeMvehggg0SFIRRSaOIEIUo+h/DhISd3hHNyBVFs4woXmKW2YpZiRkj2jN8T7g5rNuXeeJZWLXlKwregUuAHNRnzCmJzmrDxyjob9jXvc+tp7jbiP6q9hmQ1Tsm+pRtnvldnatE4xk9bQ8yacsuY6mTtUtmumJuLZ1VpOuTkDB4wXhBLqxz3WVhNaWs3vQ1t/NFmGtbsZZ1b4Z+5JQc8nqJ4HewFrr/mtndWm5sr9ahn8B3LWOE817GJX9hGl96XuMM9/jgD58q5dm6eUp2JWvMNL5Zz+x9dlpl3</latexit>y1 y2 · · · yn

<latexit sha1_base64="9vE/umNay83FX6qdEDnCv67bBbE=">AAAC4nicjVFPT9RAHH1UwRURVj0akwkbE05NW9ZlN3sh8eIREhdIKNm0swM29F/aKYFsPHnzZrz6BbzqhzF+A/kWvhm7iRwITNOZN+/3e2/mN7+4TJNae97vJefBw+WVR53Hq0/Wnq5vdJ89P6iLppJqIou0qI7iqFZpkquJTnSqjspKRVmcqsP4/K2JH16oqk6K/L2+KtVJFp3lyWkiI01q2n11OfVFOA7H4nIaEIhQzgpdC0sw3vPcwB8NvKHw3L63PQoCgiFXfyB817Ojh3bsFd1fCDFDAYkGGRRyaOIUEWp+x/DhoSR3gjm5iiixcYWPWKW2YZZiRkT2nPMZd8ctm3NvPGurljwl5V9RKfCamoJ5FbE5Tdh4Y50Ne5v33Hqau11xjVuvjKzGB7J36RaZ99WZWjROMbQ1JKyptIypTrYujX0Vc3PxX1WaDiU5g2eMV8TSKhfvLKymtrWbt41s/I/NNKzZyza3wbW5JRu86KK4HRwErj9w3+z3e7tbbas7eIlNbLGfO9jFO+xhQu9P+I4f+OnMnM/OF+frv1RnqdW8wI3hfPsLVe+ZdA==</latexit>x1 x2 · · · xn

<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z

<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z
<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z
<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z
<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z
<latexit sha1_base64="rhwLREBcnm1FlnZ0OqLqPZXLMNo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkXoKiS1rXVXEMRlC/aBtUgyndbQvEgmQin6A27128Q/0L/wzpiCLorekOTOueecmTvXiTw3Eab5ntNWVtfWN/Kbha3tnd294v5BNwnTmPEOC70w7jt2wj034B3hCo/3o5jbvuPxnjO9kPXeA48TNwyuxSziQ9+eBO7YZbYgqH1zVyyZRu1Uhm4ap5XzqlWhpGHV6o26bhmmihKyaIXFN9xihBAMKXxwBBCUe7CR0DOABRMRYUPMCYspc1Wd4xEF0qbE4sSwCZ3Sd0KrQYYGtJaeiVIz2sWjNyaljhPShMSLKZe76aqeKmeJLvOeK095thn9nczLJ1TgntC/dAvmf3WyF4ExGqoHl3qKFCK7Y5lLqm5Fnlz/0ZUgh4gwmY+oHlPOlHJxz7rSJKp3ebe2qn8opkTlmmXcFJ/ylDTgxRT15Um3Ylh1o9aulprlbNR5HOEYZZrnGZq4Qgsd5f2MF7xql5qnJVr6TdVymeYQv0J7+gLL0Y+a</latexit>

Z

<latexit sha1_base64="9vE/umNay83FX6qdEDnCv67bBbE=">AAAC4nicjVFPT9RAHH1UwRURVj0akwkbE05NW9ZlN3sh8eIREhdIKNm0swM29F/aKYFsPHnzZrz6BbzqhzF+A/kWvhm7iRwITNOZN+/3e2/mN7+4TJNae97vJefBw+WVR53Hq0/Wnq5vdJ89P6iLppJqIou0qI7iqFZpkquJTnSqjspKRVmcqsP4/K2JH16oqk6K/L2+KtVJFp3lyWkiI01q2n11OfVFOA7H4nIaEIhQzgpdC0sw3vPcwB8NvKHw3L63PQoCgiFXfyB817Ojh3bsFd1fCDFDAYkGGRRyaOIUEWp+x/DhoSR3gjm5iiixcYWPWKW2YZZiRkT2nPMZd8ctm3NvPGurljwl5V9RKfCamoJ5FbE5Tdh4Y50Ne5v33Hqau11xjVuvjKzGB7J36RaZ99WZWjROMbQ1JKyptIypTrYujX0Vc3PxX1WaDiU5g2eMV8TSKhfvLKymtrWbt41s/I/NNKzZyza3wbW5JRu86KK4HRwErj9w3+z3e7tbbas7eIlNbLGfO9jFO+xhQu9P+I4f+OnMnM/OF+frv1RnqdW8wI3hfPsLVe+ZdA==</latexit>x1 x2 · · · xn
<latexit sha1_base64="9vE/umNay83FX6qdEDnCv67bBbE=">AAAC4nicjVFPT9RAHH1UwRURVj0akwkbE05NW9ZlN3sh8eIREhdIKNm0swM29F/aKYFsPHnzZrz6BbzqhzF+A/kWvhm7iRwITNOZN+/3e2/mN7+4TJNae97vJefBw+WVR53Hq0/Wnq5vdJ89P6iLppJqIou0qI7iqFZpkquJTnSqjspKRVmcqsP4/K2JH16oqk6K/L2+KtVJFp3lyWkiI01q2n11OfVFOA7H4nIaEIhQzgpdC0sw3vPcwB8NvKHw3L63PQoCgiFXfyB817Ojh3bsFd1fCDFDAYkGGRRyaOIUEWp+x/DhoSR3gjm5iiixcYWPWKW2YZZiRkT2nPMZd8ctm3NvPGurljwl5V9RKfCamoJ5FbE5Tdh4Y50Ne5v33Hqau11xjVuvjKzGB7J36RaZ99WZWjROMbQ1JKyptIypTrYujX0Vc3PxX1WaDiU5g2eMV8TSKhfvLKymtrWbt41s/I/NNKzZyza3wbW5JRu86KK4HRwErj9w3+z3e7tbbas7eIlNbLGfO9jFO+xhQu9P+I4f+OnMnM/OF+frv1RnqdW8wI3hfPsLVe+ZdA==</latexit>x1 x2 · · · xn

<latexit sha1_base64="g+PYZ1Iw4Cux0H2tj4oarZuWRaM=">AAAC4nicjVFBS9xAGH1Gba3VdrXHIgwuBU8hybraxYvgpUcFVwVXlmR21GA2CcmksIgnb97Eq3/Aq/0xxX9g/0XfjFnQg+iEJG/e9703831flCdxqT3vYcKZnJr+8HHm0+znufkvXxsLi3tlVhVSdWWWZMVBFJYqiVPV1bFO1EFeqHAYJWo/Otsy8f3fqijjLN3Vo1wdDcOTND6OZahJ9RtLo74vehu9DTHqBwSiJweZLoUlGG96bifw22sd4blBy2+ttwha7aCz6gvf9exqol7bWeMvehggg0SFIRRSaOIEIUo+h/DhISd3hHNyBVFs4woXmKW2YpZiRkj2jN8T7g5rNuXeeJZWLXlKwregUuAHNRnzCmJzmrDxyjob9jXvc+tp7jbiP6q9hmQ1Tsm+pRtnvldnatE4xk9bQ8yacsuY6mTtUtmumJuLZ1VpOuTkDB4wXhBLqxz3WVhNaWs3vQ1t/NFmGtbsZZ1b4Z+5JQc8nqJ4HewFrr/mtndWm5sr9ahn8B3LWOE817GJX9hGl96XuMM9/jgD58q5dm6eUp2JWvMNL5Zz+x9dlpl3</latexit>y1 y2 · · · yn<latexit sha1_base64="g+PYZ1Iw4Cux0H2tj4oarZuWRaM=">AAAC4nicjVFBS9xAGH1Gba3VdrXHIgwuBU8hybraxYvgpUcFVwVXlmR21GA2CcmksIgnb97Eq3/Aq/0xxX9g/0XfjFnQg+iEJG/e9703831flCdxqT3vYcKZnJr+8HHm0+znufkvXxsLi3tlVhVSdWWWZMVBFJYqiVPV1bFO1EFeqHAYJWo/Otsy8f3fqijjLN3Vo1wdDcOTND6OZahJ9RtLo74vehu9DTHqBwSiJweZLoUlGG96bifw22sd4blBy2+ttwha7aCz6gvf9exqol7bWeMvehggg0SFIRRSaOIEIUo+h/DhISd3hHNyBVFs4woXmKW2YpZiRkj2jN8T7g5rNuXeeJZWLXlKwregUuAHNRnzCmJzmrDxyjob9jXvc+tp7jbiP6q9hmQ1Tsm+pRtnvldnatE4xk9bQ8yacsuY6mTtUtmumJuLZ1VpOuTkDB4wXhBLqxz3WVhNaWs3vQ1t/NFmGtbsZZ1b4Z+5JQc8nqJ4HewFrr/mtndWm5sr9ahn8B3LWOE817GJX9hGl96XuMM9/jgD58q5dm6eUp2JWvMNL5Zz+x9dlpl3</latexit>y1 y2 · · · yn<latexit sha1_base64="xbOg/Lu/+I6igvVLP0c/QRbdC6k=">AAACxnicjVHLSsNAFD3GV62vqks3wSJ0FZL0ZXcFN11WtA+opSTptIbmRTJRShH8Abf6aeIf6F94Z0xBF0UnJLlz7jln5t5rR56bcF1/X1PWNza3tnM7+d29/YPDwtFxNwnT2GEdJ/TCuG9bCfPcgHW4yz3Wj2Jm+bbHevbsUuR79yxO3DC44fOIDX1rGrgT17E4QdfzkTEqFHWtYRrVWkPVNbNslOtlCspVs1ExVEPT5SoiW+2w8IZbjBHCQQofDAE4xR4sJPQMYEBHRNgQC8JiilyZZ3hEnrQpsRgxLEJn9J3SbpChAe2FZyLVDp3i0RuTUsU5aULixRSL01SZT6WzQFd5L6SnuNuc/nbm5RPKcUfoX7ol8786UQvHBBeyBpdqiiQiqnMyl1R2Rdxc/VEVJ4eIMBGPKR9T7Ejlss+q1CSydtFbS+Y/JFOgYu9k3BSf4pY04OUU1dVB19SMmla9qhSbpWzUOZziDCWaZx1NtNBGh7yneMYLXpWWEiip8vBNVdYyzQl+LeXpC7kUkF0=</latexit>y1
<latexit sha1_base64="xbOg/Lu/+I6igvVLP0c/QRbdC6k=">AAACxnicjVHLSsNAFD3GV62vqks3wSJ0FZL0ZXcFN11WtA+opSTptIbmRTJRShH8Abf6aeIf6F94Z0xBF0UnJLlz7jln5t5rR56bcF1/X1PWNza3tnM7+d29/YPDwtFxNwnT2GEdJ/TCuG9bCfPcgHW4yz3Wj2Jm+bbHevbsUuR79yxO3DC44fOIDX1rGrgT17E4QdfzkTEqFHWtYRrVWkPVNbNslOtlCspVs1ExVEPT5SoiW+2w8IZbjBHCQQofDAE4xR4sJPQMYEBHRNgQC8JiilyZZ3hEnrQpsRgxLEJn9J3SbpChAe2FZyLVDp3i0RuTUsU5aULixRSL01SZT6WzQFd5L6SnuNuc/nbm5RPKcUfoX7ol8786UQvHBBeyBpdqiiQiqnMyl1R2Rdxc/VEVJ4eIMBGPKR9T7Ejlss+q1CSydtFbS+Y/JFOgYu9k3BSf4pY04OUU1dVB19SMmla9qhSbpWzUOZziDCWaZx1NtNBGh7yneMYLXpWWEiip8vBNVdYyzQl+LeXpC7kUkF0=</latexit>y1

<latexit sha1_base64="N5M9lXwQ97gael3vUaL2A8k09Ug=">AAAC13icjVHNTtwwGBxSaPktCxy5WKyQOEVJWLaLuCD1wpFKLFCxaJV4DURkkyhx0CKEuFW99gV6hTdCvEF5C8YmK7UHVBzF/jzfzNifvyhP4lJ73tOE82Fy6uOn6ZnZufmFz4uNpeXDMqsKqboyS7LiOApLlcSp6upYJ+o4L1Q4jBJ1FF1+NfmjK1WUcZYe6OtcnQ7D8zQ+i2WoCfUby6N+IHo7PTnIdNnbEaM+wabnBv522+sIz215m9tBwKDD1W8L3/XsaKIe+1njET0MkEGiwhAKKTTjBCFKfifw4SEndoobYgWj2OYVbjFLbUWWIiMkesn5nLuTGk25N56lVUuekvAvqBRYpyYjr2BsThM2X1lng77lfWM9zd2uuUa115CoxgXR/+nGzPfqTC0aZ+jYGmLWlFvEVCdrl8q+irm5+KsqTYecmIkHzBeMpVWO31lYTWlrN28b2vwfyzSo2cuaW+HZ3JINHndRvB0cBq7fdre+tZq7G3Wrp7GKNWywn1+wiz3so0vvEX7jHg/Od+fO+eH8fKU6E7VmBf8M59cL/euWUA==</latexit>x2 · · · xn
<latexit sha1_base64="Bgqc3r/fMNzoiTdyQBwFKV6Ovo0=">AAACxnicjVHLTsJAFD3UF+ILdemmkZiwatqKCDsSNywxyiNBQtoyYENfaacqISb+gFv9NOMf6F94ZyyJLohO05k7555zZu5cO/LchOv6e05ZWV1b38hvFra2d3b3ivsHnSRMY4e1ndAL455tJcxzA9bmLvdYL4qZ5dse69rTC5Hv3rE4ccPgms8iNvCtSeCOXcfiBF09DINhsaRrplGv6jVV1yr6ad00KajRalRVQ9PlKCEbrbD4hhuMEMJBCh8MATjFHiwk9PVhQEdE2ABzwmKKXJlneESBtCmxGDEsQqc0T2jXz9CA9sIzkWqHTvHoj0mp4oQ0IfFiisVpqsyn0lmgy7zn0lPcbUarnXn5hHLcEvqXbsH8r07UwjFGTdbgUk2RRER1TuaSylcRN1d/VMXJISJMxCPKxxQ7Url4Z1VqElm7eFtL5j8kU6Bi72TcFJ/iltTgRRfV5UHH1IyqdnZZKTXKWavzOMIxytTPczTQRAtt8p7gGS94VZpKoKTK/TdVyWWaQ/waytMXR0uQmQ==</latexit>xn

<latexit sha1_base64="SWPAJdYAxlOIQWkzDIUHsUXNMKo=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwISGptba7giAuW+gLapFkOq2heZFMhFL0B9zqt4l/oH/hnTEFXRSdkJk7555zZu5cJ/LcRJjme05bWV1b38hvFra2d3b3ivsH3SRMY8Y7LPTCuO/YCffcgHeEKzzej2Ju+47He870SuZ7DzxO3DBoi1nEh749Cdyxy2xBUKt9VyyZRtmqV82abhoV87xeLlNQo9Wq6pZhqlFCNpph8Q23GCEEQwofHAEExR5sJPQNYMFERNgQc8JiilyV53hEgbQpsTgxbEKnNE9oN8jQgPbSM1FqRqd49Mek1HFCmpB4McXyNF3lU+Us0WXec+Up7zaj1cm8fEIF7gn9S7dg/lcnaxEYo6ZqcKmmSCGyOpa5pOpV5M31H1UJcogIk/GI8jHFTCkX76wrTaJql29rq/yHYkpU7lnGTfEpb0kNXnRRXx50y4ZVNS5alVLjLGt1Hkc4xin18xIN3KCJjvJ+xgtetWvN0xIt/aZquUxziF9De/oCvyGPmA==</latexit>

T
<latexit sha1_base64="tw9ojNiTlROdY2mm2fORuzMv8Kw=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkV0ISHp0+4KLnRZpS+oRZJ0WkPzIpkUShF/wK3+mvgH+hfeGVPQRdEJSe6ce86ZufdaoevEXNffM8rK6tr6RnYzt7W9s7uX3z/oxEES2axtB24Q9SwzZq7jszZ3uMt6YcRMz3JZ15pcinx3yqLYCfwWn4Vs4Jlj3xk5tskJum2d3ucLulYvGpVqXdW1Ysko1UoUlCrFetlQDU2Xq4B0NYP8G+4wRAAbCTww+OAUuzAR09OHAR0hYQPMCYsocmSe4RE50ibEYsQwCZ3Qd0y7for6tBeesVTbdIpLb0RKFSekCYgXUSxOU2U+kc4CXeY9l57ibjP6W6mXRyjHA6F/6RbM/+pELRwjXMgaHKoplIiozk5dEtkVcXP1R1WcHELCRDykfESxLZWLPqtSE8vaRW9Nmf+QTIGKvZ1yE3yKW9KAF1NUlwedomZUtcpNudA4T0edxRGOcUbzrKGBazTRJu8RnvGCV+VK8RSuTL+pSibVHOLXUp6+AEI6j8k=</latexit>

T 0

Figure V.6: The query 𝛾 ∧ 𝛾′ ∧ 𝛿
(top) and one of its fine tagged tree
decomposition of width at most 𝑘
(bottom).

Proposition V.4.5. Let 𝛾, 𝛾′ be C2RPQs, and (𝑇, v, t)—resp. (𝑇′, v′, t′)—be a
fine tagged tree decomposition of width 𝑘 of 𝛾—resp. of 𝛾′. Let 𝑏, 𝑏′ be leaves
of 𝑇 and 𝑇′ respectively, such that 𝑏 and 𝑏′ are non-full bags of the same
cardinality, and let 𝑍 = v(𝑏) ∩ v′(𝑏′). In particular, we have

v(𝑏) = {𝑥1, … , 𝑥𝑛} ∪ 𝑍 and v′(𝑏′) = {𝑦1, … , 𝑦𝑛} ∪ 𝑍,

from some variables s.t. the 𝑥𝑖’s are disjoint from the 𝑦𝑖’s. Assume moreover
that vars(𝛾) ∩ vars(𝛾′) ⊆ 𝑍. Then, for any conjunction 𝛿 of atoms the form:
• 𝑥𝑖

𝐿−→ 𝑦𝑖 for some 𝑖 ∈ ⟦1, 𝑛⟧,
• 𝑥𝑖

𝐿−→ 𝑧 for some 𝑖 ∈ ⟦1, 𝑛⟧ and 𝑧 ∈ 𝑍,
• 𝑧 𝐿−→ 𝑦𝑖 for some 𝑖 ∈ ⟦1, 𝑛⟧ and 𝑧 ∈ 𝑍,
• 𝑧 𝐿−→ 𝑧′ for some 𝑧, 𝑧′ ∈ 𝑍,
the query 𝛾∧𝛾′ ∧ 𝛿 has a fine tagged tree decomposition of width 𝑘 in which
the length of the longest non-branching path is smaller than the sum of the
longest non-branching paths of 𝑇 and of 𝑇′, plus 2𝑛.

The proof of Proposition V.4.5 is elementary and illustrated in Figure V.6.

Proof. We connect 𝑇 with 𝑇′ with 2𝑛 ≤ 2𝑘 bags: start from 𝑏0 =̂ 𝑏, which

147

v. semantic tree-width and path-width of conjunctive regular path queries

contains {𝑥1, … , 𝑥𝑛} ∪ 𝑍. Then create the following bags:
• v(𝑏1) =̂ {𝑥1, 𝑥2, … , 𝑥𝑛} ∪ {𝑦1} ∪ 𝑍 = v(𝑏0) ∪ {𝑦1},
• v(𝑏2) =̂ {𝑥2, … , 𝑥𝑛} ∪ {𝑦1} ∪ 𝑍 = v(𝑏1) ∖ {𝑥1},
• v(𝑏2𝑖−1) =̂ {𝑥𝑖, … , 𝑥𝑛} ∪ {𝑦1, … , 𝑦𝑖} ∪ 𝑍 = v(𝑏2𝑖−2) ∪ {𝑦𝑖},
• v(𝑏2𝑖) =̂ {𝑥𝑖+1, … , 𝑥𝑛} ∪ {𝑦1, … , 𝑦𝑖} ∪ 𝑍 = v(𝑏2𝑖−1) ∖ {𝑥𝑖}
for 1 ≤ 𝑖 ≤ 𝑛, and observe that v(𝑏2𝑛) = v′(𝑏′). Then, tag every atom of 𝛿 in
the first bag of ⟨𝑏1, … , 𝑏2𝑛−1⟩ containing both variables of the atom. Such a
bag always exists:
• an atom of the form 𝑥𝑖

𝐿−→ 𝑧 is tagged in 𝑏0;
• an atom of the form 𝑧 𝐿−→ 𝑧′ is tagged in 𝑏0;
• an atom of the form 𝑥𝑖

𝐿−→ 𝑦𝑖 is tagged in 𝑏2𝑖−1;
• an atom of the form 𝑧 𝐿−→ 𝑦𝑖 is tagged in 𝑏2𝑖−1.
Observe that the decomposition obtained is indeed a fine tagged tree de-
composition: in particular, it satisfies that for each variable 𝑡, the set of all
𝑏 ∈ 𝑇 containing 𝑡 is a connected subtree of 𝑇, thanks to the assumption that
vars(𝛾) ∩ vars(𝛾′) ⊆ 𝑍.

V.5 Key Lemma: Maximal Under Approximations are Se-
mantically Finite

Wecan now start to describe the constructions used to prove the Key LemmaV.3.8.
Given a fixed C2RPQ 𝛾 and a fixed 𝑘 ≥ 1, we call a trio any triple (𝛼, 𝜌, 𝑓)
such that 𝛼 ∈ 𝒯𝑤𝑘, 𝜌 ∈ Ref(𝛾) and 𝑓 is a strong onto homomorphism from 𝜌
to 𝛼. For clarity, we will denote such a trio by simply “𝑓∶ 𝜌 ↠ 𝛼”. Using this
terminology, in order to prove Lemma V.3.8, it is sufficient (and necessary) to
show that:

for every trio 𝑓∶ 𝜌 ↠ 𝛼, there exists another trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′

s.t. 𝛼 ⫅ 𝛼′ and 𝜌′ ∈ Ref≤`(𝛾).

Remark V.5.1. Note that this section does not use the fact that 𝑘 ≥ 2. In
particular, Lemma V.3.8 holds for 𝑘 = 1. However, Corollary V.3.6 does
not apply, and App𝒯𝑤1

(𝛾) (which we are interested in) is not equivalent to
App⋆𝒯𝑤1

(𝛾) (which is shown to be computable by Lemma V.3.8). We discuss
this case in further details in Section V.7.

V.5.1 Local Acyclicity

Our first construction, which will ultimately allow us to bound the size of
atom refinements, shows that we can assume w.l.o.g. that they induce acyclic
paths in a fine tagged tree decomposition of 𝑓.

Lemma V.5.2. For any trio 𝑓∶ 𝜌 ↠ 𝛼, there exists a trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′ and a
fine tagged tree decomposition (𝑇′, v′, t′) of width at most 𝑘 of 𝑓′ such that
𝛼 ⫅ 𝛼′, ‖𝜌′‖at ≤ ‖𝜌‖at and every atom refinement of 𝜌′ induces an acyclic
path in the tree 𝑇′, in which case we say that (𝑇′, v′, t′) is locally acyclic w.r.t.

148

v.5. key lemma: maximal under approximations are semantically finite

𝑓′.

Note that the fact that 𝑓′ is a trio implies in particular that 𝜌′ is a refinement
of 𝛾. The construction behind Lemma V.5.2 is illustrated in Figure V.7.

Notation V.5.3. When two bags are linked by a dashed edge (as in Figures V.5
and V.7), it means that there is another bag in between them, which is there
to ensure the fact that the decomposition is fine. The vertices contained in
this extra bag are exactly the intersection of the vertices contained by its two
neighbours, and no atom is tagged inside.

Informal proof of Lemma V.5.2. Start with a trio 𝑓∶ 𝜌 ↠ 𝛼, and let (𝑇, v, t)
be a fine tagged tree decomposition of 𝑓. Consider an atom refinement
𝜋 =̂ 𝑧0

𝐿1−→ 𝑧1
𝐿2−→ ⋯ 𝐿𝑛−→ 𝑧𝑛 in 𝜌 of some atom 𝑥 𝐿−→ 𝑦 (with 𝑧0 =̂ 𝑥 and

𝑧𝑛 =̂ 𝑦), and assume that it induces a cyclic path in 𝑇— see e.g. Figure V.5.
It means that some variables 𝑧𝑖 and 𝑧𝑗 are mapped by 𝑓 to the same bag of
𝑇, somewhere along the path induced by 𝜋. It suffices then to condense
𝜌 by replacing the atoms 𝑧𝑖

𝐿𝑖+1−−−→ ⋯ 𝐿𝑗−→ 𝑧𝑗 by a single atom 𝑧𝑖
[𝐿𝑖+1⋯𝐿𝑗]−−−−−−−→

𝑧𝑗. We thus obtain a new refinement 𝜌′ of 𝛾. Then define 𝛼′ be simply
adding an atom 𝑓(𝑧𝑖)

𝐿𝑖+1⋯𝐿𝑗−−−−−−→ 𝑓(𝑧𝑗). The definitions of 𝑓′ and (𝑇′, v′, t′) are
then straightforward—potentially, 𝛼′ should be restricted to the image of
𝑓′ ∶ 𝜌′ hom−−−→ 𝛼′ so that 𝑓′ is still strong onto by using Fact V.4.2. Crucially,
𝛼 ⫅ 𝛼′, and 𝛼′ still has tree-width at most 𝑘 since we picked 𝑓(𝑧𝑖) and
𝑓(𝑧𝑗) so that they belonged to the same bag of 𝑇: therefore, adding an atom
between them is innocuous. We then iterate this construction for every atom
refinement.

Figure V.7 shows the fine tagged tree decomposition (𝑇′, v′, t′) obtained by
applying the previous construction to the decomposition (𝑇, v, t) of Figure V.5
for the blue atom refinement, followed by applying Fact V.4.2. In Figure V.5,
the induced path was leaving the bag 𝑏2 both at the first and at the second
purple vertex. This leads in Figure V.7 to a new atom between these vertices.
The same phenomenon happens to bags 𝑏3, … , 𝑏𝑛−1. Lastly, note that because
the atoms tagged in bags 𝑏blue2 , … , 𝑏blue𝑛−1 are not in the image of 𝑓′, these bags
were removed by Fact V.4.2.

Formal proof of Lemma V.5.2. Let 𝜋 be an atom refinement in 𝜌 that induce a
cyclic path in 𝑇, say

𝜋 = 𝑧0
𝐿1−→ 𝑧1

𝐿2−→ ⋯ 𝐿𝑛−1−−−→ 𝑧𝑛−1
𝐿𝑛−→ 𝑧𝑛.

In order to build the trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′ and a fine tagged tree decomposition
𝑇′ of 𝑓′ of width at most 𝑘, we will mainly use the fact that if two vertices
(𝑢, 𝑣) of some graph 𝐺 belong to the same bag of a tree decomposition ⟨𝐓, v⟩
of 𝐺, then ⟨𝐓, v⟩ is still also a tree decomposition of the graph obtained by
adding an edge from 𝑢 to 𝑣.

149

v. semantic tree-width and path-width of conjunctive regular path queries

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="jTzRUVU7LTozEAE6KPZ2P0cdoMk=">AAACyXicjVHLSsNAFD2N7/qqunQTLIILCZM2vnYFN4KbCrYWbJFkOmpsXiYTsYorf8Ct/pj4B/oX3hlT0IXohCR3zj3nzNx7vSTwM8nYW8kYG5+YnJqeKc/OzS8sVpaW21mcp1y0eBzEacdzMxH4kWhJXwaik6TCDb1AnHiDfZU/uRFp5sfRsRwmohe6F5F/7nNXEtTu8n4ss7NKlVm1ul1jjsmsur3H2BYFjkPYtmlbTK8qitWMK6/ooo8YHDlCCESQFAdwkdFzChsMCWE93BOWUuTrvMADyqTNiSWI4RI6oO8F7U4LNKK98sy0mtMpAb0pKU2skyYmXkqxOs3U+Vw7K/Q373vtqe42pL9XeIWESlwS+pduxPyvTtUicY5dXYNPNSUaUdXxwiXXXVE3N79VJckhIUzFfcqnFHOtHPXZ1JpM16566+r8u2YqVO15wc3xoW5JAx5N0fw9aNcse9vaOnKqjc1i1NNYxRo2aJ47aOAATbTI+wpPeMaLcWhcG7fG3RfVKBWaFfxYxuMnYC6R1g==</latexit>· · ·

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="FEJtrfhNzZuVE23AUVfYcnt5c+E=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9t1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9RskAA=</latexit>

b0
<latexit sha1_base64="1/rAxDC+3KeXXRwcdiWQ17GYIwI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9r1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9bMkAE=</latexit>

b1
<latexit sha1_base64="5TcySsgzF+E8bNQjyCUNXjQH9Ws=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFZLia1lw02VF+4BaSpJOa2heTCZKKYI/4FY/TfwD/QvvjFNQi+iEJGfOvefM3Hu9NAwyYduvBWNhcWl5pbhaWlvf2Nwqb++0siTnPmv6SZjwjudmLAxi1hSBCFkn5cyNvJC1vfG5jLdvGc+CJL4Sk5T1IncUB8PAdwVRl16/2i9XbMtWy5wHjgYV6NVIyi+4xgAJfOSIwBBDEA7hIqOnCwc2UuJ6mBLHCQUqznCPEmlzymKU4RI7pu+Idl3NxrSXnplS+3RKSC8npYkD0iSUxwnL00wVz5WzZH/znipPebcJ/T3tFRErcEPsX7pZ5n91shaBIc5UDQHVlCpGVudrl1x1Rd7c/FKVIIeUOIkHFOeEfaWc9dlUmkzVLnvrqvibypSs3Ps6N8e7vCUN2Pk5znnQqlrOiXV8cVSpWXrURexhH4c0z1PUUEcDTfIe4RFPeDbqRmzkxt1nqlHQml18W8bDB9kskAI=</latexit>

b2
<latexit sha1_base64="hPKy8prCG0VYUWgwHuQSgEcbNBI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0jE17LgxoWLCrYVainJdFpD82IyEUrozh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xi8J/FTa9mvJmJtfWFwqL1dWVtfWN6qbW600zgTjTRYHsbjx3JQHfsSb0pcBv0kEd0Mv4G1vdK7i7XsuUj+OruU44d3QHUb+wGeuJKrt9fLowJn0qjXbsvUyZ4FTgBqK1YirL7hFHzEYMoTgiCAJB3CR0tOBAxsJcV3kxAlCvo5zTFAhb0YqTgqX2BF9h7TrFGxEe5Uz1W5GpwT0CnKa2CNPTDpBWJ1m6nimMyv2t9y5zqnuNqa/V+QKiZW4I/Yv31T5X5+qRWKAM12DTzUlmlHVsSJLpruibm5+qUpShoQ4hfsUF4SZdk77bGpPqmtXvXV1/E0rFav2rNBmeFe3pAE7P8c5C1qHlnNiHV8d1epWMeoydrCLfZrnKeq4QANNXeUjnvBsXBrCGBv5p9QoFZ5tfFvGwwcyGJG8</latexit>

bn�1

<latexit sha1_base64="TLt2HcpKNiEjeZlMuTnrCCJNa7A=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy4EVcVTFuopSTTaR3Mi2SilNKNP+BWv0z8A/0L74wpqEV0QpIz595zZu69fhKITNr2a8mYm19YXCovV1ZW19Y3qptbzSzOU8ZdFgdx2va9jAci4q4UMuDtJOVe6Ae85d+eqXjrjqeZiKMrOUp4N/SGkRgI5kmiXL83jia9as22bL3MWeAUoIZiNeLqC67RRwyGHCE4IkjCATxk9HTgwEZCXBdj4lJCQsc5JqiQNqcsThkesbf0HdKuU7AR7ZVnptWMTgnoTUlpYo80MeWlhNVppo7n2lmxv3mPtae624j+fuEVEitxQ+xfumnmf3WqFokBTnUNgmpKNKOqY4VLrruibm5+qUqSQ0Kcwn2Kp4SZVk77bGpNpmtXvfV0/E1nKlbtWZGb413dkgbs/BznLGgeWM6xdXR5WKtbxajL2MEu9mmeJ6jjHA245C3wiCc8GxdGYtwbo89Uo1RotvFtGQ8fA1iRSg==</latexit>

bn

<latexit sha1_base64="cQDmOq8rq3AyGKPJoLFF3h2qu1s=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVRLxtSy4cVnBPqCtJUmnNZgXk0mxhO7ErT/gVn9J/AP9C++MKahFdEKSM+fec2buvU7se4kwzdeCNje/sLhUXC6trK6tb+ibW40kSrnL6m7kR7zl2AnzvZDVhSd81oo5swPHZ03n5kzGmyPGEy8KL8U4Zt3AHobewHNtQVRP152rrCPYrcg4608mPaunl82KqZYxC6wclJGvWqS/oIM+IrhIEYAhhCDsw0ZCTxsWTMTEdZERxwl5Ks4wQYm0KWUxyrCJvaHvkHbtnA1pLz0TpXbpFJ9eTkoDe6SJKI8TlqcZKp4qZ8n+5p0pT3m3Mf2d3CsgVuCa2L9008z/6mQtAgOcqho8qilWjKzOzV1S1RV5c+NLVYIcYuIk7lOcE3aVctpnQ2kSVbvsra3ibypTsnLv5rkp3uUtacDWz3HOgsZBxTquHF0clquVfNRF7GAX+zTPE1Rxjhrq5D3CI57wrDW1iXan3X+maoVcs41vS3v4APr6ll4=</latexit>

bred1

<latexit sha1_base64="2zSl9ByCirCLVX75h4KQC3WdqS8=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVZLia1lw47KCfUBbS5JOa2iahMmkWEp24tYfcKu/JP6B/oV3xhTUIjohyZlz7zkz914n8r1YmOZrTltYXFpeya8W1tY3Nrf07Z16HCbcZTU39EPedOyY+V7AasITPmtGnNkjx2cNZ3gu440x47EXBldiErHOyB4EXt9zbUFUV9ed62lbsFsx5ayXpt1yVy+aJVMtYx5YGSgiW9VQf0EbPYRwkWAEhgCCsA8bMT0tWDAREdfBlDhOyFNxhhQF0iaUxSjDJnZI3wHtWhkb0F56xkrt0ik+vZyUBg5IE1IeJyxPM1Q8Uc6S/c17qjzl3Sb0dzKvEbECN8T+pZtl/lcnaxHo40zV4FFNkWJkdW7mkqiuyJsbX6oS5BARJ3GP4pywq5SzPhtKE6vaZW9tFX9TmZKVezfLTfAub0kDtn6Ocx7UyyXrpHR8eVSslLJR57GHfRzSPE9RwQWqqJH3GI94wrPW0FLtTrv/TNVymWYX35b28AH9WpZf</latexit>

bred2

<latexit sha1_base64="8WqaMEU37Y9BSqK9mJLstUqQjKY=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyyCG0sivpYFNy4r2Ae0tSTptIamSZhMxBq6cCdu/QG3+kPiH+hfeGdMQS2iE5KcOfeeM3PvtUPPjYRhvGa0qemZ2bnsfG5hcWl5Jb+6Vo2CmDus4gRewOu2FTHP9VlFuMJj9ZAza2B7rGb3T2S8dsV45Ab+uRiGrDWwer7bdR1LENXOb9gXSVOwa5Fw1hmN2om/a47a+YJRNNTSJ4GZggLSVQ7yL2iigwAOYgzA4EMQ9mAhoqcBEwZC4lpIiOOEXBVnGCFH2piyGGVYxPbp26NdI2V92kvPSKkdOsWjl5NSxzZpAsrjhOVpuorHylmyv3knylPebUh/O/UaECtwSexfunHmf3WyFoEujlUNLtUUKkZW56QuseqKvLn+pSpBDiFxEncozgk7Sjnus640kapd9tZS8TeVKVm5d9LcGO/yljRg8+c4J0F1r2geFg/O9gulYjrqLDaxhR2a5xFKOEUZFfK+wSOe8Kw1tFvtTrv/TNUyqWYd35b28AFt0pgZ</latexit>

bredn�1

<latexit sha1_base64="ha4WfMk8xhhBaQJuTmlMKsY+9l0=">AAAC13icjVHLSsNAFD2Nr1pfsS7dBIvgqqTia1lw47KCfUhbS5JOa2iahMlEWkJxJ279Abf6R+If6F94Z0xBLaITkpw5954zc++1Q8+NhGm+ZrS5+YXFpexybmV1bX1D38zXoiDmDqs6gRfwhm1FzHN9VhWu8Fgj5Mwa2h6r24NTGa/fMB65gX8hxiFrD62+7/ZcxxJEdfS8fZW0BBuJhLPuZNJJ/ElHL5hFUy1jFpRSUEC6KoH+gha6COAgxhAMPgRhDxYiepoowURIXBsJcZyQq+IME+RIG1MWowyL2AF9+7RrpqxPe+kZKbVDp3j0clIa2CVNQHmcsDzNUPFYOUv2N+9Eecq7jelvp15DYgWuif1LN838r07WItDDiarBpZpCxcjqnNQlVl2RNze+VCXIISRO4i7FOWFHKad9NpQmUrXL3loq/qYyJSv3Tpob413ekgZc+jnOWVDbL5aOiofnB4VyMR11FtvYwR7N8xhlnKGCKnmP8IgnPGuX2q12p91/pmqZVLOFb0t7+AAzTJen</latexit>

bredn

<latexit sha1_base64="c11vt0Z14uuUr56YijdoDZTHbyA=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgKiTia1lw47KCfWBbS5JOa2iahGQilhBwJ279Abf6ReIf6F94Z4ygFtEJSc6ce8+ZuffaoefG3DBeCsrM7Nz8QnGxtLS8srqmrm804iCJHFZ3Ai+IWrYVM8/1WZ273GOtMGLW2PZY0x4di3jzikWxG/hnfBKy7tga+u7AdSxOVE8t2xdph7NrntpewrKsl/pZT60YuiGXNg3MHFSQr1qgPqODPgI4SDAGgw9O2IOFmJ42TBgIiesiJS4i5Mo4Q4YSaRPKYpRhETui75B27Zz1aS88Y6l26BSP3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Sb0t3OvMbEcl8T+pfvM/K9O1MIxwJGswaWaQsmI6pzcJZFdETfXvlTFySEkTuA+xSPCjlR+9lmTmljWLnpryfirzBSs2Dt5boI3cUsasPlznNOgsaubB/r+6V6lquejLmITW9iheR6iihPUUCfvCR7wiCflXLlRbpW7j1SlkGvK+LaU+3djy5ge</latexit>

bbluen

<latexit sha1_base64="dAP+oeLP/H6qjAX8dtYPF02sLsA=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgKiTia1lw47KCfWBbS5JOa2iahGQilhBwJ279Abf6ReIf6F94Z4ygFtEJSc6ce8+ZuffaoefG3DBeCsrM7Nz8QnGxtLS8srqmrm804iCJHFZ3Ai+IWrYVM8/1WZ273GOtMGLW2PZY0x4di3jzikWxG/hnfBKy7tga+u7AdSxOVE8t2xdph7NrntpewrKsl5pZT60YuiGXNg3MHFSQr1qgPqODPgI4SDAGgw9O2IOFmJ42TBgIiesiJS4i5Mo4Q4YSaRPKYpRhETui75B27Zz1aS88Y6l26BSP3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Sb0t3OvMbEcl8T+pfvM/K9O1MIxwJGswaWaQsmI6pzcJZFdETfXvlTFySEkTuA+xSPCjlR+9lmTmljWLnpryfirzBSs2Dt5boI3cUsasPlznNOgsaubB/r+6V6lquejLmITW9iheR6iihPUUCfvCR7wiCflXLlRbpW7j1SlkGvK+LaU+3fSn5fh</latexit>

bblue1

Figure V.7: Changing the blue atom
refinement of 𝛾 (see Figure V.5) so
that it induces an acyclic path.

150

v.5. key lemma: maximal under approximations are semantically finite

By definition, the induced path t[𝜋] = ��𝑏𝑖𝑥𝑖��𝑖 is of the form

t[𝜋] = �� 𝑏𝑖0𝑓(𝑧0)
�, �𝑏𝑖0+1𝑓(𝑧1)

�, … , � 𝑏𝑖1𝑓(𝑧1)
�, �𝑏𝑖1+1𝑓(𝑧2)

�, … , � 𝑏𝑖𝑛−1𝑓(𝑧𝑛−1)
�, �𝑏𝑖𝑛−1+1𝑓(𝑧𝑛)

��,

where 𝑖0 =̂ 0, and for each 𝑙, 𝑏𝑖𝑙 = 𝑏𝑖𝑙+1. Since it is not acyclic, there exists (𝑗, 𝑗
′)

such that 𝑗 + 2 ≤ 𝑗′ and 𝑏𝑗 = 𝑏𝑗′ . Let 𝑛(𝑗) (resp. 𝑛(𝑗′)) denote the unique index
such that 𝑖𝑛(𝑗)−1 < 𝑗 ≤ 𝑖𝑛(𝑗) (resp. 𝑖𝑛(𝑗′)−1 < 𝑗′ ≤ 𝑖𝑛(𝑗′)). In particular, we have
𝑓(𝑧𝑛(𝑗)) ∈ v(𝑏𝑗) and 𝑓(𝑧𝑛(𝑗′)) ∈ v(𝑏𝑗′). We claim that 𝑛(𝑗) < 𝑛(𝑗′)—otherwise,
we would have twice the same bag in a link, which would contradict the fact
that it is a simple path in 𝑇.

We can then define

𝜋′ =̂ 𝑡0
𝐿1−→ ⋯ 𝐿𝑛(𝑗)−−−→ 𝑡𝑛(𝑗)

𝐾−→ 𝑡𝑛(𝑗′)
𝐿𝑛(𝑗′)+1−−−−→ ⋯ 𝐿𝑛−→ 𝑡𝑛,

where 𝐾 =̂ [𝐿𝑛(𝑗)+1⋯𝐿𝑛(𝑗′)] (see Definition III.2.9) and let 𝜌′ be the query
obtained from 𝜌 by replacing 𝜋 with 𝜋′. Then, define 𝛼′ to be the query
obtained from𝛼 by adding an atom 𝑓(𝑧𝑛(𝑗))

𝐾−→ 𝑓(𝑧𝑛(𝑗′)), so that by construction,
we have 𝛼 ⫅ 𝛼′, that 𝜌′ ∈ Ref(𝛾) with ‖𝜌′‖at ≤ ‖𝜌‖at and 𝑓 induces a
homomorphism 𝑓′ ∶ 𝜌′ hom−−−→ 𝛼′.

We must then build a tagged tree decomposition (𝑇′, v′, t′) of 𝑓′. First, we
restrict 𝛼′ to be the image of 𝑓′ ∶ 𝜌′ hom−−−→ 𝛼′, in order to obtain a strong onto
homomorphism. Then, starting from the tagged tree decomposition (𝑇, v, t)
of 𝑓, restrict t to the atoms Atoms(𝜌′) ∖ {𝑧𝑛(𝑗)

𝐾−→ 𝑧𝑛(𝑗′)} ⊆ Atoms(𝜌), and tag
the atom 𝑧𝑛(𝑗)

𝐾−→ 𝑧𝑛(𝑗′) to the bag 𝑏𝑗 = 𝑏𝑗′ . This tree decomposition has the
same width as 𝑇. Then, apply Fact V.4.2 to get rid of potentially useless bags.

Observe then that the path induced by 𝜋′ in (𝑇′, v′, t′) is simply

t′[𝜋′] = �� 𝑏𝑖0𝑓(𝑧0)
�, �𝑏𝑖0+1𝑓(𝑧1)

�, … , � 𝑏𝑗
𝑓(𝑧𝑛(𝑗))

�, � 𝑏𝑗′
𝑓(𝑧𝑛(𝑗′))

�, … , � 𝑏𝑖𝑛−1𝑓(𝑧𝑛−1)
�, �𝑏𝑖𝑛−1+1𝑓(𝑧𝑛)

��

and thus t′[𝜋′] is strictly shorter than t[𝜋] since 𝑗 + 2 ≤ 𝑗′, by definition of
these indices. Finally, observe that if (𝑇, v, t) is fine then so is (𝑇′, v′, t′).

Overall, we built 𝑓′ ∶ 𝜌′ ↠ 𝛼′ together with a fine tagged tree decom-
position (𝑇′, v′, t′) of width at most 𝑘 where 𝛼 ⫅ 𝛼′ (by Fact III.2.10), and
𝜌′ ∈ Ref(𝛾) is such that ‖𝜌′‖at ≤ ‖𝜌‖at, and for each atom of 𝛾, the refinement
of this atom in 𝜌 is exactly the same as the refinement of this atom in 𝜌′ except
possibly for one atom, for which the path induced in 𝑇′ by its refinement in
𝜌′ is strictly shorter than the path induced in 𝑇 by its refinement in 𝜌. After
iterating this construction as many times as needed, we obtain a trio as in the
conclusion of Lemma V.5.2, which concludes our proof.

V.5.2 Short Paths

Ultimately, Lemma V.5.2 will allow us to give a bound on the number of leaves
of a fine tagged tree decomposition of a trio. The following claim—which is
significantly more technical than the foregoing—will give us a bound on the

151

v. semantic tree-width and path-width of conjunctive regular path queries

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...<latexit sha1_base64="jTzRUVU7LTozEAE6KPZ2P0cdoMk=">AAACyXicjVHLSsNAFD2N7/qqunQTLIILCZM2vnYFN4KbCrYWbJFkOmpsXiYTsYorf8Ct/pj4B/oX3hlT0IXohCR3zj3nzNx7vSTwM8nYW8kYG5+YnJqeKc/OzS8sVpaW21mcp1y0eBzEacdzMxH4kWhJXwaik6TCDb1AnHiDfZU/uRFp5sfRsRwmohe6F5F/7nNXEtTu8n4ss7NKlVm1ul1jjsmsur3H2BYFjkPYtmlbTK8qitWMK6/ooo8YHDlCCESQFAdwkdFzChsMCWE93BOWUuTrvMADyqTNiSWI4RI6oO8F7U4LNKK98sy0mtMpAb0pKU2skyYmXkqxOs3U+Vw7K/Q373vtqe42pL9XeIWESlwS+pduxPyvTtUicY5dXYNPNSUaUdXxwiXXXVE3N79VJckhIUzFfcqnFHOtHPXZ1JpM16566+r8u2YqVO15wc3xoW5JAx5N0fw9aNcse9vaOnKqjc1i1NNYxRo2aJ47aOAATbTI+wpPeMaLcWhcG7fG3RfVKBWaFfxYxuMnYC6R1g==</latexit>· · ·

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="dGW+KUxeKmgu7aK6zj6LukVOb5M=">AAADSnicjVFNT9wwEJ2E7y0fS3srl9AVEodllUVQKnFB4tIjlbqAhBFyjHfXwrEjx6GgKEf+Hfeq/6CIGzfEhbEJ4kuotRXn+c28Z48nyaTIbRz/CcKR0bHxicmpxofpmdm55vzH3VwXhvEe01Kb/YTmXArFe1ZYyfczw2maSL6XnGy7+N4pN7nQ6qc9z/hhSgdK9AWjFqmj5gWx/MyWSqsVanUqWEVI44nrF1JGCR08sb+EHUaZ0X0huWdTaoc646okJVnEWVYNckqN0nYo1KBN2hEGNslm2y2kehAwqXNeksorquqo2Yo7sR/RW9CtQQvqsaObv4HAMWhgUEAKHBRYxBIo5DgPoAsxZMgdQomcQSR8nEMFDdQWmMUxgyJ7gusAdwc1q3DvPHOvZniKxM+gMoIl1GjMM4jdaZGPF97Zse95l97T3e0c/0ntlSJrYYjsv3SPmf+rc7VY6MM3X4PAmjLPuOpY7VL4V3E3j55VZdEhQ87hY4wbxMwrH9858prc1+7elvr4X5/pWLdndW4BV+6W2ODu63a+Bburne7XzvqPtdbWct3qSViAL7CM/dyALfgOO9BD7+tgPvgcLISX4U14G949pIZBrfkEL8bI6D0e08Hu</latexit>

non-atomic

non-full bag

with profile

{{?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="WlYt5SEca2K5ELc+z1njD1FDNUw=">AAADVXicjVFNTxsxEJ1NgIa0lECPcFgagTik0QYVqMQFiQtHkBpAwgh5jZNYeO2V18uHVvsf+HdR/0H5A9yQGDuL2oIQtbXe5zfznj2eOJUis1H0K6jVp6ZnPjRmmx8/zX2eby0sHmU6N4z3mZbanMQ041Io3rfCSn6SGk6TWPLj+HLPxY+vuMmEVj/tbcrPEjpUYiAYtUidt+6I5Te2UFp9o1YngpWENCfcIJcyjOnwD3Mt7ChMjR4IyT2bUDvSKVcFKcgKzqJskitqlLYjoYYd0glfbguyQ3Y6biHlRM+kznhBSm9QluetdtSN/Ahfg14F2lCNA90aA4EL0MAghwQ4KLCIJVDIcJ5CDyJIkTuDAjmDSPg4hxKaqM0xi2MGRfYS1yHuTitW4d55Zl7N8BSJn0FlCKuo0ZhnELvTQh/PvbNj3/IuvKe72y3+48orQdbCCNn3dM+Z/6tztVgYwA9fg8CaUs+46ljlkvtXcTcP/6rKokOKnMMXGDeImVc+v3PoNZmv3b0t9fHfPtOxbs+q3Bzu3S2xwb2X7XwNjja6va3u5uH39u561eoGLMFXWMd+bsMu7MMB9NH7IVgOVoO12rj2WJ+qz0xSa0Gl+QL/jPr8EzNKxFY=</latexit>

non-atomic

full bag

with profile

{{?, ?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="1/rAxDC+3KeXXRwcdiWQ17GYIwI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9r1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9bMkAE=</latexit>

b1
<latexit sha1_base64="5TcySsgzF+E8bNQjyCUNXjQH9Ws=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFZLia1lw02VF+4BaSpJOa2heTCZKKYI/4FY/TfwD/QvvjFNQi+iEJGfOvefM3Hu9NAwyYduvBWNhcWl5pbhaWlvf2Nwqb++0siTnPmv6SZjwjudmLAxi1hSBCFkn5cyNvJC1vfG5jLdvGc+CJL4Sk5T1IncUB8PAdwVRl16/2i9XbMtWy5wHjgYV6NVIyi+4xgAJfOSIwBBDEA7hIqOnCwc2UuJ6mBLHCQUqznCPEmlzymKU4RI7pu+Idl3NxrSXnplS+3RKSC8npYkD0iSUxwnL00wVz5WzZH/znipPebcJ/T3tFRErcEPsX7pZ5n91shaBIc5UDQHVlCpGVudrl1x1Rd7c/FKVIIeUOIkHFOeEfaWc9dlUmkzVLnvrqvibypSs3Ps6N8e7vCUN2Pk5znnQqlrOiXV8cVSpWXrURexhH4c0z1PUUEcDTfIe4RFPeDbqRmzkxt1nqlHQml18W8bDB9kskAI=</latexit>

b2
<latexit sha1_base64="hPKy8prCG0VYUWgwHuQSgEcbNBI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0jE17LgxoWLCrYVainJdFpD82IyEUrozh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xi8J/FTa9mvJmJtfWFwqL1dWVtfWN6qbW600zgTjTRYHsbjx3JQHfsSb0pcBv0kEd0Mv4G1vdK7i7XsuUj+OruU44d3QHUb+wGeuJKrt9fLowJn0qjXbsvUyZ4FTgBqK1YirL7hFHzEYMoTgiCAJB3CR0tOBAxsJcV3kxAlCvo5zTFAhb0YqTgqX2BF9h7TrFGxEe5Uz1W5GpwT0CnKa2CNPTDpBWJ1m6nimMyv2t9y5zqnuNqa/V+QKiZW4I/Yv31T5X5+qRWKAM12DTzUlmlHVsSJLpruibm5+qUpShoQ4hfsUF4SZdk77bGpPqmtXvXV1/E0rFav2rNBmeFe3pAE7P8c5C1qHlnNiHV8d1epWMeoydrCLfZrnKeq4QANNXeUjnvBsXBrCGBv5p9QoFZ5tfFvGwwcyGJG8</latexit>

bn�1

<latexit sha1_base64="TLt2HcpKNiEjeZlMuTnrCCJNa7A=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy4EVcVTFuopSTTaR3Mi2SilNKNP+BWv0z8A/0L74wpqEV0QpIz595zZu69fhKITNr2a8mYm19YXCovV1ZW19Y3qptbzSzOU8ZdFgdx2va9jAci4q4UMuDtJOVe6Ae85d+eqXjrjqeZiKMrOUp4N/SGkRgI5kmiXL83jia9as22bL3MWeAUoIZiNeLqC67RRwyGHCE4IkjCATxk9HTgwEZCXBdj4lJCQsc5JqiQNqcsThkesbf0HdKuU7AR7ZVnptWMTgnoTUlpYo80MeWlhNVppo7n2lmxv3mPtae624j+fuEVEitxQ+xfumnmf3WqFokBTnUNgmpKNKOqY4VLrruibm5+qUqSQ0Kcwn2Kp4SZVk77bGpNpmtXvfV0/E1nKlbtWZGb413dkgbs/BznLGgeWM6xdXR5WKtbxajL2MEu9mmeJ6jjHA245C3wiCc8GxdGYtwbo89Uo1RotvFtGQ8fA1iRSg==</latexit>

bn

<latexit sha1_base64="WlYt5SEca2K5ELc+z1njD1FDNUw=">AAADVXicjVFNTxsxEJ1NgIa0lECPcFgagTik0QYVqMQFiQtHkBpAwgh5jZNYeO2V18uHVvsf+HdR/0H5A9yQGDuL2oIQtbXe5zfznj2eOJUis1H0K6jVp6ZnPjRmmx8/zX2eby0sHmU6N4z3mZbanMQ041Io3rfCSn6SGk6TWPLj+HLPxY+vuMmEVj/tbcrPEjpUYiAYtUidt+6I5Te2UFp9o1YngpWENCfcIJcyjOnwD3Mt7ChMjR4IyT2bUDvSKVcFKcgKzqJskitqlLYjoYYd0glfbguyQ3Y6biHlRM+kznhBSm9QluetdtSN/Ahfg14F2lCNA90aA4EL0MAghwQ4KLCIJVDIcJ5CDyJIkTuDAjmDSPg4hxKaqM0xi2MGRfYS1yHuTitW4d55Zl7N8BSJn0FlCKuo0ZhnELvTQh/PvbNj3/IuvKe72y3+48orQdbCCNn3dM+Z/6tztVgYwA9fg8CaUs+46ljlkvtXcTcP/6rKokOKnMMXGDeImVc+v3PoNZmv3b0t9fHfPtOxbs+q3Bzu3S2xwb2X7XwNjja6va3u5uH39u561eoGLMFXWMd+bsMu7MMB9NH7IVgOVoO12rj2WJ+qz0xSa0Gl+QL/jPr8EzNKxFY=</latexit>

non-atomic

full bag

with profile

{{?, ?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="WlYt5SEca2K5ELc+z1njD1FDNUw=">AAADVXicjVFNTxsxEJ1NgIa0lECPcFgagTik0QYVqMQFiQtHkBpAwgh5jZNYeO2V18uHVvsf+HdR/0H5A9yQGDuL2oIQtbXe5zfznj2eOJUis1H0K6jVp6ZnPjRmmx8/zX2eby0sHmU6N4z3mZbanMQ041Io3rfCSn6SGk6TWPLj+HLPxY+vuMmEVj/tbcrPEjpUYiAYtUidt+6I5Te2UFp9o1YngpWENCfcIJcyjOnwD3Mt7ChMjR4IyT2bUDvSKVcFKcgKzqJskitqlLYjoYYd0glfbguyQ3Y6biHlRM+kznhBSm9QluetdtSN/Ahfg14F2lCNA90aA4EL0MAghwQ4KLCIJVDIcJ5CDyJIkTuDAjmDSPg4hxKaqM0xi2MGRfYS1yHuTitW4d55Zl7N8BSJn0FlCKuo0ZhnELvTQh/PvbNj3/IuvKe72y3+48orQdbCCNn3dM+Z/6tztVgYwA9fg8CaUs+46ljlkvtXcTcP/6rKokOKnMMXGDeImVc+v3PoNZmv3b0t9fHfPtOxbs+q3Bzu3S2xwb2X7XwNjja6va3u5uH39u561eoGLMFXWMd+bsMu7MMB9NH7IVgOVoO12rj2WJ+qz0xSa0Gl+QL/jPr8EzNKxFY=</latexit>

non-atomic

full bag

with profile

{{?, ?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="dGW+KUxeKmgu7aK6zj6LukVOb5M=">AAADSnicjVFNT9wwEJ2E7y0fS3srl9AVEodllUVQKnFB4tIjlbqAhBFyjHfXwrEjx6GgKEf+Hfeq/6CIGzfEhbEJ4kuotRXn+c28Z48nyaTIbRz/CcKR0bHxicmpxofpmdm55vzH3VwXhvEe01Kb/YTmXArFe1ZYyfczw2maSL6XnGy7+N4pN7nQ6qc9z/hhSgdK9AWjFqmj5gWx/MyWSqsVanUqWEVI44nrF1JGCR08sb+EHUaZ0X0huWdTaoc646okJVnEWVYNckqN0nYo1KBN2hEGNslm2y2kehAwqXNeksorquqo2Yo7sR/RW9CtQQvqsaObv4HAMWhgUEAKHBRYxBIo5DgPoAsxZMgdQomcQSR8nEMFDdQWmMUxgyJ7gusAdwc1q3DvPHOvZniKxM+gMoIl1GjMM4jdaZGPF97Zse95l97T3e0c/0ntlSJrYYjsv3SPmf+rc7VY6MM3X4PAmjLPuOpY7VL4V3E3j55VZdEhQ87hY4wbxMwrH9858prc1+7elvr4X5/pWLdndW4BV+6W2ODu63a+Bburne7XzvqPtdbWct3qSViAL7CM/dyALfgOO9BD7+tgPvgcLISX4U14G949pIZBrfkEL8bI6D0e08Hu</latexit>

non-atomic

non-full bag

with profile

{{?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="dGW+KUxeKmgu7aK6zj6LukVOb5M=">AAADSnicjVFNT9wwEJ2E7y0fS3srl9AVEodllUVQKnFB4tIjlbqAhBFyjHfXwrEjx6GgKEf+Hfeq/6CIGzfEhbEJ4kuotRXn+c28Z48nyaTIbRz/CcKR0bHxicmpxofpmdm55vzH3VwXhvEe01Kb/YTmXArFe1ZYyfczw2maSL6XnGy7+N4pN7nQ6qc9z/hhSgdK9AWjFqmj5gWx/MyWSqsVanUqWEVI44nrF1JGCR08sb+EHUaZ0X0huWdTaoc646okJVnEWVYNckqN0nYo1KBN2hEGNslm2y2kehAwqXNeksorquqo2Yo7sR/RW9CtQQvqsaObv4HAMWhgUEAKHBRYxBIo5DgPoAsxZMgdQomcQSR8nEMFDdQWmMUxgyJ7gusAdwc1q3DvPHOvZniKxM+gMoIl1GjMM4jdaZGPF97Zse95l97T3e0c/0ntlSJrYYjsv3SPmf+rc7VY6MM3X4PAmjLPuOpY7VL4V3E3j55VZdEhQ87hY4wbxMwrH9858prc1+7elvr4X5/pWLdndW4BV+6W2ODu63a+Bburne7XzvqPtdbWct3qSViAL7CM/dyALfgOO9BD7+tgPvgcLISX4U14G949pIZBrfkEL8bI6D0e08Hu</latexit>

non-atomic

non-full bag

with profile

{{?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

Figure V.8: Profiles of the bags in the
non-branching path between 𝑏1 and
𝑏𝑛 in the fine tagged tree decompo-
sition obtained from Figure V.5 after
applying Lemma V.5.2 and Fact V.4.2
to both the red and blue atom refine-
ments.

height of a decomposition.

Lemma V.5.4. Let 𝑓∶ 𝜌 ↠ 𝛼 be a trio and (𝑇, v, t) be a locally acyclic fine
tagged tree decomposition of width at most 𝑘 of 𝑓. Then there is a trio
𝑓′ ∶ 𝜌′ ↠ 𝛼′ and a fine tagged tree decomposition (𝑇′, v′, t′) of width at most
𝑘 of 𝑓′ such that:
• 𝛼 ⫅ 𝛼′,
• (𝑇′, v′, t′) is locally acyclic w.r.t. 𝑓′, and
• the length of the longest non-branching path in 𝑇 is at most 𝒪(‖𝛾‖at ⋅ (𝑘 +
1)‖𝛾‖at).

To prove Lemma V.5.4, we will try to find, in a long non-branching path,
some kind of shortcut. The piece of information that is relevant to finding
this shortcut is what we call the profile of a bag.

Definition V.5.5 (Types and Profiles). Given a trio 𝑓∶ 𝜌 ↠ 𝛼 and a fine
tagged tree decomposition (𝑇, v, t) of 𝑓, for each bag 𝑏 of 𝑇, we say that:
• 𝑏 is “atomic” if there is at least one atom 𝑒 ∈ t−1[𝑏] and at least one variable
𝑥 of 𝑒 such that 𝑥 ∈ vars(𝛾), i.e., the atom 𝑒 is not in the ‘middle’ part of an
atom refinement;

• otherwise, when 𝑏 is non-atomic, we assign to each variable 𝑧 ∈ v(𝑏) ⊆
𝑉(𝛼) a type

type𝑏𝑧 =̂ �𝑥
𝐿−→ 𝑦 atom of 𝛾 � the path induced by the atom refinement

of 𝑥 𝐿−→ 𝑦 in 𝜌 leaves 𝑏 at 𝑧�,

where each type is potentially the empty set. Then the profile of 𝑏 is the
multiset of the types of 𝑧 when 𝑧 ranges over v(𝑏).

Note that 𝜌 and 𝛼 can have arbitrarily more atoms than the original query
𝛾, and so the numbers of bags in 𝑇 can be arbitrarily high. However, only

152

v.5. key lemma: maximal under approximations are semantically finite

few of them can be atomic: an atom refinement of atom of 𝛾 contains at most
two atoms with a variable from 𝛾—namely the first and the last atom in the
refinement.

Fact V.5.6. There is at most 2‖𝛾‖at atomic bags in 𝑇.

Consider the fine tree decomposition of Figure V.7, and now apply the
construction of Lemma V.5.2 to the red atom refinement, followed by Fact V.4.2.
We now obtain a non-branching path between bags 𝑏1 and 𝑏𝑛. We depict it in
Figure V.8: the implicit bags, hidden behind the dashed edges in Figure V.7
(see Notation V.5.3), are made explicit in this new figure, and, moreover, the
rest of the fine tree decomposition is not drawn. Lastly, for each bag, we
indicate if it is full and if it is atomic; when it is not atomic, we provide the
profile of the bag.

The rest of the proof consists in two parts. First, we show that if two
non-atomic bags 𝑏 and 𝑏′ occurring in some non-branching path of 𝑇 have
the same profile, then we can essentially replace the path between 𝑏 and 𝑏′

by a path of constant length (Section V.5.2). And second, we show that in
every sufficiently long non-branching path we can find 𝑏 and 𝑏′ satisfying the
aforementioned property: this part simply relies on an enhanced “pigeonhole
principle” (Fact V.5.7).

Let 𝑓∶ 𝜌 ↠ 𝛼 be a trio, and consider a fine tagged tree decomposition of
𝑓 which is locally acyclic. Suppose there are two bags 𝑏 and 𝑏′ such that:
1. they contain at most 𝑘 nodes (i.e., not full bags),
2. they have the same profile,
3. there is a non-branching path in 𝑇 between these bags, and
4. no bags of the path between 𝑏 and 𝑏′ (both included) are atomic.
Then, there exists a trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′ and a fine tagged tree decomposition of
𝑓′ of width at most 𝑘 that can be obtained by replacing the non-branching
path between 𝑏 and 𝑏′ in the fine tagged tree decomposition of 𝑓 by another
non-branching path with at most 2𝑘 + 1 bags, such that 𝛼 ⫅ 𝛼′. The
proof of Section V.5.2 relies on the definition of profile, which was specifically
designed so that we can condense every refinement between 𝑏 and 𝑏′, while
preserving every needed property of the trio. We give first an informal and
then a formal proof of Section V.5.2, which are illustrated in Figure V.9.

Informal proof of Section V.5.2. If 𝑏 and 𝑏′ have the same profile, then in par-
ticular they have the same cardinality 𝑚, which is smaller or equal to 𝑘 by
assumption. Let v(𝑏) = {𝑥1, … , 𝑥𝑚} and v(𝑏′) = {𝑦1, … , 𝑦𝑚} be such that:
type𝑏𝑥𝑖 = type𝑏

′
𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑚. Note that the 𝑥𝑖’s don’t need to be distinct

from the 𝑦𝑖’s. Essentially, we can then condense every atom refinement in
𝜌 of some atom occurring in a set of the form type𝑏𝑥𝑖 = type𝑏

′
𝑦𝑖 for some 𝑖. At

this point, bags strictly comprised between 𝑏 and 𝑏′ are discarded, and so are
variables of 𝛼 that do not occur anywhere else. We are left with two halves of
a fine tagged tree decomposition that we need to merge, which can easily be
done by using Proposition V.4.5. The construction makes use of some crucial

153

v. semantic tree-width and path-width of conjunctive regular path queries

.

<latexit sha1_base64="vZWD9q+ej7fzB9ZlnMctzsLN4aY=">AAAB6nicbZC7SgNBFIbPxluMt6ilzZAgWIVdCWpnwMYyorlAsoTZyWwyZHZ2mYsQljyCjYUSbX0JX8POt3E2SaGJPwx8/P85zDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqthIQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMbrK89UilYrF40OOE+hEeCBYygrW17k3P6xXLbsWdCa2Ct4Dy9ec001u9V/zq9mNiIio04Vipjucm2k+x1IxwOil0jaIJJiM8oB2LAkdU+els1Ak6tU4fhbG0T2g0c393pDhSahwFtjLCeqiWs8z8L+sYHV75KROJ0VSQ+Ueh4UjHKNsb9ZmkRPOxBUwks7MiMsQSE22vU7BH8JZXXoXmecW7qFTvquVaCebKwwmU4Aw8uIQa3EIdGkBgAE/wAq8Od56dqfM+L805i55j+CPn4wciR5IV</latexit>

u1

<latexit sha1_base64="/crEaQk64tL2Gts4imDyYRvhdbA=">AAAB6nicbZC7TgJBFIbP4g3xhlraTCAmVmSXELWTxMYSo4AJbMjsMAsTZmc3czEhGx7BxkKDtr6Er2Hn2zgLFAr+ySRf/v+czDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqdhIQpsk5rF8CLCinAna1Exz+pBIiqOA03Ywus7y9iOVisXiXo8T6kd4IFjICNbWujO9aq9YdivuTGgVvAWUrz6nmd4aveJXtx8TE1GhCcdKdTw30X6KpWaE00mhaxRNMBnhAe1YFDiiyk9no07QqXX6KIylfUKjmfu7I8WRUuMosJUR1kO1nGXmf1nH6PDST5lIjKaCzD8KDUc6RtneqM8kJZqPLWAimZ0VkSGWmGh7nYI9gre88iq0qhXvvFK7rZXrJZgrDydQgjPw4ALqcAMNaAKBATzBC7w63Hl2ps77vDTnLHqO4Y+cjx8jy5IW</latexit>

u2
<latexit sha1_base64="VFnEMyAz7fXIGc/rkA5RZEUXZl0=">AAAB63icbZDLSgMxFIbPeK31VnXpJrSIrspMKerOghuXFewF2qFk0kwbmmSGJCOUoa/gxoVa3PoQvoY738ZM24W2/hD4+P9zyDkniDnTxnW/nbX1jc2t7dxOfndv/+CwcHTc1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsY3WZ565EqzSL5YMYx9QUeSBYygk1mJee9Sq9QcsvuTGgVvAWUbj7fMk3rvcJXtx+RRFBpCMdadzw3Nn6KlWGE00m+m2gaYzLCA9qxKLGg2k9ns07QmXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7nrw9gre88io0K2Xvsly9r5ZqRZgrB6dQhAvw4ApqcAd1aACBITzBC7w6wnl2ps77vHTNWfScwB85Hz+EkpJH</latexit>

u0
2

<latexit sha1_base64="igos4JksFCMboM5MTuyG0rf2D6U=">AAAB63icbZDLSgMxFIbP1Futt6pLN6FFdFVmpKg7C25cVrAXaIeSSTNtaJIZkoxQhr6CGxdqcetD+BrufBszbRfa+kPg4//PIeecIOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywus3y1iNVmkXywYxj6gs8kCxkBJvMSs56Xq9YdivuTGgVvAWUbz7fMk3rveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxKLGg2k9ns07QqXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7noI9gre88io0LyreZaV6Xy3XSjBXHk6gBOfgwRXU4A7q0AACQ3iCF3h1hPPsTJ33eWnOWfQcwx85Hz+DDpJG</latexit>

u0
1

<latexit sha1_base64="BsKEFh7V2QV2TOAq5UFyyxt5mZk=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw6MQbGka+a5rldNVdeMilEzyhSUzUq1YqqGpstVQraaYfENtxgihIMUPhgCcIo9WEjo6cGAjoiwPmaExRS5Ms/wiAJpU2IxYliETug7pl0vQwPaC89Eqh06xaM3JqWKY9KExIspFqepMp9KZ4Eu8p5JT3G3Kf3tzMsnlOOO0L90c+Z/daIWjhFMWYNLNUUSEdU5mUsquyJurv6oipNDRJiIh5SPKXakct5nVWoSWbvorSXzH5IpULF3Mm6KT3FLGvB8iurioF3WjJp2elUt1Y+yUedxgEOc0DzPUEcDTbTIe4xnvOBVaSiBkioP31Qll2n28WspT19DOZAo</latexit>

L1
<latexit sha1_base64="ghuKwNeKIQfSto6LhSH5CP2zbdw=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw7Kg2JJ18xzXa+aqq4ZFaNmlCkom5VqxVQNTZerhGw1w+IbbjFECAcpfDAE4BR7sJDQ04MBHRFhfcwIiylyZZ7hEQXSpsRixLAIndB3TLtehga0F56JVDt0ikdvTEoVx6QJiRdTLE5TZT6VzgJd5D2TnuJuU/rbmZdPKMcdoX/p5sz/6kQtHCOYsgaXaookIqpzMpdUdkXcXP1RFSeHiDARDykfU+xI5bzPqtQksnbRW0vmPyRToGLvZNwUn+KWNOD5FNXFQbusGTXt9Kpaqh9lo87jAIc4oXmeoY4GmmiR9xjPeMGr0lACJVUevqlKLtPs49dSnr4ARZmQKQ==</latexit>

L2 <latexit sha1_base64="Vb0oWwNtphgTAHm6FWtxXCBYhr8=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cmAM8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL0wLkCw=</latexit>

K1

<latexit sha1_base64="WwXCn6i4JA2Pn0LN2G0wXdDWPmI=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cnA6yBdY0aicG0ZJZ8UzVqmWZVBjrFYr60aRqVFAOppB/g23GCKAjQQeOHwIil2YiOnpwQBDSFgfM8IiihyV53hEjrQJsTgxTEIn9B3TrJeiPs2lZ6zUNq3i0huRUscxaQLiRRTL1XSVT5SzRBd5z5Sn3NuU/lbq5REqcEfoX7o58786WYvACDVVg0M1hQqR1dmpS6JORe5c/1GVIIeQMBkPKR9RbCvl/Jx1pYlV7fJsTZX/UEyJyrmdchN8yl1Sg+dd1BcH7VO6BMXyValQP0pbncUBDnFC/ayijgaaaJH3GM94wavW0Hwt0R6+qVom1ezj19CevgBOa5At</latexit>

K2<latexit sha1_base64="1N+Gh9mq7btNVU75hae3cybUrts=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cuAP8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL9zrkGk=</latexit>

Kn

(a) An approximation 𝛼.

.

<latexit sha1_base64="vZWD9q+ej7fzB9ZlnMctzsLN4aY=">AAAB6nicbZC7SgNBFIbPxluMt6ilzZAgWIVdCWpnwMYyorlAsoTZyWwyZHZ2mYsQljyCjYUSbX0JX8POt3E2SaGJPwx8/P85zDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqthIQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMbrK89UilYrF40OOE+hEeCBYygrW17k3P6xXLbsWdCa2Ct4Dy9ec001u9V/zq9mNiIio04Vipjucm2k+x1IxwOil0jaIJJiM8oB2LAkdU+els1Ak6tU4fhbG0T2g0c393pDhSahwFtjLCeqiWs8z8L+sYHV75KROJ0VSQ+Ueh4UjHKNsb9ZmkRPOxBUwks7MiMsQSE22vU7BH8JZXXoXmecW7qFTvquVaCebKwwmU4Aw8uIQa3EIdGkBgAE/wAq8Od56dqfM+L805i55j+CPn4wciR5IV</latexit>

u1

<latexit sha1_base64="/crEaQk64tL2Gts4imDyYRvhdbA=">AAAB6nicbZC7TgJBFIbP4g3xhlraTCAmVmSXELWTxMYSo4AJbMjsMAsTZmc3czEhGx7BxkKDtr6Er2Hn2zgLFAr+ySRf/v+czDknSDhT2nW/ndza+sbmVn67sLO7t39QPDxqqdhIQpsk5rF8CLCinAna1Exz+pBIiqOA03Ywus7y9iOVisXiXo8T6kd4IFjICNbWujO9aq9YdivuTGgVvAWUrz6nmd4aveJXtx8TE1GhCcdKdTw30X6KpWaE00mhaxRNMBnhAe1YFDiiyk9no07QqXX6KIylfUKjmfu7I8WRUuMosJUR1kO1nGXmf1nH6PDST5lIjKaCzD8KDUc6RtneqM8kJZqPLWAimZ0VkSGWmGh7nYI9gre88iq0qhXvvFK7rZXrJZgrDydQgjPw4ALqcAMNaAKBATzBC7w63Hl2ps77vDTnLHqO4Y+cjx8jy5IW</latexit>

u2
<latexit sha1_base64="VFnEMyAz7fXIGc/rkA5RZEUXZl0=">AAAB63icbZDLSgMxFIbPeK31VnXpJrSIrspMKerOghuXFewF2qFk0kwbmmSGJCOUoa/gxoVa3PoQvoY738ZM24W2/hD4+P9zyDkniDnTxnW/nbX1jc2t7dxOfndv/+CwcHTc1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsY3WZ565EqzSL5YMYx9QUeSBYygk1mJee9Sq9QcsvuTGgVvAWUbj7fMk3rvcJXtx+RRFBpCMdadzw3Nn6KlWGE00m+m2gaYzLCA9qxKLGg2k9ns07QmXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7nrw9gre88io0K2Xvsly9r5ZqRZgrB6dQhAvw4ApqcAd1aACBITzBC7w6wnl2ps77vHTNWfScwB85Hz+EkpJH</latexit>

u0
2

<latexit sha1_base64="igos4JksFCMboM5MTuyG0rf2D6U=">AAAB63icbZDLSgMxFIbP1Futt6pLN6FFdFVmpKg7C25cVrAXaIeSSTNtaJIZkoxQhr6CGxdqcetD+BrufBszbRfa+kPg4//PIeecIOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywus3y1iNVmkXywYxj6gs8kCxkBJvMSs56Xq9YdivuTGgVvAWUbz7fMk3rveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxKLGg2k9ns07QqXX6KIyUfdKgmfu7I8VC67EIbKXAZqiXs8z8L+skJrz2UybjxFBJ5h+FCUcmQtniqM8UJYaPLWCimJ0VkSFWmBh7noI9gre88io0LyreZaV6Xy3XSjBXHk6gBOfgwRXU4A7q0AACQ3iCF3h1hPPsTJ33eWnOWfQcwx85Hz+DDpJG</latexit>

u0
1

<latexit sha1_base64="BsKEFh7V2QV2TOAq5UFyyxt5mZk=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw6MQbGka+a5rldNVdeMilEzyhSUzUq1YqqGpstVQraaYfENtxgihIMUPhgCcIo9WEjo6cGAjoiwPmaExRS5Ms/wiAJpU2IxYliETug7pl0vQwPaC89Eqh06xaM3JqWKY9KExIspFqepMp9KZ4Eu8p5JT3G3Kf3tzMsnlOOO0L90c+Z/daIWjhFMWYNLNUUSEdU5mUsquyJurv6oipNDRJiIh5SPKXakct5nVWoSWbvorSXzH5IpULF3Mm6KT3FLGvB8iurioF3WjJp2elUt1Y+yUedxgEOc0DzPUEcDTbTIe4xnvOBVaSiBkioP31Qll2n28WspT19DOZAo</latexit>

L1
<latexit sha1_base64="ghuKwNeKIQfSto6LhSH5CP2zbdw=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw7Kg2JJ18xzXa+aqq4ZFaNmlCkom5VqxVQNTZerhGw1w+IbbjFECAcpfDAE4BR7sJDQ04MBHRFhfcwIiylyZZ7hEQXSpsRixLAIndB3TLtehga0F56JVDt0ikdvTEoVx6QJiRdTLE5TZT6VzgJd5D2TnuJuU/rbmZdPKMcdoX/p5sz/6kQtHCOYsgaXaookIqpzMpdUdkXcXP1RFSeHiDARDykfU+xI5bzPqtQksnbRW0vmPyRToGLvZNwUn+KWNOD5FNXFQbusGTXt9Kpaqh9lo87jAIc4oXmeoY4GmmiR9xjPeMGr0lACJVUevqlKLtPs49dSnr4ARZmQKQ==</latexit>

L2 <latexit sha1_base64="Vb0oWwNtphgTAHm6FWtxXCBYhr8=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cmAM8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL0wLkCw=</latexit>

K1

<latexit sha1_base64="WwXCn6i4JA2Pn0LN2G0wXdDWPmI=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cnA6yBdY0aicG0ZJZ8UzVqmWZVBjrFYr60aRqVFAOppB/g23GCKAjQQeOHwIil2YiOnpwQBDSFgfM8IiihyV53hEjrQJsTgxTEIn9B3TrJeiPs2lZ6zUNq3i0huRUscxaQLiRRTL1XSVT5SzRBd5z5Sn3NuU/lbq5REqcEfoX7o58786WYvACDVVg0M1hQqR1dmpS6JORe5c/1GVIIeQMBkPKR9RbCvl/Jx1pYlV7fJsTZX/UEyJyrmdchN8yl1Sg+dd1BcH7VO6BMXyValQP0pbncUBDnFC/ayijgaaaJH3GM94wavW0Hwt0R6+qVom1ezj19CevgBOa5At</latexit>

K2<latexit sha1_base64="1N+Gh9mq7btNVU75hae3cybUrts=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cuAP8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL9zrkGk=</latexit>

Kn

<latexit sha1_base64="AhwHNqOGbhvif1bKeaC/YW0l0Qk=">AAAC2XicjVLLSsNAFD2Nr1pf9bFzM1gFN5aJWlt3ghuhmwpWhVpKMh01NE1CMhG0uHAnbv0Bt/pD4h/oX3hnTEEXohOS3Dn3nDNz544b+V6iOH/LWSOjY+MT+cnC1PTM7FxxfuE4CdNYyKYI/TA+dZ1E+l4gm8pTvjyNYun0XV+euL19nT+5knHihcGRuo5ku+9cBN65JxxFUKe41Kp3ttiZ6IYqYfXOINiwb9udYomX7Z1d295mvLzFd6oVHdQ4r9UqzC5zM0rIRiMsvuIMXYQQSNGHRABFsQ8HCT0t2OCICGtjQFhMkWfyErcokDYlliSGQ2iPvhc0a2VoQHPtmRi1oFV8emNSMqyRJiReTLFejZl8apw1+pv3wHjqvV3T3828+oQqXBL6l27I/K9O16JwjpqpwaOaIoPo6kTmkppT0Ttn36pS5BARpuMu5WOKhVEOz5kZTWJq12frmPy7YWpUz0XGTfGhd0kNHnaR/R4cb9IlKFcOt0t7q1mr81jGCtapn1Xs4QANNMn7Bk94xovVsu6se+vhi2rlMs0ifgzr8ROWxpbo</latexit>

[K3 · · ·Kn�1]
<latexit sha1_base64="Y9R6jqTTq0hRI1/+VYxnBceyNHE=">AAAC13icjVHLSsNAFD2N73etSzeDVXAVkrZq3BXcuHChYH1QS0mmowbzIpmIUsSduPUH3OofiX+gf+GdMQVdFJ2Q5M6555yZe6+XBH4mLeu9ZIyMjo1PTE5Nz8zOzS+UFytHWZynXLR4HMTpiedmIvAj0ZK+DMRJkgo39AJx7F3tqPzxtUgzP44O5W0iOqF7EfnnPnclQd1ypb3XrbMz3otlxva6/fCu0y1XLdPZtqyGwyzTrtubdo2CmlNv1B1mm5ZeVRRrPy6/4Qw9xODIEUIggqQ4gIuMnjZsWEgI66BPWEqRr/MCd5gmbU4sQQyX0Cv6XtCuXaAR7ZVnptWcTgnoTUnJsEaamHgpxeo0pvO5dlboMO++9lR3u6W/V3iFhEpcEvqXbsD8r07VInEOR9fgU02JRlR1vHDJdVfUzdmPqiQ5JISpuEf5lGKulYM+M63JdO2qt67Of2imQtWeF9wcn+qWNODBFNnw4Khm2pvmxkGj2lwtRj2JZaxgnea5hSZ2sY8Wed/gGS94NU6Ne+PBePymGqVCs4Rfy3j6AlbBlnI=</latexit>

[L3 · · ·Lm]
<latexit sha1_base64="UtzHQ6HMP0/iLwQD+wa3+wdTTbs=">AAAC1XicjVHLSsNAFD3G9zvq0s1gFVyFxD7dFdxIVwr2AbWUZDpqME1CMimU4k7c+gNu9ZfEP9C/8M6Ygi5EJyS5c+45Z+be68WBn0rbfpsxZufmFxaXlldW19Y3Ns2t7VYaZQkXTR4FUdLx3FQEfiia0peB6MSJcIdeINre7YnKt0ciSf0ovJDjWPSG7nXoX/nclQT1TbPb6Dvskg8imbJGP+j1zYJtOcWqUyoy26o6R8c1FRRLZadSY45l61VAvs4i8xWXGCACR4YhBEJIigO4SOnpwoGNmLAeJoQlFPk6L3CHFdJmxBLEcAm9pe817bo5GtJeeaZazemUgN6ElAwHpImIl1CsTmM6n2lnhf7mPdGe6m5j+nu515BQiRtC/9JNmf/VqVokrlDTNfhUU6wRVR3PXTLdFXVz9q0qSQ4xYSoeUD6hmGvltM9Ma1Jdu+qtq/PvmqlQtec5N8OHuiUNeDpF9nvQOrKcilU+LxXq+/mol7CLPRzSPKuo4xRnaJL3CE94xovRNu6Me+Phi2rM5Jod/FjG4yesTZVk</latexit>

[J1 · · · Jl]

(c) The resulting approximation 𝛼′.

. . .
...

. . .
...

. . .
...

. . .
...

.

<latexit sha1_base64="dkHV0UIuTjo/T1o/mjE5ryNWIM4=">AAAB+HicbVDLSgNBEJz1GeMjqx69LAbFU9iVoOLFgBePEcwDkiXMTnqTIbMPZnrFuORD1IsHRbx68ze8+TfOJjloYkFDUdVNd5cXC67Qtr+NhcWl5ZXV3Fp+fWNzq2Bu79RVlEgGNRaJSDY9qkDwEGrIUUAzlkADT0DDG1xmfuMWpOJReIPDGNyA9kLuc0ZRSx2z0Ea4wzSWkc8FnI86ZtEu2WNY88SZkuLF50OGx2rH/Gp3I5YEECITVKmWY8foplQiZwJG+XaiIKZsQHvQ0jSkASg3HR8+sg600rX8SOoK0RqrvydSGig1DDzdGVDsq1kvE//zWgn6Z27KwzhBCNlkkZ8ICyMrS8HqcgkMxVATyiTXt1qsTyVlqLPK6xCc2ZfnSf245JyUytflYuWQTJAje2SfHBGHnJIKuSJVUiOMJOSJvJBX4954Nt6M90nrgjGd2SV/YHz8AHYqmAE=</latexit>

profile:
<latexit sha1_base64="/xbcejBkM/kihCo2els/EaHOavQ=">AAACDHicbZDLSgMxFIYz9VbrrerSTbQKLkqZEW/QTcGNywr2As1QMmmmDc1khiQjlGEewI2v4saFIm59AHe+jel0Ftp6QuDj/88hOb8Xcaa0bX9bhaXlldW14nppY3Nre6e8u9dWYSwJbZGQh7LrYUU5E7Slmea0G0mKA4/Tjje+mfqdByoVC8W9nkTUDfBQMJ8RrI3UL1dQgg7NSaCBehXVUVrNEKUQpZmVmi67ZmcFF8HJoQLyavbLX2gQkjigQhOOleo5dqTdBEvNCKdpCcWKRpiM8ZD2DAocUOUm2TIpPDHKAPqhNFdomKm/JxIcKDUJPNMZYD1S895U/M/rxdq/dhMmolhTQWYP+TGHOoTTZOCASUo0nxjARDLzV0hGWGKiTX4lE4Izv/IitM9qzmXt4u680jjO4yiCA3AEToEDrkAD3IImaAECHsEzeAVv1pP1Yr1bH7PWgpXP7IM/ZX3+AERYmSY=</latexit>

{{{ , }, { }}}
<latexit sha1_base64="/xbcejBkM/kihCo2els/EaHOavQ=">AAACDHicbZDLSgMxFIYz9VbrrerSTbQKLkqZEW/QTcGNywr2As1QMmmmDc1khiQjlGEewI2v4saFIm59AHe+jel0Ftp6QuDj/88hOb8Xcaa0bX9bhaXlldW14nppY3Nre6e8u9dWYSwJbZGQh7LrYUU5E7Slmea0G0mKA4/Tjje+mfqdByoVC8W9nkTUDfBQMJ8RrI3UL1dQgg7NSaCBehXVUVrNEKUQpZmVmi67ZmcFF8HJoQLyavbLX2gQkjigQhOOleo5dqTdBEvNCKdpCcWKRpiM8ZD2DAocUOUm2TIpPDHKAPqhNFdomKm/JxIcKDUJPNMZYD1S895U/M/rxdq/dhMmolhTQWYP+TGHOoTTZOCASUo0nxjARDLzV0hGWGKiTX4lE4Izv/IitM9qzmXt4u680jjO4yiCA3AEToEDrkAD3IImaAECHsEzeAVv1pP1Yr1bH7PWgpXP7IM/ZX3+AERYmSY=</latexit>

{{{ , }, { }}}
<latexit sha1_base64="JofOcVUtVT96cbUDHxp/UTkjZac=">AAACIXicbVBNS8MwGE7n15xfVY9eolPwMEYrfgy8DLx4nOA+YC0jzdItLE1Lkg5G6V/x4l/x4kGR3cQ/Y9b14DbfJPDkeZ6X5H28iFGpLOvbKKytb2xuFbdLO7t7+wfm4VFLhrHApIlDFoqOhyRhlJOmooqRTiQICjxG2t7oYaa3x0RIGvJnNYmIG6ABpz7FSGmqZ9acxDnVK4Ea3Fey7aQV6IyR4KEaUj5YuEAnzfxpzyxbVSsruArsHJRBXo2eOXX6IY4DwhVmSMqubUXKTZBQFDOSlpxYkgjhERqQroYcBUS6STZhCi8004d+KPThCmbs344EBVJOAk87A6SGclmbkf9p3Vj5NTehPIoV4Xj+kB8zqEI4iwv2qSBYsYkGCAuq/wrxEAmElQ61pEOwl0deBa2rqn1bvXm6LtfP8ziK4AScgUtggztQB4+gAZoAgxfwBj7Ap/FqvBtfxnRuLRh5zzFYKOPnF7hiofg=</latexit>

{{{ , , },?,?}}. . .

...

<latexit sha1_base64="BsKEFh7V2QV2TOAq5UFyyxt5mZk=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw6MQbGka+a5rldNVdeMilEzyhSUzUq1YqqGpstVQraaYfENtxgihIMUPhgCcIo9WEjo6cGAjoiwPmaExRS5Ms/wiAJpU2IxYliETug7pl0vQwPaC89Eqh06xaM3JqWKY9KExIspFqepMp9KZ4Eu8p5JT3G3Kf3tzMsnlOOO0L90c+Z/daIWjhFMWYNLNUUSEdU5mUsquyJurv6oipNDRJiIh5SPKXakct5nVWoSWbvorSXzH5IpULF3Mm6KT3FLGvB8iurioF3WjJp2elUt1Y+yUedxgEOc0DzPUEcDTbTIe4xnvOBVaSiBkioP31Qll2n28WspT19DOZAo</latexit>

L1
<latexit sha1_base64="ghuKwNeKIQfSto6LhSH5CP2zbdw=">AAACxnicjVHLTsJAFD3UF+ILdemmEU1cNS0g1h2JGxYuMMojQULaMmBDX2mnGkJM/AG3+mnGP9C/8M5YEl0QnabtnXPPOTP3Xjvy3ITr+ntOWVpeWV3Lrxc2Nre2d4q7e+0kTGOHtZzQC+OubSXMcwPW4i73WDeKmeXbHuvYkwuR79yzOHHD4IZPI9b3rXHgjlzH4gRdXw7Kg2JJ18xzXa+aqq4ZFaNmlCkom5VqxVQNTZerhGw1w+IbbjFECAcpfDAE4BR7sJDQ04MBHRFhfcwIiylyZZ7hEQXSpsRixLAIndB3TLtehga0F56JVDt0ikdvTEoVx6QJiRdTLE5TZT6VzgJd5D2TnuJuU/rbmZdPKMcdoX/p5sz/6kQtHCOYsgaXaookIqpzMpdUdkXcXP1RFSeHiDARDykfU+xI5bzPqtQksnbRW0vmPyRToGLvZNwUn+KWNOD5FNXFQbusGTXt9Kpaqh9lo87jAIc4oXmeoY4GmmiR9xjPeMGr0lACJVUevqlKLtPs49dSnr4ARZmQKQ==</latexit>

L2

<latexit sha1_base64="Vb0oWwNtphgTAHm6FWtxXCBYhr8=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cmAM8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL0wLkCw=</latexit>

K1

<latexit sha1_base64="WwXCn6i4JA2Pn0LN2G0wXdDWPmI=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cnA6yBdY0aicG0ZJZ8UzVqmWZVBjrFYr60aRqVFAOppB/g23GCKAjQQeOHwIil2YiOnpwQBDSFgfM8IiihyV53hEjrQJsTgxTEIn9B3TrJeiPs2lZ6zUNq3i0huRUscxaQLiRRTL1XSVT5SzRBd5z5Sn3NuU/lbq5REqcEfoX7o58786WYvACDVVg0M1hQqR1dmpS6JORe5c/1GVIIeQMBkPKR9RbCvl/Jx1pYlV7fJsTZX/UEyJyrmdchN8yl1Sg+dd1BcH7VO6BMXyValQP0pbncUBDnFC/ayijgaaaJH3GM94wavW0Hwt0R6+qVom1ezj19CevgBOa5At</latexit>

K2

<latexit sha1_base64="1N+Gh9mq7btNVU75hae3cybUrts=">AAACxnicjVLLSsNAFD2Nr1pfVZduglVwVSbal7uCm4KbivYBtZQkndbQvEgmSimCP+BWP038A/0L74wp6KLohCR3zj3nzNy5Y4WuEwvG3jPa0vLK6lp2PbexubW9k9/da8dBEtm8ZQduEHUtM+au4/OWcITLu2HETc9yeceaXMh8555HsRP4N2Ia8r5njn1n5NimIOj6cuAP8gVWNCrnhlHSWfGMVaplGdQYq9XKulFkahSQjmaQf8MthghgI4EHDh+CYhcmYnp6MMAQEtbHjLCIIkflOR6RI21CLE4Mk9AJfcc066WoT3PpGSu1Tau49Eak1HFMmoB4EcVyNV3lE+Us0UXeM+Up9zalv5V6eYQK3BH6l27O/K9O1iIwQk3V4FBNoUJkdXbqkqhTkTvXf1QlyCEkTMZDykcU20o5P2ddaWJVuzxbU+U/FFOicm6n3ASfcpfU4HkX9cVB+5QuQbF8VSrUj9JWZ3GAQ5xQP6uoo4EmWuQ9xjNe8Ko1NF9LtIdvqpZJNfv4NbSnL9zrkGk=</latexit>

Kn

<latexit sha1_base64="yKCZifhH7XsqV+t/EH/uMTrzqHw=">AAAC2XicjVLLSsNAFD3G97s+dm4Gq+BCy0T7cie4EdxUsFVoS0nSaRtMk5BMhFpcuBO3/oBb/SHxD/QvvDOmoAvRCUnunHvOmblzxw49N5acv40Z4xOTU9Mzs3PzC4tLy5mV1VocJJEjqk7gBdGlbcXCc31Rla70xGUYCatve+LCvjpW+YtrEcVu4J/LQSiafavrux3XsSRBrcz6aetglzV67UDGu+y0NfT3zNtWJstzZvHQNPOM5w54sVRQQZnzcrnAzBzXI4t0VILMKxpoI4CDBH0I+JAUe7AQ01OHCY6QsCaGhEUUuTovcIs50ibEEsSwCL2ib5dm9RT1aa48Y612aBWP3oiUDNukCYgXUaxWYzqfaGeF/uY91J5qbwP626lXn1CJHqF/6UbM/+pULRIdlHUNLtUUakRV56QuiT4VtXP2rSpJDiFhKm5TPqLY0crROTOtiXXt6mwtnX/XTIWquZNyE3yoXVKDR11kvwe1fboEucJZPnu0lbZ6BhvYxA71s4QjnKCCKnnf4AnPeDHqxp1xbzx8UY2xVLOGH8N4/AS6hpaN</latexit>

K3, . . . ,Kn�1

<latexit sha1_base64="XJnX41051/u0P4UDXPpn7Hyob3g=">AAAC1XicjVHLSsNAFD2Nr1pfUZduBqvgooTEVlt3BTfiSsE+wJaSpFMNpklIJoVSuhO3/oBb/SXxD/QvvDOmoAvRCUnunHvOmbn3OpHvJcI033La3PzC4lJ+ubCyura+oW9uNZMwjV3ecEM/jNuOnXDfC3hDeMLn7Sjm9tDxecu5O5X51ojHiRcGV2Ic8e7Qvgm8gefagqCerp/3rBLr3PZDkZTYec/v6UXTsMpVq1JmplG1Dk9qMihXjqzjGrMMU60isnUR6q/ooI8QLlIMwRFAUOzDRkLPNSyYiAjrYkJYTJGn8hxTFEibEosTwyb0jr43tLvO0ID20jNRapdO8emNScmwT5qQeDHF8jSm8qlyluhv3hPlKe82pr+TeQ0JFbgl9C/djPlfnaxFYICaqsGjmiKFyOrczCVVXZE3Z9+qEuQQESbjPuVjil2lnPWZKU2iape9tVX+XTElKvduxk3xIW9JA55Nkf0eNA8N69g4uqwU63vZqPPYwS4OaJ5V1HGGCzTIe4QnPONFa2lT7V57+KJquUyzjR9Le/wE0VuVCQ==</latexit>

J1, . . . , Jl

<latexit sha1_base64="YkQI5EjYJ7Jxm3FBK4URd1qLXBw=">AAAC1XicjVHLSsNAFD3GV31HXboZrIKLEpK21rgruHHhQsFaoUpJ0mkbmhfJRBBxJ279Abf6S+If6F94Z0xBF0UnJLlz7jln5t7rJoGfCdN8n9KmZ2bn5ksLi0vLK6tr+vrGRRbnqcdbXhzE6aXrZDzwI94Svgj4ZZJyJ3QD3nZHRzLfvuFp5sfRubhN+HXoDCK/73uOIKir6yfdWoVdDXuxyCrspBt29bJp2IemWbeZaVg1q2FVKajatXrNZpZhqlVGsU5j/Q1X6CGGhxwhOCIIigM4yOjpwIKJhLBr3BGWUuSrPMc9FkmbE4sTwyF0RN8B7ToFGtFeemZK7dEpAb0pKRl2SRMTL6VYnsZUPlfOEp3kfac85d1u6e8WXiGhAkNC/9KNmf/VyVoE+rBVDT7VlChEVucVLrnqirw5+1GVIIeEMBn3KJ9S7CnluM9MaTJVu+yto/IfiilRufcKbo5PeUsa8HiKbHJwUTWshrF/Vi83d4pRl7CFbezRPA/QxDFO0SLvGzzjBa9aW7vXHrTHb6o2VWg28WtpT1/XEpUL</latexit>

L3, . . . , Lm

<latexit sha1_base64="od01N6Xz8vqxe4mHW33HvHhzKG8=">AAAC+nicjVHLSsNAFD2N7/iqunQTrYKLUlLxBd0U3LhUsFYwIkkc62CahMlEkNgvcedO3PoDbvUDxD/Qv/DOOIIPRGdIcu6595zMnRukEc+k6z6XrL7+gcGh4RF7dGx8YrI8Nb2XJbkIWStMokTsB37GIh6zluQyYvupYH43iFg7ONtU+fY5ExlP4l15kbLDrt+J+QkPfUnUUXnVK7w52oVNoFF1vIbXq3pVHRl07os4kac87theTxf3jsoVt+bq5fwEdQMqMGs7KT/BwzEShMjRBUMMSTiCj4z2AepwkRJ3iII4QYjrPEMPNmlzqmJU4RN7Ru8ORQeGjSlWnplWh/SXiB5BSgeLpEmoThBWf3N0PtfOiv3Nu9Ce6mwX9A2MV5dYiVNi/9J9VP5Xp3qROMGG7oFTT6lmVHehccn1raiTO5+6kuSQEqfwMeUF4VArP+7Z0ZpM967u1tf5F12pWBWHpjbHqzolDbj+fZw/wd5yrb5WW91ZqTQXzKiHMYt5LNE819HEFrbRIu8r3OMBj9aldW3dWLfvpVbJaGbwZVl3b365ohs=</latexit>

{{{ , }, { }, ?}}<latexit sha1_base64="SBkNiTc3GfIkVLSpw3EPxw831d4=">AAACynicjVLLTsMwEBzCq7wLHLlEFCROlQN9hFslLhw4gEQpUluhJHUhwnnIcZCqihs/wBU+DPEH8BesTSrBoQJHScazM2uv134qwkwx9j5jzc7NLyyWlpZXVtfWN8qbW1dZksuAt4NEJPLa9zIuwpi3VagEv04l9yJf8I5/f6LjnQcuszCJL9Uo5f3Iu43DYRh4iqhOz8+F4OqmXGFVp3HsODWbVY9Yo1nXwGXMdeu2U2VmVFCM86T8hh4GSBAgRwSOGIqwgIeMni4cMKTE9TEmThIKTZzjEcvkzUnFSeERe0/fW5p1Czamuc6ZGXdAqwh6JTlt7JMnIZ0krFezTTw3mTU7LffY5NR7G9HfL3JFxCrcEfuXb6L8r0/XojCEa2oIqabUMLq6oMiSm1PRO7d/VKUoQ0qcxgOKS8KBcU7O2TaezNSuz9Yz8Q+j1KyeB4U2x6feJTV40kV7Org6pEtQrV/UKq29otUl7GAXB9TPJlo4xTnapspnvODVOrOkNbLG31JrpvBs49ewnr4AwESSXQ==</latexit>• <latexit sha1_base64="9Sghi/gAFDnXfnELP6ZHHSP47A4=">AAACynicjVHLSsNAFD3GV62vqks3wSq4CpO21rgruHHhooK1hVokiaMGp0mYTIRS3PkDbvXDxD/Qv/DOmIIuik5Icufcc87MvTdIRZQpxt5nrNm5+YXF0lJ5eWV1bb2ysXmRJbkMeSdMRCJ7gZ9xEcW8oyIleC+V3B8GgneD+2Od7z5wmUVJfK5GKR8M/ds4uolCXxHUvQxyIbi6qlSZ4x0x1vBs5rh1t+nWKKh59Ubds12HmVVFsdpJ5Q2XuEaCEDmG4IihKBbwkdHThwuGlLABxoRJiiKT53hEmbQ5sTgxfELv6XtLu36BxrTXnplRh3SKoFeS0sYeaRLiSYr1abbJ58ZZo9O8x8ZT321E/6DwGhKqcEfoX7oJ8786XYvCDTxTQ0Q1pQbR1YWFS266om9u/6hKkUNKmI6vKS8pDo1y0mfbaDJTu+6tb/IfhqlRvQ8Lbo5PfUsa8GSK9vTgoua4TefgrFFt7RajLmEbO9ineR6ihRO00TFVPuMFr9apJa2RNf6mWjOFZgu/lvX0BbUQklg=</latexit>•<latexit sha1_base64="Ejgw9ojUBk/P4YcotbpZjOkN8uw=">AAACynicjVHLSsNAFD2Nr1pfVZduglVwFRL7dFdw48JFBfuAtkgSRw1OHkwmQinu/AG3+mHiH+hfeGdMQRdFJyS5c+45Z+be6yU8SKVtvxeMhcWl5ZXiamltfWNzq7y900vjTPis68c8FgPPTRkPItaVgeRskAjmhh5nfe/+VOX7D0ykQRxdyknCxqF7GwU3ge9KgvojL+OcyatyxbacatOpVU3bajrHJy0VVGt1p9EyHcvWq4J8deLyG0a4RgwfGUIwRJAUc7hI6RnCgY2EsDGmhAmKAp1neESJtBmxGDFcQu/pe0u7YY5GtFeeqVb7dAqnV5DSxCFpYuIJitVpps5n2lmh87yn2lPdbUJ/L/cKCZW4I/Qv3Yz5X52qReIGLV1DQDUlGlHV+blLpruibm7+qEqSQ0KYiq8pLyj2tXLWZ1NrUl276q2r8x+aqVC193Nuhk91SxrwbIrm/KB3bDkNq35Rq7QP8lEXsYd9HNE8m2jjDB10dZXPeMGrcW4IY2JMv6lGIdfs4tcynr4AwDWSXQ==</latexit>• <latexit sha1_base64="Ejgw9ojUBk/P4YcotbpZjOkN8uw=">AAACynicjVHLSsNAFD2Nr1pfVZduglVwFRL7dFdw48JFBfuAtkgSRw1OHkwmQinu/AG3+mHiH+hfeGdMQRdFJyS5c+45Z+be6yU8SKVtvxeMhcWl5ZXiamltfWNzq7y900vjTPis68c8FgPPTRkPItaVgeRskAjmhh5nfe/+VOX7D0ykQRxdyknCxqF7GwU3ge9KgvojL+OcyatyxbacatOpVU3bajrHJy0VVGt1p9EyHcvWq4J8deLyG0a4RgwfGUIwRJAUc7hI6RnCgY2EsDGmhAmKAp1neESJtBmxGDFcQu/pe0u7YY5GtFeeqVb7dAqnV5DSxCFpYuIJitVpps5n2lmh87yn2lPdbUJ/L/cKCZW4I/Qv3Yz5X52qReIGLV1DQDUlGlHV+blLpruibm7+qEqSQ0KYiq8pLyj2tXLWZ1NrUl276q2r8x+aqVC193Nuhk91SxrwbIrm/KB3bDkNq35Rq7QP8lEXsYd9HNE8m2jjDB10dZXPeMGrcW4IY2JMv6lGIdfs4tcynr4AwDWSXQ==</latexit>• <latexit sha1_base64="9Sghi/gAFDnXfnELP6ZHHSP47A4=">AAACynicjVHLSsNAFD3GV62vqks3wSq4CpO21rgruHHhooK1hVokiaMGp0mYTIRS3PkDbvXDxD/Qv/DOmIIuik5Icufcc87MvTdIRZQpxt5nrNm5+YXF0lJ5eWV1bb2ysXmRJbkMeSdMRCJ7gZ9xEcW8oyIleC+V3B8GgneD+2Od7z5wmUVJfK5GKR8M/ds4uolCXxHUvQxyIbi6qlSZ4x0x1vBs5rh1t+nWKKh59Ubds12HmVVFsdpJ5Q2XuEaCEDmG4IihKBbwkdHThwuGlLABxoRJiiKT53hEmbQ5sTgxfELv6XtLu36BxrTXnplRh3SKoFeS0sYeaRLiSYr1abbJ58ZZo9O8x8ZT321E/6DwGhKqcEfoX7oJ8786XYvCDTxTQ0Q1pQbR1YWFS266om9u/6hKkUNKmI6vKS8pDo1y0mfbaDJTu+6tb/IfhqlRvQ8Lbo5PfUsa8GSK9vTgoua4TefgrFFt7RajLmEbO9ineR6ihRO00TFVPuMFr9apJa2RNf6mWjOFZgu/lvX0BbUQklg=</latexit>• <latexit sha1_base64="SBkNiTc3GfIkVLSpw3EPxw831d4=">AAACynicjVLLTsMwEBzCq7wLHLlEFCROlQN9hFslLhw4gEQpUluhJHUhwnnIcZCqihs/wBU+DPEH8BesTSrBoQJHScazM2uv134qwkwx9j5jzc7NLyyWlpZXVtfWN8qbW1dZksuAt4NEJPLa9zIuwpi3VagEv04l9yJf8I5/f6LjnQcuszCJL9Uo5f3Iu43DYRh4iqhOz8+F4OqmXGFVp3HsODWbVY9Yo1nXwGXMdeu2U2VmVFCM86T8hh4GSBAgRwSOGIqwgIeMni4cMKTE9TEmThIKTZzjEcvkzUnFSeERe0/fW5p1Czamuc6ZGXdAqwh6JTlt7JMnIZ0krFezTTw3mTU7LffY5NR7G9HfL3JFxCrcEfuXb6L8r0/XojCEa2oIqabUMLq6oMiSm1PRO7d/VKUoQ0qcxgOKS8KBcU7O2TaezNSuz9Yz8Q+j1KyeB4U2x6feJTV40kV7Org6pEtQrV/UKq29otUl7GAXB9TPJlo4xTnapspnvODVOrOkNbLG31JrpvBs49ewnr4AwESSXQ==</latexit>• <latexit sha1_base64="Ejgw9ojUBk/P4YcotbpZjOkN8uw=">AAACynicjVHLSsNAFD2Nr1pfVZduglVwFRL7dFdw48JFBfuAtkgSRw1OHkwmQinu/AG3+mHiH+hfeGdMQRdFJyS5c+45Z+be6yU8SKVtvxeMhcWl5ZXiamltfWNzq7y900vjTPis68c8FgPPTRkPItaVgeRskAjmhh5nfe/+VOX7D0ykQRxdyknCxqF7GwU3ge9KgvojL+OcyatyxbacatOpVU3bajrHJy0VVGt1p9EyHcvWq4J8deLyG0a4RgwfGUIwRJAUc7hI6RnCgY2EsDGmhAmKAp1neESJtBmxGDFcQu/pe0u7YY5GtFeeqVb7dAqnV5DSxCFpYuIJitVpps5n2lmh87yn2lPdbUJ/L/cKCZW4I/Qv3Yz5X52qReIGLV1DQDUlGlHV+blLpruibm7+qEqSQ0KYiq8pLyj2tXLWZ1NrUl276q2r8x+aqVC193Nuhk91SxrwbIrm/KB3bDkNq35Rq7QP8lEXsYd9HNE8m2jjDB10dZXPeMGrcW4IY2JMv6lGIdfs4tcynr4AwDWSXQ==</latexit>• <latexit sha1_base64="9Sghi/gAFDnXfnELP6ZHHSP47A4=">AAACynicjVHLSsNAFD3GV62vqks3wSq4CpO21rgruHHhooK1hVokiaMGp0mYTIRS3PkDbvXDxD/Qv/DOmIIuik5Icufcc87MvTdIRZQpxt5nrNm5+YXF0lJ5eWV1bb2ysXmRJbkMeSdMRCJ7gZ9xEcW8oyIleC+V3B8GgneD+2Od7z5wmUVJfK5GKR8M/ds4uolCXxHUvQxyIbi6qlSZ4x0x1vBs5rh1t+nWKKh59Ubds12HmVVFsdpJ5Q2XuEaCEDmG4IihKBbwkdHThwuGlLABxoRJiiKT53hEmbQ5sTgxfELv6XtLu36BxrTXnplRh3SKoFeS0sYeaRLiSYr1abbJ58ZZo9O8x8ZT321E/6DwGhKqcEfoX7oJ8786XYvCDTxTQ0Q1pQbR1YWFS266om9u/6hKkUNKmI6vKS8pDo1y0mfbaDJTu+6tb/IfhqlRvQ8Lbo5PfUsa8GSK9vTgoua4TefgrFFt7RajLmEbO9ineR6ihRO00TFVPuMFr9apJa2RNf6mWjOFZgu/lvX0BbUQklg=</latexit>• <latexit sha1_base64="SBkNiTc3GfIkVLSpw3EPxw831d4=">AAACynicjVLLTsMwEBzCq7wLHLlEFCROlQN9hFslLhw4gEQpUluhJHUhwnnIcZCqihs/wBU+DPEH8BesTSrBoQJHScazM2uv134qwkwx9j5jzc7NLyyWlpZXVtfWN8qbW1dZksuAt4NEJPLa9zIuwpi3VagEv04l9yJf8I5/f6LjnQcuszCJL9Uo5f3Iu43DYRh4iqhOz8+F4OqmXGFVp3HsODWbVY9Yo1nXwGXMdeu2U2VmVFCM86T8hh4GSBAgRwSOGIqwgIeMni4cMKTE9TEmThIKTZzjEcvkzUnFSeERe0/fW5p1Czamuc6ZGXdAqwh6JTlt7JMnIZ0krFezTTw3mTU7LffY5NR7G9HfL3JFxCrcEfuXb6L8r0/XojCEa2oIqabUMLq6oMiSm1PRO7d/VKUoQ0qcxgOKS8KBcU7O2TaezNSuz9Yz8Q+j1KyeB4U2x6feJTV40kV7Org6pEtQrV/UKq29otUl7GAXB9TPJlo4xTnapspnvODVOrOkNbLG31JrpvBs49ewnr4AwESSXQ==</latexit>• <latexit sha1_base64="Ejgw9ojUBk/P4YcotbpZjOkN8uw=">AAACynicjVHLSsNAFD2Nr1pfVZduglVwFRL7dFdw48JFBfuAtkgSRw1OHkwmQinu/AG3+mHiH+hfeGdMQRdFJyS5c+45Z+be6yU8SKVtvxeMhcWl5ZXiamltfWNzq7y900vjTPis68c8FgPPTRkPItaVgeRskAjmhh5nfe/+VOX7D0ykQRxdyknCxqF7GwU3ge9KgvojL+OcyatyxbacatOpVU3bajrHJy0VVGt1p9EyHcvWq4J8deLyG0a4RgwfGUIwRJAUc7hI6RnCgY2EsDGmhAmKAp1neESJtBmxGDFcQu/pe0u7YY5GtFeeqVb7dAqnV5DSxCFpYuIJitVpps5n2lmh87yn2lPdbUJ/L/cKCZW4I/Qv3Yz5X52qReIGLV1DQDUlGlHV+blLpruibm7+qEqSQ0KYiq8pLyj2tXLWZ1NrUl276q2r8x+aqVC193Nuhk91SxrwbIrm/KB3bDkNq35Rq7QP8lEXsYd9HNE8m2jjDB10dZXPeMGrcW4IY2JMv6lGIdfs4tcynr4AwDWSXQ==</latexit>• <latexit sha1_base64="9Sghi/gAFDnXfnELP6ZHHSP47A4=">AAACynicjVHLSsNAFD3GV62vqks3wSq4CpO21rgruHHhooK1hVokiaMGp0mYTIRS3PkDbvXDxD/Qv/DOmIIuik5Icufcc87MvTdIRZQpxt5nrNm5+YXF0lJ5eWV1bb2ysXmRJbkMeSdMRCJ7gZ9xEcW8oyIleC+V3B8GgneD+2Od7z5wmUVJfK5GKR8M/ds4uolCXxHUvQxyIbi6qlSZ4x0x1vBs5rh1t+nWKKh59Ubds12HmVVFsdpJ5Q2XuEaCEDmG4IihKBbwkdHThwuGlLABxoRJiiKT53hEmbQ5sTgxfELv6XtLu36BxrTXnplRh3SKoFeS0sYeaRLiSYr1abbJ58ZZo9O8x8ZT321E/6DwGhKqcEfoX7oJ8786XYvCDTxTQ0Q1pQbR1YWFS266om9u/6hKkUNKmI6vKS8pDo1y0mfbaDJTu+6tb/IfhqlRvQ8Lbo5PfUsa8GSK9vTgoua4TefgrFFt7RajLmEbO9ineR6ihRO00TFVPuMFr9apJa2RNf6mWjOFZgu/lvX0BbUQklg=</latexit>• <latexit sha1_base64="SBkNiTc3GfIkVLSpw3EPxw831d4=">AAACynicjVLLTsMwEBzCq7wLHLlEFCROlQN9hFslLhw4gEQpUluhJHUhwnnIcZCqihs/wBU+DPEH8BesTSrBoQJHScazM2uv134qwkwx9j5jzc7NLyyWlpZXVtfWN8qbW1dZksuAt4NEJPLa9zIuwpi3VagEv04l9yJf8I5/f6LjnQcuszCJL9Uo5f3Iu43DYRh4iqhOz8+F4OqmXGFVp3HsODWbVY9Yo1nXwGXMdeu2U2VmVFCM86T8hh4GSBAgRwSOGIqwgIeMni4cMKTE9TEmThIKTZzjEcvkzUnFSeERe0/fW5p1Czamuc6ZGXdAqwh6JTlt7JMnIZ0krFezTTw3mTU7LffY5NR7G9HfL3JFxCrcEfuXb6L8r0/XojCEa2oIqabUMLq6oMiSm1PRO7d/VKUoQ0qcxgOKS8KBcU7O2TaezNSuz9Yz8Q+j1KyeB4U2x6feJTV40kV7Org6pEtQrV/UKq29otUl7GAXB9TPJlo4xTnapspnvODVOrOkNbLG31JrpvBs49ewnr4AwESSXQ==</latexit>•

(b) A fine tagged tree decomposition of 𝑓∶ 𝜌 ↠ 𝛼 together with the path induced by three atom
refinements of 𝜌 (in red, green & blue). Figure V.9: A trio 𝑓∶ 𝜌 ↠ 𝛼—where

𝜌 and 𝑓 are implicit— together with
one of its fine tagged tree decompo-
sition (Figures V.9a and V.9b). There
are two non-full bags in the path with
the same profile, and thus the query
𝛼 can be simplified to 𝛼′ (see Fig-
ure V.9c) by applying condensations
to the atom refinements involved.

ingredients to guarantee its correctness.
• First, an atom 𝑦 𝐿−→ 𝑦′ of 𝛾 cannot occur in two different types, allowing

us to do the condensation of each atom refinement independently—this
property is guaranteed by the fact that we started with a locally acyclic
fine tagged tree decomposition, so an atom of 𝛾 cannot leave a given bag
at two different variables, by Fact V.4.4.

• Second, this condensation forces us to add new atoms in 𝛼 (to preserve the
existence of a homomorphism from the refinement to the approximation)
from some variables of v(𝑏) to some variables of v(𝑏′), but we only add edges
from 𝑥𝑖 to 𝑦𝑖, and never from 𝑥𝑖 to 𝑦𝑗 with 𝑖 ≠ 𝑗. This allows us to preserve
the tree-width of the approximation by using Proposition V.4.5.

Formal proof of Section V.5.2. Let

v(𝑏) = {𝑥1, … , 𝑥𝑚} and v(𝑏′) = {𝑦1, … , 𝑦𝑚}

be as in the informal proof. Note that given an atom 𝑥 𝐿−→ 𝑦 of 𝛾 and a bag,
there is at most one variable of 𝛼 s.t. 𝑥 𝐿−→ 𝑦 is in the type of this variable at
this bag, by Fact V.4.4.

For every atom 𝑥 𝐿−→ 𝑦 of 𝛾, let 𝜋(𝑥 𝐿−→ 𝑦) =̂ 𝑡0
𝐿1−→ … 𝐿𝑛−→ 𝑡𝑛 be its refinement

in 𝜌. If 𝑥 𝐿−→ 𝑦 is not in some type of the profile of 𝑏 (or equivalently, of 𝑏′),
leave it as is. Otherwise, let 𝑖 (resp. 𝑗) be the unique index (by acyclicity) such
that t[𝑡0

𝐿1−→ … 𝐿𝑛−→ 𝑡𝑛] leaves 𝑏 at 𝑓(𝑡𝑖) (resp. leaves 𝑏′ at 𝑓(𝑡𝑗)). Define

𝜋′(𝑥 𝐿−→ 𝑦) =̂ 𝑡0
𝐿1−→ … 𝐿𝑖−→ 𝑡𝑖

[𝐿𝑖+1⋯𝐿𝑗]−−−−−−−→ 𝑡𝑗
𝐿𝑗+1−−−→ … 𝐿𝑛−→ 𝑡𝑛

when 𝑖 ≤ 𝑗 and otherwise the definition is symmetric. Then, let 𝜌′ be the

154

v.5. key lemma: maximal under approximations are semantically finite

refinement of 𝛾 obtained by simultaneously substituting 𝜋(𝑥 𝐿−→ 𝑦) with
𝜋′(𝑥 𝐿−→ 𝑦) in 𝜌, for every atom 𝑥 𝐿−→ 𝑦 of 𝛾.

Then, let 𝛼′ be the query obtained by first adding the atoms

𝑓(𝑡𝑖)
[𝐿𝑖+1⋯𝐿𝑗]−−−−−−−→ 𝑓(𝑡𝑗),

and observe that 𝑓∶ 𝜌 ↠ 𝛼 induces a homomorphism 𝑓′ ∶ 𝜌′ hom−−−→ 𝛼′—in
particular, note that because of assumption (4) of our claim, we could not have
removed images of free variables of 𝛾. Moreover, by construction, 𝛼 ⫅ 𝛼′ (by
Fact III.2.10). As usual, we restrict 𝛼′ to the image of 𝑓′ so that it becomes
strong onto, while preserving that fact that 𝛼 ⫅ 𝛼′. Finally, we build a tagged
tree decomposition (𝑇′, v′, t′) of 𝑓′ by applying Proposition V.4.5; it can be
applied because:
• by assumption (1) and (2) of the claim, both bags have the same cardinality
𝑚 ≤ 𝑘;

• the variables in common between the first and second half of the decom-
position are necessarily included in 𝑍 =̂ v(𝑏) ∩ v(𝑏′) since we started from
a tree decomposition;

• we only add atoms from 𝑥𝑖 to 𝑦𝑖: depending on whether 𝑥𝑖 ∈? 𝑍, and
whether 𝑦𝑖 ∈? 𝑍, we fall in one of the four types of atoms allowed by
Proposition V.4.5.

This concludes the proof of Section V.5.2.

In Figure V.10a, we depict the non-branching path (the rest of the fine tree
decomposition is not depicted as it is left unchanged) obtained by applying
the construction used to prove Section V.5.2 between the second and last bag
of Figure V.8. Observe that a non-branching path of size 𝒪(𝑛) is replaced, by
this procedure, by a path with three bags. Then, after applying Fact V.4.2, we
obtain a trio depicted in Figures V.10b to V.10d.

Before moving to the proof of Lemma V.5.4, we establish one last result.

Fact V.5.7. Let 𝑛, 𝑑, 𝑡 ∈ ℕ. Let 𝑃 be a set with at most 𝑛 elements, and
�̃� be the disjoint union of 𝑃 and {trap, avoid}. For every natural number
𝑚 ≥ 2(𝑡 + 1)𝑑(𝑛 + 1) + 2𝑡, for every sequence (𝑝𝑖)0≤𝑖<𝑚 ∈ �̃�𝑚 containing at
most 𝑡 elements equal to trap, if at most half of the elements of the sequence
are equal to avoid, then there exists 𝑖 < 𝑖′ such that 𝑝𝑖 = 𝑝𝑖′ ≠ avoid, 𝑖′ − 𝑖 ≥ 𝑑
and 𝑝𝑗 ≠ trap for every 𝑖 ≤ 𝑗 ≤ 𝑖′.

Proof. First extract from (𝑥𝑖)0≤𝑖<𝑚 the subsequence of elements distinct from
avoid, of length at least ⌈𝑚2 ⌉ ≥ (𝑡 + 1)𝑑(𝑛 + 1) + 𝑡. Then extract from it
contiguous subsequences that avoid the trap element. Since there is at most
𝑡 + 1 subsequences like this, one of them must have size at least 𝑑(𝑛 + 1).
Denote by (𝑦𝑖)0≤𝑖<𝑑(𝑛+1) the prefix of such a subsequence. Applying the
pigeon-hole principle to (𝑦𝑖⋅𝑑)0≤𝑖<𝑛+1 yields the desired result.

Proof of Lemma V.5.4. Let 𝑓∶ 𝜌 ↠ 𝛼 be a trio, and (𝑇, v, t) be a locally acyclic
fine tagged tree decomposition of 𝑓. If there is a non-branching path (𝑏𝑖)0≤𝑖<𝑚

155

v. semantic tree-width and path-width of conjunctive regular path queries

<latexit sha1_base64="dGW+KUxeKmgu7aK6zj6LukVOb5M=">AAADSnicjVFNT9wwEJ2E7y0fS3srl9AVEodllUVQKnFB4tIjlbqAhBFyjHfXwrEjx6GgKEf+Hfeq/6CIGzfEhbEJ4kuotRXn+c28Z48nyaTIbRz/CcKR0bHxicmpxofpmdm55vzH3VwXhvEe01Kb/YTmXArFe1ZYyfczw2maSL6XnGy7+N4pN7nQ6qc9z/hhSgdK9AWjFqmj5gWx/MyWSqsVanUqWEVI44nrF1JGCR08sb+EHUaZ0X0huWdTaoc646okJVnEWVYNckqN0nYo1KBN2hEGNslm2y2kehAwqXNeksorquqo2Yo7sR/RW9CtQQvqsaObv4HAMWhgUEAKHBRYxBIo5DgPoAsxZMgdQomcQSR8nEMFDdQWmMUxgyJ7gusAdwc1q3DvPHOvZniKxM+gMoIl1GjMM4jdaZGPF97Zse95l97T3e0c/0ntlSJrYYjsv3SPmf+rc7VY6MM3X4PAmjLPuOpY7VL4V3E3j55VZdEhQ87hY4wbxMwrH9858prc1+7elvr4X5/pWLdndW4BV+6W2ODu63a+Bburne7XzvqPtdbWct3qSViAL7CM/dyALfgOO9BD7+tgPvgcLISX4U14G949pIZBrfkEL8bI6D0e08Hu</latexit>

non-atomic

non-full bag

with profile

{{?, { , }}}

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...
<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="5pAxfDZzgzyWrD+Yk/qZ+nKEc+o=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwISGJfbkruBHcVLAPsEWSdFpj0yQmk2ItrvwBt/pj4h/oX3hnTEEXRSckuXPuOWfm3muHnhtzXX/PKAuLS8sr2dXc2vrG5lZ+e6cZB0nksIYTeEHUtq2Yea7PGtzlHmuHEbNGtsda9vBU5FtjFsVu4F/ySci6I2vgu33XsThBzc64F/D4Ol/QtVLVNMqmqmvlY6NSKlFQ0U+Kpqkami5XAemqB/k3dNBDAAcJRmDwwSn2YCGm5woGdISEdTElLKLIlXmGR+RImxCLEcMidEjfAe2uUtSnvfCMpdqhUzx6I1KqOCBNQLyIYnGaKvOJdBboPO+p9BR3m9DfTr1GhHLcEPqXbsb8r07UwtFHVdbgUk2hRER1TuqSyK6Im6s/quLkEBIm4h7lI4odqZz1WZWaWNYuemvJ/IdkClTsnZSb4FPckgY8m6I6P2iamlHWShfFQu0oHXUWe9jHIc2zghrOUEeDvG/xjBe8KufKnXKvPHxTlUyq2cWvpTx9AcehkgI=</latexit>...

<latexit sha1_base64="hcCCPqw5Bw3hBPZLvCSqNdLft9o=">AAAC1HicjVHLTsJAFD3UF+KDqks3VWLCirTG15LEjUtM5JEAIW0ZcEJpm3aqEmRl3PoDbvWbjH+gf+GdsSQqMTpN2zPnnnNn7r1O6PFYmOZrRpubX1hcyi7nVlbX1vP6xmYtDpLIZVU38IKo4dgx87jPqoILjzXCiNlDx2N1Z3Aq4/UrFsU88C/EKGTtod33eY+7tiCqo+dbgt2Isc+uDcfu70w6esEsmWoZs8BKQQHpqgT6C1roIoCLBEMw+BCEPdiI6WnCgomQuDbGxEWEuIozTJAjb0IqRgqb2AF9+7RrpqxPe5kzVm6XTvHojchpYI88AekiwvI0Q8UTlVmyv+Ueq5zybiP6O2muIbECl8T+5Zsq/+uTtQj0cKJq4FRTqBhZnZtmSVRX5M2NL1UJyhASJ3GX4hFhVzmnfTaUJ1a1y97aKv6mlJKVezfVJniXt6QBWz/HOQtq+yXrqHR4flAoF9NRZ7GNXRRpnsco4wwVVNXMH/GEZ62m3Wp32v2nVMukni18W9rDB+IclYA=</latexit>

new bag!

<latexit sha1_base64="dGW+KUxeKmgu7aK6zj6LukVOb5M=">AAADSnicjVFNT9wwEJ2E7y0fS3srl9AVEodllUVQKnFB4tIjlbqAhBFyjHfXwrEjx6GgKEf+Hfeq/6CIGzfEhbEJ4kuotRXn+c28Z48nyaTIbRz/CcKR0bHxicmpxofpmdm55vzH3VwXhvEe01Kb/YTmXArFe1ZYyfczw2maSL6XnGy7+N4pN7nQ6qc9z/hhSgdK9AWjFqmj5gWx/MyWSqsVanUqWEVI44nrF1JGCR08sb+EHUaZ0X0huWdTaoc646okJVnEWVYNckqN0nYo1KBN2hEGNslm2y2kehAwqXNeksorquqo2Yo7sR/RW9CtQQvqsaObv4HAMWhgUEAKHBRYxBIo5DgPoAsxZMgdQomcQSR8nEMFDdQWmMUxgyJ7gusAdwc1q3DvPHOvZniKxM+gMoIl1GjMM4jdaZGPF97Zse95l97T3e0c/0ntlSJrYYjsv3SPmf+rc7VY6MM3X4PAmjLPuOpY7VL4V3E3j55VZdEhQ87hY4wbxMwrH9858prc1+7elvr4X5/pWLdndW4BV+6W2ODu63a+Bburne7XzvqPtdbWct3qSViAL7CM/dyALfgOO9BD7+tgPvgcLISX4U14G949pIZBrfkEL8bI6D0e08Hu</latexit>

non-atomic

non-full bag

with profile

{{?, { , }}}<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•<latexit sha1_base64="C0y/gdX1C+rKZ/8wYgmrdOkTQqQ=">AAACynicjVLLSsQwFD1TX+N71KWb4iC4KqnOo+4G3LhwMYLzAB2krVGL6YM0FYbBnT/gVj9M/AP9C29iB3QhmtL25NxzbnJzE2QiyhVjbxVrZnZufqG6uLS8srq2XtvY7OdpIUPeC1ORymHg51xECe+pSAk+zCT340DwQXB3pOODey7zKE3O1Djjo9i/SaLrKPQVUYOLoBCCq8tanTlu69B1GzZzDlir3dTAY8zzmrbrMDPqKEc3rb3iAldIEaJADI4EirCAj5yec7hgyIgbYUKcJBSZOMcDlshbkIqTwif2jr43NDsv2YTmOmdu3CGtIuiV5LSxS56UdJKwXs028cJk1uxvuScmp97bmP5BmSsmVuGW2L98U+V/fboWhWt4poaIasoMo6sLyyyFORW9c/tbVYoyZMRpfEVxSTg0zuk528aTm9r12fom/m6UmtXzsNQW+NC7pAZPu2j/Dvr7dAmc5mmj3tkrW13FNnawR/1so4NjdNEzVT7hGS/WiSWtsTX5klqV0rOFH8N6/ATBeJJh</latexit>• <latexit sha1_base64="+RirYP5ustJqLqUHrgM4+x+01Gg=">AAACynicjVHLSsNAFD2Nr1pfVZdugkXoKiRt1bgT3LhwUcE+oBVJ0lEHp0mYTIRS3PkDbvXDxD/Qv/DOmIIuRCckuXPuOWfm3humgmfKdd9K1tz8wuJSebmysrq2vlHd3OpmSS4j1okSkch+GGRM8Jh1FFeC9VPJgnEoWC+8O9H53j2TGU/iCzVJ2eU4uIn5NY8CRVBvGOZCMHVVrbmOf+S6Ld92Ha/pHXgNChp+s9X0bc9xzaqhWO2k+oohRkgQIccYDDEUxQIBMnoG8OAiJewSU8IkRdzkGR5QIW1OLEaMgNA7+t7QblCgMe21Z2bUEZ0i6JWktLFHmoR4kmJ9mm3yuXHW6G/eU+Op7zahf1h4jQlVuCX0L92M+V+drkXhGr6pgVNNqUF0dVHhkpuu6Jvb36pS5JASpuMR5SXFkVHO+mwbTWZq170NTP7dMDWq91HBzfGhb0kDnk3R/j3oNhzvwNk/b9WO68Woy9jBLuo0z0Mc4xRtdEyVT3jGi3VmSWtiTb+oVqnQbOPHsh4/AbZEklw=</latexit>•

<latexit sha1_base64="WlYt5SEca2K5ELc+z1njD1FDNUw=">AAADVXicjVFNTxsxEJ1NgIa0lECPcFgagTik0QYVqMQFiQtHkBpAwgh5jZNYeO2V18uHVvsf+HdR/0H5A9yQGDuL2oIQtbXe5zfznj2eOJUis1H0K6jVp6ZnPjRmmx8/zX2eby0sHmU6N4z3mZbanMQ041Io3rfCSn6SGk6TWPLj+HLPxY+vuMmEVj/tbcrPEjpUYiAYtUidt+6I5Te2UFp9o1YngpWENCfcIJcyjOnwD3Mt7ChMjR4IyT2bUDvSKVcFKcgKzqJskitqlLYjoYYd0glfbguyQ3Y6biHlRM+kznhBSm9QluetdtSN/Ahfg14F2lCNA90aA4EL0MAghwQ4KLCIJVDIcJ5CDyJIkTuDAjmDSPg4hxKaqM0xi2MGRfYS1yHuTitW4d55Zl7N8BSJn0FlCKuo0ZhnELvTQh/PvbNj3/IuvKe72y3+48orQdbCCNn3dM+Z/6tztVgYwA9fg8CaUs+46ljlkvtXcTcP/6rKokOKnMMXGDeImVc+v3PoNZmv3b0t9fHfPtOxbs+q3Bzu3S2xwb2X7XwNjja6va3u5uH39u561eoGLMFXWMd+bsMu7MMB9NH7IVgOVoO12rj2WJ+qz0xSa0Gl+QL/jPr8EzNKxFY=</latexit>

non-atomic

full bag

with profile

{{?, ?, { , }}}

<latexit sha1_base64="1/rAxDC+3KeXXRwcdiWQ17GYIwI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy46bKifUAtJZlO69A0CclEkSL4A27108Q/0L/wzjgFtYhOSHLm3HvOzL03SEKRSdd9LVhz8wuLS8Xl0srq2vpGeXOrmcV5yniDxWGctgM/46GIeEMKGfJ2knJ/HIS8FYzOVLx1w9NMxNGlvEt4d+wPIzEQzJdEXQQ9r1euuI6rlz0LPAMqMKsel19whT5iMOQYgyOCJBzCR0ZPBx5cJMR1MSEuJSR0nOMeJdLmlMUpwyd2RN8h7TqGjWivPDOtZnRKSG9KSht7pIkpLyWsTrN1PNfOiv3Ne6I91d3u6B8YrzGxEtfE/qWbZv5Xp2qRGOBU1yCopkQzqjpmXHLdFXVz+0tVkhwS4hTuUzwlzLRy2mdbazJdu+qtr+NvOlOxas9Mbo53dUsasPdznLOgeeB4x87R+WGl6phRF7GDXezTPE9QRQ11NMh7iEc84dmqWZGVW7efqVbBaLbxbVkPH9bMkAE=</latexit>

b1
<latexit sha1_base64="TLt2HcpKNiEjeZlMuTnrCCJNa7A=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwFRLxtSy4EVcVTFuopSTTaR3Mi2SilNKNP+BWv0z8A/0L74wpqEV0QpIz595zZu69fhKITNr2a8mYm19YXCovV1ZW19Y3qptbzSzOU8ZdFgdx2va9jAci4q4UMuDtJOVe6Ae85d+eqXjrjqeZiKMrOUp4N/SGkRgI5kmiXL83jia9as22bL3MWeAUoIZiNeLqC67RRwyGHCE4IkjCATxk9HTgwEZCXBdj4lJCQsc5JqiQNqcsThkesbf0HdKuU7AR7ZVnptWMTgnoTUlpYo80MeWlhNVppo7n2lmxv3mPtae624j+fuEVEitxQ+xfumnmf3WqFokBTnUNgmpKNKOqY4VLrruibm5+qUqSQ0Kcwn2Kp4SZVk77bGpNpmtXvfV0/E1nKlbtWZGb413dkgbs/BznLGgeWM6xdXR5WKtbxajL2MEu9mmeJ6jjHA245C3wiCc8GxdGYtwbo89Uo1RotvFtGQ8fA1iRSg==</latexit>

bn

(a) Non-branching path in the “new” fine tagged tree decomposition.

(b) The original
query 𝛾 of tree-
width 3.

(c) The “new” refinement
𝜌′ of 𝛾.

(d) The “new” approxima-
tion 𝛼′ of tree-width 2.

Figure V.10: Trio resulting from ap-
plying Section V.5.2 between the sec-
ond and last bags of Figure V.8.

156

v.5. key lemma: maximal under approximations are semantically finite

in 𝑇 of length at least 𝑚, let (𝑝𝑖)0≤𝑖<𝑚 be the sequence defined by letting:

𝑝𝑖 =̂

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

trap if 𝑏𝑖 is atomic,

avoid if 𝑏𝑖 contains 𝑘 + 1 variables,

profile of 𝑏𝑖 otherwise.

Observe that, by Fact V.4.4, profiles can be seen encoded as partial functions
from the set of atoms of 𝛾 to ⟦1, 𝑘⟧—of course this encoding is not surjective—
, so there are at most (𝑘 + 1)‖𝛾‖at different profiles on bags with at most 𝑘
variables. Applying Fact V.5.7 for 𝑛 = (𝑘 + 1)‖𝛾‖at , 𝑑 = 2𝑘 + 1, 𝑡 = 2‖𝛾‖at
yields, under the assumption that

𝑚 ≥ 𝑚0 =̂ 2(2‖𝛾‖at + 1)(2𝑘 + 1)((𝑘 + 1)‖𝛾‖at + 1) + 4‖𝛾‖at,

the existence of indices 𝑖 < 𝑖′ such that 𝑖′ − 𝑖 ≥ 2𝑘 + 1, and 𝑏𝑖 and 𝑏𝑖′ have
the same profile, contain at most 𝑘 variables, and every bag 𝑏𝑗 for 𝑖 ≤ 𝑗 ≤ 𝑖′

is non-atomic—note that the hypothesis of Fact V.5.7 are satisfied since at
most 𝑡 = 2‖𝛾‖at bags of (𝑏𝑖)0≤𝑖<𝑚 are atomic (cf. Fact V.5.6), and assuming
w.l.o.g. that no two consecutive bags of (𝑏𝑖)0≤𝑖<𝑚 are identical, since the tagged
tree decomposition (𝑇, v, t) of width 𝑘 is fine, at most half of the bags contain
𝑘 + 1 variables. The assumption 𝑖′ − 𝑖 ≥ 2𝑘 + 1 means that the path from 𝑏𝑖
to 𝑏𝑖′ has length at least 2𝑘 + 2, and thus applying Section V.5.2 will strictly
shorten this path. Note that Section V.5.2 preserves the fineness of the tagged
tree decomposition, its local acyclicity, and that the size of this tree decompo-
sition is strictly smaller (in number of nodes) than the original tree decompo-
sition. By iteratively applying this construction, we obtain a trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′

together with a locally acyclic fine tagged tree decomposition 𝑇′ of width
at most 𝑘, such that 𝛼 ⫅ 𝛼′ (by a variation of Fact III.2.10) and every non-
branching path of 𝑇′ has length at most3 𝑚0 − 1 ∈ 𝒪(‖𝛾‖at ⋅ (𝑘 + 1)‖𝛾‖at). 3 Recall that 𝑘 is fixed.

V.5.3 Proof of Lemma V.3.8

Finally, our main lemma follows from Lemmas V.5.2 and V.5.4.

Proof of Lemma V.3.8. In order to show App𝒯𝑤𝑘
(𝛾) ⫅ App⋆,≤`𝒯𝑤𝑘

(𝛾)—the other
containment being trivial—, pick a trio 𝑓∶ 𝜌 ↠ 𝛼. Applying Lemma V.5.2
and then Lemma V.5.4 yields the existence of a trio 𝑓′ ∶ 𝜌′ ↠ 𝛼′ together
with a fine tagged tree decomposition (𝑇′, v′, t′) of 𝑓′ such that 𝛼 ⫅ 𝛼′ and
(𝑇′, v′, t′) is locally acyclic, and any non-branching path in 𝑇′ has length at
most 𝒪(‖𝛾‖at ⋅ (𝑘 + 1)‖𝛾‖at).

Moreover, we can assume w.l.o.g., by applying Fact V.4.2, that every leaf
of 𝑇′ is tagged by at least one atom of 𝜌′. The local acyclicity of 𝑇′ implies
that if 𝑏 is a leaf of 𝑇′, and 𝜋 =̂ 𝑥 𝐿1−→ 𝑡1

𝐿2−→ ⋯ 𝐿𝑛−1−−−→ 𝑡𝑛−1
𝐿𝑛−→ 𝑦 is an atom

refinement in 𝜌′ of some atom 𝑥 𝐿−→ 𝑦 of 𝛾, then if 𝑏 is tagged by one atom
of 𝜋 this atom must either be 𝑧0

𝐿1−→ 𝑧1 or 𝑧𝑛−1
𝐿𝑛−→ 𝑧𝑛 by local acyclicity. The

number of such atoms in 𝜌′ being bounded by 2‖𝛾‖at, we conclude that 𝑇′

157

v. semantic tree-width and path-width of conjunctive regular path queries

has at most 2‖𝛾‖at leaves.
Then, observe that a tree with at most 𝑝 leaves and whose non-branching

paths have length at most 𝑞 is of height at most4 𝑝 ⋅ 𝑞 − 1. We conclude that 4 The length of a path being its num-
ber of nodes, and with the conven-
tion that the height of a single node
is zero.

the height of 𝑇′ is 𝒪(‖𝛾‖2at ⋅ (𝑘 + 1)‖𝛾‖at). Using again the local acyclicity of
𝑇′, observe that the refinement length of 𝜌′ is at most twice the height of
𝑇′, and hence 𝜌′ ∈ Ref≤`(𝛾) where ` = Θ(‖𝛾‖2at ⋅ (𝑘 + 1)‖𝛾‖at). In other words,
𝛼′ ∈ App⋆,≤`𝒯𝑤𝑘

(𝛾). Hence, we have shown that for all 𝛼 ∈ App⋆𝒯𝑤𝑘
(𝛾), there

exists 𝛼′ ∈ App⋆,≤`𝒯𝑤𝑘
(𝛾) such that 𝛼 ⫅ 𝛼′.

This concludes Section V.5 and the proof of the Key Lemma. The next four
sections are independent of one another:
• in Section V.6, we show that the 2ExpSpace complexity of the semantic

tree-width 𝑘 problem can be dropped down to Π𝑝
2 under assumptions on

the regular languages;
• in Sections V.7 and V.8, we adapt the proofs of this section to deal with

semantic tree-width 1 and semantic path-width 𝑘, respectively.
• in Section V.9, we prove an ExpSpace lower bound for the semantic tree-
width 𝑘 problem and semantic path-width 𝑘 problems;

V.6 Semantic Tree-Width for Simple Queries

We devote this section to showing the following result.

TheoremV.6.1. For 𝑘 ≥ 2, the semantic tree-width 𝑘 problem for UCRPQ(SRE)
is in Π𝑝

2 .

Observe that simple regular expressions are closed under sublanguages.
Hence, in the light of Theorem V.3.12, the maximal under-approximation of
a UCRPQ(SRE) query by infinitary unions of CQs of tree-width 𝑘 is always
equivalent to a UCRPQ(SRE) query of tree-width 𝑘. We will see how the
construction of the maximal under-approximation of the previous section can
be exploited to improve the complexity from 2ExpSpace down to Π𝑝

2 .

V.6.1 Summary Queries

We will first show that the maximal under-approximation of tree-width 𝑘 of a
UC2RPQ can be expressed as a union of polynomial sized “summary” queries.
Each summary query represents a union of exponentially-bounded C2RPQs
sharing some common structure. Summary queries are normal UC2RPQ
queries extended with some special kind of atoms, called “path-𝑙 approx-
imations”. Intuitively, they represent a maximal under-approximation of
tree-width 𝑙 of queries of the form ⋀

𝑖 𝑥𝑖
𝐿𝑖−→ 𝑦𝑖 such that 𝑥𝑖 ≠ 𝑦𝑗 for all 𝑖, 𝑗.

Path-𝑙 approximations may require an exponential size when represented as
UC2RPQs. Formally, a path-𝑙 approximation is a query of the form “P𝑙(𝑋, 𝑌, 𝛿)”
where:
1. 𝑋, 𝑌, are two disjoint sets of variables of size at most 𝑙,

158

v.6. semantic tree-width for simple queries

2. 𝛿(�̄�) is a conjunction of atoms⋀1≤𝑖≤𝑛𝐴𝑖 where �̄� contains all variables of
𝑋 ∪𝑌,

3. each 𝐴𝑖 is a C2RPQ atom of the form 𝑥 𝐿−→ 𝑦 or 𝑦 𝐿−→ 𝑥 such that 𝑥 ∈ 𝑋,
𝑦 ∈ 𝑌, and 𝐿𝑖 is a regular language over 𝔸.

We give the semantics of P𝑙(𝑋, 𝑌, 𝛿) in terms of infinitary unions of C2RPQs.
A query like the one before is defined to be equivalent to the (infinitary) union
of all queries 𝛼(�̄�) ∈ App𝒫𝑤𝑙

(𝛿) such that

𝛼 has a path decomposition of width 𝑙 where 𝑋 is the root and 𝑌 is the leaf,
(V.4)

that is, the root and leaf bags contain precisely the vertices of 𝑋 and 𝑌,
respectively. See Figure V.11 for an example.

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z
<latexit sha1_base64="Rbb9dRCglIXnItRrNxJexyeOTTU=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiiIuSSFF3Fty4rGgv0MYymU7aoZNJmJkIJfQR3LhQqltfwtdw59s4abvQ1h8GPv7/HOac48ecKe0431ZuaXlldS2/XtjY3NresXf36ipKJKE1EvFINn2sKGeC1jTTnDZjSXHoc9rwB9dZ3nikUrFI3OthTL0Q9wQLGMHaWHfk4bRjF52SMxFaBHcGxavPcaa3asf+ancjkoRUaMKxUi3XibWXYqkZ4XRUaCeKxpgMcI+2DAocUuWlk1FH6Mg4XRRE0jyh0cT93ZHiUKlh6JvKEOu+ms8y87+slejg0kuZiBNNBZl+FCQc6Qhle6Muk5RoPjSAiWRmVkT6WGKizXUK5gju/MqLUD8rueel8m25WDmGqfJwAIdwAi5cQAVuoAo1INCDJ3iBV4tbz9bYep+W5qxZzz78kfXxA/vfkf8=</latexit>

c⇤
<latexit sha1_base64="QEDPvNcEVN6snRcXCSLzDjNaTVU=">AAAB7XicbZDLTgIxFIbP4A3xhrp000g06ILMGKLuJHHjEhO5JDCSTulApTOdtB0TMuEd3LiAGLc+g6/hzrexAywU/JMmX/7/nPSc40WcKW3b31ZmZXVtfSO7mdva3tndy+8f1JWIJaE1IriQTQ8ryllIa5ppTpuRpDjwOG14g9s0bzxTqZgIH/Qwom6AeyHzGcHaWPUiJmeP5518wS7ZU6FlcOZQuPkcp5pUO/mvdleQOKChJhwr1XLsSLsJlpoRTke5dqxohMkA92jLYIgDqtxkOu0InRini3whzQs1mrq/OxIcKDUMPFMZYN1Xi1lq/pe1Yu1fuwkLo1jTkMw+8mOOtEDp6qjLJCWaDw1gIpmZFZE+lphoc6CcOYKzuPIy1C9KzmWpfF8uVE5hpiwcwTEUwYErqMAdVKEGBJ7gBcYwsYT1ar1Z77PSjDXvOYQ/sj5+AHuEks8=</latexit>

(ac)⇤

<latexit sha1_base64="4LAhf4TVXWs8Virk4xjGD1eWEoc=">AAAB8HicbZDLSgMxFIbP1Futt6pLN4NFqQplRoq6s+DGZQV7kXYsmTRTQ5PMkGSEMvQp3Kgo4tY38DXc+TZm2i609YfAx/+fQ845fsSo0o7zbWXm5hcWl7LLuZXVtfWN/OZWXYWxxKSGQxbKpo8UYVSQmqaakWYkCeI+Iw2/f5HmjXsiFQ3FtR5ExOOoJ2hAMdLGuimi5GiID24PO/mCU3JGsmfBnUDh/PMp1XO1k/9qd0MccyI0ZkiplutE2kuQ1BQzMsy1Y0UihPuoR1oGBeJEeclo4KG9Z5yuHYTSPKHtkfu7I0FcqQH3TSVH+k5NZ6n5X9aKdXDmJVREsSYCjz8KYmbr0E63t7tUEqzZwADCkppZbXyHJMLa3ChnjuBOrzwL9eOSe1IqX5ULlX0YKws7sAtFcOEUKnAJVagBBg4P8AKvlrQerTfrfVyasSY92/BH1scPqsaUEA==</latexit>

(a+c)⇤
<latexit sha1_base64="HcAZEZtYx5Sv26HKdQAvyzCT2/Y=">AAAB7XicbZDLTgIxFIbP4A3xhrp000g06ILMGKLuJHHjEhO5JDCSTulApTOdtB0TMuEd3LiAGLc+g6/hzrexAywU/JMmX/7/nPSc40WcKW3b31ZmZXVtfSO7mdva3tndy+8f1JWIJaE1IriQTQ8ryllIa5ppTpuRpDjwOG14g9s0bzxTqZgIH/Qwom6AeyHzGcHaWPUi9s4ezzv5gl2yp0LL4MyhcPM5TjWpdvJf7a4gcUBDTThWquXYkXYTLDUjnI5y7VjRCJMB7tGWwRAHVLnJdNoROjFOF/lCmhdqNHV/dyQ4UGoYeKYywLqvFrPU/C9rxdq/dhMWRrGmIZl95MccaYHS1VGXSUo0HxrARDIzKyJ9LDHR5kA5cwRnceVlqF+UnMtS+b5cqJzCTFk4gmMoggNXUIE7qEINCDzBC4xhYgnr1Xqz3melGWvecwh/ZH38AHn9ks4=</latexit>

(ab)⇤

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="lBd2mikvmDS/+/4KJ5v+L9+2M1U=">AAACenicbVFNT9tAEN2YtoChLaFHLlaiSqBWkY2iwiUCqZceQ0UAKbHQeDOGFeu12Z0FgsUv4Noeyj/hp/S/9NC1E1Vt0iet9PTezOx8JIUUhsLwZ8NbevHy1fLKqr+2/vrN243m5onJreY44LnM9VkCBqVQOCBBEs8KjZAlEk+Tq8+Vf3qD2ohcHdOkwDiDCyVSwYGcdATnG+2wE9YIFkk0I+2D5x8VnvrnzQYfjXNuM1TEJRgzjMKC4hI0CS7xwR9ZgwXwK7jAoaMKMjRxWXf6ELx3yjhIc+2eoqBW/84oITNmkiUuMgO6NPNeJf7PG1pK9+NSqMISKj79KLUyoDyoxg7GQiMnOXEEuBau14BfggZObjm+74++4rV1Mf1ZveMoLqsW62LzJlEvBWnwY1076pG2GJdSJOiWoHAx4Qb0tY3Le9Fd9P6kxaXCW7qrR3RnieaPsEhOdjvRp073qNs+bLEpVtgWa7FtFrE9dsi+sD4bMM6QPbJv7Hvjl9fydrwP01CvMct5x/6B1/0NSwDIFg==</latexit>0

<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="IOV/GzDmDFW50kuwQuqwd3Cn+Ew=">AAAB7nicbZDLSgMxFIYz9VbrrerSTbAorsqMFBU3Fty4rGAv0A7lTJppQzOZkGSEMvQh3AhWxK2v4Gu4823MtF1o6w+Bj/8/h5xzAsmZNq777eRWVtfWN/Kbha3tnd294v5BQ8eJIrROYh6rVgCaciZo3TDDaUsqClHAaTMY3mZ585EqzWLxYEaS+hH0BQsZAWOtZge4HMB1t1hyy+5UeBm8OZRuPl8yTWrd4lenF5MkosIQDlq3PVcaPwVlGOF0XOgkmkogQ+jTtkUBEdV+Oh13jE+s08NhrOwTBk/d3x0pRFqPosBWRmAGejHLzP+ydmLCKz9lQiaGCjL7KEw4NjHOdsc9pigxfGQBiGJ2VkwGoIAYe6GCPYK3uPIyNM7L3kW5cl8pVU/RTHl0hI7RGfLQJaqiO1RDdUTQED2hCXp1pPPsvDnvs9KcM+85RH/kfPwAJyWT2A==</latexit>↵ :<latexit sha1_base64="PxTcTyqEcr3lAhOtoVJbmjNcfeg=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPiKeyKLzwFvHiMYB6QLGF2dpIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7gkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupv6rSeujYjVI44T7kd0oERfMIpWanVDLpHe9soVt+rOQJaJl5MK5Kj3yl/dMGZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn83OnZATq4SkH2tbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5Ni/8bPhEpS5IrNF/VTSTAm099JKDRnKMeWUKaFvZWwIdWUoU2oZEPwFl9eJs3zqndVvXy4qNRO8ziKcATHcAYeXEMN7qEODWAwgmd4hTcncV6cd+dj3lpw8plD+APn8wcLq49O</latexit>

� :
<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2
<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="x9zjB1tQLR6Pw4UEOAnPW9h6B3I=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlgUV2VGirqz4MZlRXuBdiiZNNOGZpIhyYhl6CO4caFUt76Er+HOtzHTdqGtPwQ+/v8ccs4JYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLBdZY3HqjSTIp7M4ypH+GeYCEj2Fjr7rHjdQpFt+ROhBbBm0Hx6nOc6a3aKXy1u5IkERWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy2LAkdU++lk1BE6tk4XhVLZJwyauL87UhxpPYwCWxlh09fzWWb+l7USE176KRNxYqgg04/ChCMjUbY36jJFieFDC5goZmdFpI8VJsZeJ2+P4M2vvAj1s5J3XirflouVE5gqB4dwBKfgwQVU4AaqUAMCPXiCF3h1uPPsjJ33aemSM+s5gD9yPn4AKA2SHA==</latexit>x1
<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a
<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="sWJGvdTt00+O0kGZG6QCiyG8cZw=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8GiuCpJKerOghuXFe0F2lAm00k7dDIJMxOxhD6CGxdKdetL+BrufBsnbRfa+sPAx/+fw5xz/JgzpR3n28qtrK6tb+Q3C1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8DrLmw9UKhaJez2KqRfivmABI1gb6+6xW+7aRafkTIWWwZ1D8epzkumt1rW/Or2IJCEVmnCsVNt1Yu2lWGpGOB0XOomiMSZD3KdtgwKHVHnpdNQxOjFODwWRNE9oNHV/d6Q4VGoU+qYyxHqgFrPM/C9rJzq49FIm4kRTQWYfBQlHOkLZ3qjHJCWajwxgIpmZFZEBlphoc52COYK7uPIyNMol97xUua0Uq6cwUx6O4BjOwIULqMIN1KAOBPrwBC/wanHr2ZpY77PSnDXvOYQ/sj5+ACmRkh0=</latexit>x2

<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="lBd2mikvmDS/+/4KJ5v+L9+2M1U=">AAACenicbVFNT9tAEN2YtoChLaFHLlaiSqBWkY2iwiUCqZceQ0UAKbHQeDOGFeu12Z0FgsUv4Noeyj/hp/S/9NC1E1Vt0iet9PTezOx8JIUUhsLwZ8NbevHy1fLKqr+2/vrN243m5onJreY44LnM9VkCBqVQOCBBEs8KjZAlEk+Tq8+Vf3qD2ohcHdOkwDiDCyVSwYGcdATnG+2wE9YIFkk0I+2D5x8VnvrnzQYfjXNuM1TEJRgzjMKC4hI0CS7xwR9ZgwXwK7jAoaMKMjRxWXf6ELx3yjhIc+2eoqBW/84oITNmkiUuMgO6NPNeJf7PG1pK9+NSqMISKj79KLUyoDyoxg7GQiMnOXEEuBau14BfggZObjm+74++4rV1Mf1ZveMoLqsW62LzJlEvBWnwY1076pG2GJdSJOiWoHAx4Qb0tY3Le9Fd9P6kxaXCW7qrR3RnieaPsEhOdjvRp073qNs+bLEpVtgWa7FtFrE9dsi+sD4bMM6QPbJv7Hvjl9fydrwP01CvMct5x/6B1/0NSwDIFg==</latexit>0

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a

<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c

<latexit sha1_base64="mXIvgRzaPF8YSAEJ14qzgDncu+g=">AAAB6HicbZDLTgJBEEVr8IX4Ql266Ug0rsiMIepOEjcuIZFHAhPS09RAS88j3T0mSPgCNy40Bpf+hb/hzr+xB1goeJNOTu6tSleVFwuutG1/W5mV1bX1jexmbmt7Z3cvv39QV1EiGdZYJCLZ9KhCwUOsaa4FNmOJNPAENrzBTZo3HlAqHoV3ehijG9BeyH3OqDZW9bGTL9hFeyqyDM4cCtefk1TvlU7+q92NWBJgqJmgSrUcO9buiErNmcBxrp0ojCkb0B62DIY0QOWOpoOOyYlxusSPpHmhJlP3d8eIBkoNA89UBlT31WKWmv9lrUT7V+6Ih3GiMWSzj/xEEB2RdGvS5RKZFkMDlEluZiWsTyVl2twmZ47gLK68DPXzonNRLFVLhfIpzJSFIziGM3DgEspwCxWoAQOEJ3iBV+veerberMmsNGPNew7hj6yPHwWtkXo=</latexit>z

<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2
<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1

<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

<latexit sha1_base64="tT0BRmDEDKZ7p8SlUvW6TjD1c/k=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdovlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A96GkV0=</latexit>

a
<latexit sha1_base64="uztINijzHu1OIzAokcoOP5ZtGoM=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm6FFEBclkaLuLLhxWdFeoI1lMp20QyeTMDMRSugjuHGhVLe+hK/hzrdx0nahrT8MfPz/Ocw5x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFSUSELrJOKRbPlYUc4ErWumOW3FkuLQ57TpD6+zvPlIpWKRuNejmHoh7gsWMIK1se7Iw2nXLjllZyq0DO4cSlefk0xvta791elFJAmp0IRjpdquE2svxVIzwum40EkUjTEZ4j5tGxQ4pMpLp6OO0bFxeiiIpHlCo6n7uyPFoVKj0DeVIdYDtZhl5n9ZO9HBpZcyESeaCjL7KEg40hHK9kY9JinRfGQAE8nMrIgMsMREm+sUzBHcxZWXoXFWds/LldtKqVqEmfJwBEU4ARcuoAo3UIM6EOjDE7zAq8WtZ2tivc9Kc9a85xD+yPr4Afqrkfs=</latexit>

c⇤
<latexit sha1_base64="ADmrDww51bDkSbHD6uRgGyRmPGE=">AAAB6HicbZDLSgNBEEVr4ivGV9SlmyZBcBVmJKg7A25cJmAekAyhp1OTtOl50N0jhCFf4MaFInHpX/gb7vwbe5IsNHqh4XBvFV1VXiy40rb9ZeXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGN1nefkCpeBTe6UmMbkCHIfc5o9pYDdYvlu2KPRf5C84Sytcfs0xv9X7xszeIWBJgqJmgSnUdO9ZuSqXmTOC00EsUxpSN6RC7BkMaoHLT+aBTcmqcAfEjaV6oydz92ZHSQKlJ4JnKgOqRWs0y87+sm2j/yk15GCcaQ7b4yE8E0RHJtiYDLpFpMTFAmeRmVsJGVFKmzW0K5gjO6sp/oXVecS4q1Ua1XCvBQnk4gRKcgQOXUINbqEMTGCA8wjO8WPfWk/VqzRalOWvZcwy/ZL1/A+GOkV8=</latexit>

c
<latexit sha1_base64="rBGi1lD4rymrS1IRe7SJwFA5gBk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCpJKdWdBTcuK9oLtKFMppN26GQSZiZCCH0ENy6U6taX8DXc+TZO2i609YeBj/8/hznneBFnStv2t5VbW9/Y3MpvF3Z29/YPiodHLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG1745ssbz9SqVgoHnQSUTfAQ8F8RrA21n3Sr/SLJbtsz4RWwVlA6fpzmumt0S9+9QYhiQMqNOFYqa5jR9pNsdSMcDop9GJFI0zGeEi7BgUOqHLT2agTdGacAfJDaZ7QaOb+7khxoFQSeKYywHqklrPM/C/rxtq/clMmolhTQeYf+TFHOkTZ3mjAJCWaJwYwkczMisgIS0y0uU7BHMFZXnkVWpWyUytX76ql+jnMlYcTOIULcOAS6nALDWgCgSE8wQu8Wtx6tqbW+7w0Zy16juGPrI8fKxeSHg==</latexit>y2

<latexit sha1_base64="yPRTJw8s3wjr8q3A5gWKhJp+7Nk=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8GiuCqJFHVnwY3LivYCbSiT6aQdOpmEmYkQQh/BjQuluvUlfA13vo2TtAtt/WHg4//PYc45XsSZ0rb9bRVWVtfWN4qbpa3tnd298v5BS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve+CbL249UKhaKB51E1A3wUDCfEayNdZ/0nX65YlftXGgZnDlUrj+nmd4a/fJXbxCSOKBCE46V6jp2pN0US80Ip5NSL1Y0wmSMh7RrUOCAKjfNR52gE+MMkB9K84RGufu7I8WBUkngmcoA65FazDLzv6wba//KTZmIYk0FmX3kxxzpEGV7owGTlGieGMBEMjMrIiMsMdHmOiVzBGdx5WVonVedi2rtrlapn8JMRTiCYzgDBy6hDrfQgCYQGMITvMCrxa1na2q9z0oL1rznEP7I+vgBKZOSHQ==</latexit>y1
<latexit sha1_base64="plPGcCydVztox5XDMiFu1t6kLmk=">AAAB7nicbZDLSgMxFIbP1Futt6pLN6FFqC7KTCnqzoIblxXsBdqxZNJMG5rJDElGKEMfwo1gRdz6Cr6GO9/GTNuFtv4Q+Pj/c8g5x4s4U9q2v63M2vrG5lZ2O7ezu7d/kD88aqowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG92keeuRSsVCca/HEXUDPBDMZwRrY7W8EvbOHs57+aJdtmdCq+AsoHj9+ZJqWu/lv7r9kMQBFZpwrFTHsSPtJlhqRjid5LqxohEmIzygHYMCB1S5yWzcCTo1Th/5oTRPaDRzf3ckOFBqHHimMsB6qJaz1Pwv68Tav3ITJqJYU0HmH/kxRzpE6e6ozyQlmo8NYCKZmRWRIZaYaHOhnDmCs7zyKjQrZeeiXL2rFmsFmCsLJ1CAEjhwCTW4hTo0gMAInmAKr1ZkPVtv1vu8NGMteo7hj6yPHzSakzY=</latexit>

b(ab)⇤

Figure V.11: Consider the path-𝑙
approximation P𝑙({𝑥1, 𝑥2}, {𝑦1, 𝑦2}, 𝛿)
where 𝑙 = 2 and 𝛿 is depicted
on the left. Its semantics contains
the approximation 𝛼(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈
App𝒫𝑤𝑙

(𝛿) depicted in the middle
because it has path decomposition of
width 𝑙 verifying (V.4), as shown on
the right.

We now simply define a 𝑘-summary query as a C2RPQ extended with
path-𝑙 approximation atoms for any 𝑙 ≤ 𝑘, with the expected semantics.
A refinement of a 𝑘-summary query is any C2RPQ obtained by replacing
atoms with atom refinements, and each path-𝑙 approximation P𝑙(𝑋, 𝑌, 𝛿) with
any 𝛼(�̄�) ∈ App𝒫𝑤𝑘

(𝛿) verifying (V.4). By definition, a database satisfies a
𝑘-summary query if and only if it satisfies one of its refinements.

A tree decomposition of a 𝑘-summary query 𝛾 consists of a pair ⟨𝐓, v⟩ with
v ∶ 𝑉(𝐓) → 𝔓(vars(𝛾)) such that:
• for every classical atom 𝑥 𝐿−→ 𝑦 in 𝛾, there is a bag 𝑏 ∈ 𝑇 such that {𝑥, 𝑦} ⊆

v(𝑏);
• for every path-𝑙 approximation P𝑙(𝑋, 𝑌, 𝛿) in 𝛾, there are two adjacent bags
𝑏, 𝑏′ ∈ 𝑇 such that 𝑋 ⊆ v(𝑏) and 𝑌 ⊆ v(𝑏′).

The width is defined as usual. Then, by Fact V.2.1, we obtain the following
upper bound.

Fact V.6.2. For any 𝑘 ≥ 2, any refinement of a 𝑘-summary query with a tree
decomposition of width at most 𝑘 is a C2RPQ of tree-width at most 𝑘.

Lastly, a homomorphism from a C2RPQ 𝛾(�̄�) = ⋀𝑖 𝑥𝑖
𝐿𝑖−→ 𝑦𝑖 to a summary

query 𝛿(�̄�′) = �⋀𝑗 𝑥
′
𝑗

𝐿′𝑗−→ 𝑦′𝑗� ∧ �⋀𝑗′ P𝑙(𝑋𝑗′ , 𝑌𝑗′ , 𝛿𝑗′)� consists of a mapping 𝑓
from variables of 𝛾 to variables of 𝛿 such that 𝑓(�̄�) = �̄�′, and for each 𝑖, there
is an atom 𝑓(𝑥𝑖)

𝐿𝑖−→ 𝑓(𝑦𝑖) in 𝛿. Note that if there is a homomorphism from
𝛾(�̄�) to 𝛿(�̄�′), then 𝛿(�̄�′) ⫅ 𝛾(�̄�).

Let us fix ℒ to be any class closed under sublanguages. For every 𝛾 ∈
C2RPQ(ℒ), we define Appzip

𝒯𝑤𝑘
(𝛾) as the set of all 𝑘-summary queries 𝛼 such

159

v. semantic tree-width and path-width of conjunctive regular path queries

that:
i. 𝛼 has a fine tagged tree decomposition ⟨𝐓, v⟩ of width at most 𝑘,
ii. there exists a strong onto homomorphism from a refinement 𝜌 of 𝛾 to 𝛼,
iii. 𝑇 has at most 2‖𝛾‖at leaves, and every non-branching path of 𝑇 consisting

only of non-atomic bags must contain at most two non-full bags.
Note that since 𝛼 is a homomorphic image a refinement of 𝛾, and since ℒ is
closed under sublanguages, then 𝛼 has only ℒ-labelled atoms.

Lemma V.6.3. Let 𝑘 ≥ 2. For every finite class ℒ closed under sublanguages,
and for every 𝛾 ∈ C2RPQ(ℒ), we have:
1. Appzip

𝒯𝑤𝑘
(𝛾) ≡ App𝒯𝑤𝑘

(𝛾),

2. Appzip
𝒯𝑤𝑘
(𝛾) is a union of polynomial-sized 𝑘-summary queries having only

ℒ-labelled atoms, and
3. one can test in NP if a summary query is part of this union.

Proof. Point (2) follows directly from the definition: there are few branches
in the decomposition, branches are short, and each bag cannot contain more
than (𝑘 + 1)2 ⋅ |ℒ| atoms labelled with ℒ-languages.

For point (3), recall that one can check if a query has tree-width at most 𝑘
in linear time, e.g. using Bodlaender’s algorithm (Proposition III.1.23).

To prove (1), notice first that Appzip
𝒯𝑤𝑘
(𝛾) ⫅ App𝒯𝑤𝑘

(𝛾) as a consequence of
Fact V.6.2.

For the converse containment, we use Corollary V.3.6 and prove instead
App⋆𝒯𝑤𝑘

(𝛾) ⫅ Appzip
𝒯𝑤𝑘
(𝛾). Observe that, as corollary of the proof of LemmaV.3.8,

we can assume to have App⋆𝒯𝑤𝑘
(𝛾) expressed as a union of C2RPQ(ℒ) with

a fine tagged tree decomposition of width 𝑘 with at most 2‖𝛾‖at leaves, and
hence it suffices to replace each non-branching paths having non-atomic bags
with path-𝑙 approximations.

Indeed, fix a fine tagged tree decomposition and a trio 𝑓∶ 𝜌 ↠ 𝛼. Given
a long non-branching path from bag 𝑏𝑋 with variables 𝑋 to a bag 𝑏𝑌 with
variables 𝑌, such that 𝑏𝑋 and 𝑏𝑌 are non-full, and no bag in between is atomic,
define 𝑋′ =̂ 𝑋 ⧵ 𝑌 and 𝑌′ =̂ 𝑌 ⧵ 𝑋. Consider the set 𝒮 of atoms 𝑢 𝐿−→ 𝑣 of 𝛾,
such that the path induced ��𝑏𝑖𝑧𝑖��𝑖 by the refinement, say

𝑢 = 𝑤0
𝐿0−→ 𝑤1

𝐿1−→ ⋯ 𝐿𝑛−→ 𝑤𝑛 = 𝑣

of 𝑢 𝐿−→ 𝑣 in 𝜌 goes through 𝑏𝑋 at some variable of 𝑋′ and through 𝑏𝑌 at some
variable of 𝑌′, in the sense that 𝑏𝑖 = 𝑏𝑋 and 𝑧𝑖 ∈ 𝑋′ for some 𝑖, and 𝑏𝑗 = 𝑏𝑌
and 𝑧𝑗 ∈ 𝑌′ for some 𝑗. There exist 𝑖′, 𝑗′ such that 𝑓(𝑤𝑖′) = 𝑧𝑖 and 𝑓(𝑤𝑗′) = 𝑧𝑗,
and w.l.o.g. 𝑖′ < 𝑗′. Now let 𝛼′ be the query obtained from 𝛼 by removing all
atoms tagged in a bag between 𝑏𝑋 and 𝑏𝑌, and add a path-𝑙 approximation
query

P𝑙(𝑋′, 𝑌′, 𝛿)

where 𝛿 is the conjunction over 𝑢 𝐿−→ 𝑣 ∈ 𝒮 of 𝑤𝑖′
[𝐿𝑖′⋯𝐿𝑗′]−−−−−−−→ 𝑤𝑗′ . Repeat

this operation for every non-trivial non-branching path with non-atomic

160

v.6. semantic tree-width for simple queries

bags. We obtain 𝛼″ ∈ Appzip
𝒯𝑤𝑘
(𝛾) s.t. 𝛼 ⫅ 𝛼″, which concludes the proof that

App⋆𝒯𝑤𝑘
(𝛾) ⫅ Appzip

𝒯𝑤𝑘
(𝛾).

V.6.2 Semantic Tree-Width Problem

With the previous results in place, we now show that the semantic tree-width
𝑘 problem is in Π𝑝

2 for UCRPQ(SRE), for every 𝑘 > 1.

TheoremV.6.1. For 𝑘 ≥ 2, the semantic tree-width 𝑘 problem for UCRPQ(SRE)
is in Π𝑝

2 .

Proof. It suffices to show the statement for any CRPQ(SRE) 𝛾. Remember
that 𝛾 is of semantic tree-width 𝑘 if, and only if, 𝛾 ⫅ Appzip

𝒯𝑤𝑘
(𝛾). The first

ingredient to this proof is the fact that this containment has a polynomial
counterexample property.

Claim V.6.4. If 𝛾 " App⋆𝒯𝑤𝑘
(𝛾) then there is a polynomial-sized expansion 𝜉

of 𝛾 such that 𝜉 " App⋆𝒯𝑤𝑘
(𝛾).

Proof. Let us call any atomwith a language of the form 𝑎∗ a recursive atom, and
any other atom a non-recursive atom. Let 𝑛 be the number of non-recursive
atoms of 𝛾. Hence, any refinement 𝜌 ∈ Ref(𝛾) has 𝑛 atoms deriving from
non-recursive atom refinements, all the remaining ones derive from recursive
atom refinements.

We will work with the infinitary union of conjunctive queries

𝒰 =̂ App⋆𝒯𝑤𝑘
(𝛾) ∩ CQ.

Note that 𝒰 = {𝛼 ∈ CQ ∣ 𝛼 ∈ 𝒯𝑤𝑘 and there is 𝜉 ∈ Exp(𝛾) s.t. 𝜉 ↠ 𝛼}.
It is easy to see that 𝒰 ≡ App⋆𝒯𝑤𝑘

(𝛾) as a consequence of Fact V.2.1. By
Proposition III.2.12, we have 𝛾 " 𝒰 if, and only if, there is some expansion 𝜉
of 𝛾 such that 𝜉 " 𝒰. In turn, this happens if, and only if, there is no 𝛿 ∈ 𝒰
such that 𝛿 hom−−−→ 𝜉.

Take any such counterexample 𝜉 of minimal size (in number of atoms). We
show that for any internal path of 𝜉 of the shape

𝜋 = 𝑥0
𝑎−→ 𝑥1

𝑎−→ 𝑥1⋯𝑥𝑚−1
𝑎−→ 𝑥𝑚,

we have 𝑚 ≤ 𝑛 + 1. Hence, since 𝜉 is an expansion of a CRPQ(SRE), this
means that the size of each atom expansion—namely an expansion obtained
from a query by only expanding one atom—of 𝜉 is linearly bounded in the
size of 𝛾, and thus that 𝜉 is quadratically bounded.

By means of contradiction, if𝑚 > 𝑛+ 1 consider the expansion 𝜉′ resulting
from “shrinking” the path 𝜋 to a path 𝜋′ of length 𝑛 + 1. Hence, 𝜉′ is smaller
than 𝜉, and since 𝜉was assumed to beminimal, 𝜉′ cannot be a counterexample.
Thus, there is some 𝛿 ∈ 𝒰 such that 𝑓1 ∶ 𝛿

hom−−−→ 𝜉′ for some homomorphism
𝑓1. Further, by definition of 𝒰, we have 𝑓2 ∶ 𝜉″ ↠ 𝛿 for some 𝜉″ ∈ Exp(𝛾).
Consider then the composition 𝜉″ ↠ 𝛿 hom−−−→ 𝜉′ of 𝑓2 with 𝑓1 and let us call it

161

v. semantic tree-width and path-width of conjunctive regular path queries

𝑔 ∶ 𝜉″ hom−−−→ 𝜉′. By definition of 𝑛 there must be at least one atom 𝑥𝑖
𝑎−→ 𝑥𝑖+1

of the shrunken path 𝜋′ of 𝜉′ which either (i) is not in the image of 𝑓1, or
(ii) all its 𝑔-preimages proceed from atoms 𝑧 𝑎−→ 𝑧′ of 𝜉″ which are in the
expansions of recursive atoms of 𝛾. We show that, in both cases, we can
replace 𝑥𝑖

𝑎−→ 𝑥𝑖+1 with a path of 𝑎’s of any arbitrary length 𝑙 > 0, obtaining
a conjunctive query 𝜉′+𝑙 which is—still—not a counterexample. In the first
case (i), we actually obtain that 𝛿 hom−−−→ 𝜉′+𝑙. In the second case (ii), we have to
replace each atom 𝑧 𝑎−→ 𝑧′ in the 𝑔-preimage of 𝑥𝑖

𝑎−→ 𝑥𝑖+1 in 𝜉″ by an 𝑎-path of
length 𝑙, obtaining some expansion 𝜉″+𝑙 of 𝛾. We also replace each atom in the
𝑓1-preimage of 𝑥𝑖

𝑎−→ 𝑥𝑖+1 by an 𝑎-path of length 𝑙 obtaining some 𝛿+𝑙 such that
𝜉″+𝑙 ↠ 𝛿+𝑙

hom−−−→ 𝜉′+𝑙. Further, 𝛿+𝑙 ∈ 𝒯𝑤𝑘 since 𝒯𝑤𝑘 is closed under refinements
by Fact V.2.1. In both cases this shows that 𝜉′+𝑙 is not a counterexample. In
particular, for 𝑙 = 𝑚 − 𝑛 − 1, we have 𝜉′+𝑙 = 𝜉, and this would contradict the
fact that 𝜉 is a counterexample. Therefore, there exists a counterexample of
polynomial (quadratic) size whenever 𝛾 " App⋆𝒯𝑤𝑘

(𝛾).

The second ingredient is that testing whether a CQ is a counterexample is
in coNP.

Claim V.6.5. The problem of testing, given a C2RPQ 𝛾 and a CQ 𝜉, whether
𝜉 ⫅ Appzip

𝒯𝑤𝑘
(𝛾), is in NP.

Proof. We first guess a polynomial-sized 𝑘-summary query 𝛿zip and test in NP

that it is part of Appzip
𝒯𝑤𝑘
(𝛾) by Lemma V.6.3. Let us call Δ be the equivalent

UCRPQ(SRE) query, given by Lemma V.6.3 cum Lemma V.3.8. We have to
check that there is some expansion 𝛿 of Δ such that there is a homomorphism
𝛿 hom−−−→ 𝜉. We first guess a valuation 𝜇 ∶ vars(𝛿zip) → vars(𝜉). Now it remains
to check that:
1. For every CRPQ atom 𝑥 𝑎∗−→ 𝑦 of 𝛿zip there is an 𝑎-path in 𝜉 from 𝜇(𝑥) to
𝜇(𝑦).

2. Every path-𝑙 approximationP𝑙(𝑋, 𝑌,⋀1≤𝑖≤𝑛𝐴𝑖(𝑥𝑖, 𝑦𝑖)) of 𝛿zip contains a CQ
𝛿path admitting a path decomposition of width 𝑙 which starts with the bag
𝑋 and ends with 𝑌. And further, there is a homomorphism ℎ ∶ 𝛿path

hom−−−→ 𝜉
which coincides with 𝜇 on variables 𝑋 ∪𝑌.

Observe that these two properties hold true if, and only if, there is some
expansion 𝛿 of Δ such that 𝛿 hom−−−→ 𝛾. It is clear the first point can be achieved
in polynomial time (actually, in NL) since it is a simple reachability query.
The second point can also be achieved in polynomial time (or in NL), since
the fine path decomposition of width 𝑙 can be guessed on-the-fly using 𝑙 + 1
pointers to the variables of 𝛾 (cf. Lemma V.8.9). An NL algorithm can advance
down the path decomposition while simultaneously
1. guessing the conjunctive query 𝛿path via its fine path decomposition of

width 𝑘,
2. checking that there is a partial homomorphism to 𝛾 (i.e., a homomorphism

from the subquery of 𝛾 restricted to current bag’s variables to 𝛾),

162

v.7. acyclic queries: the case 𝑘 = 1

3. ensuring that the CQ 𝛿path being built is an element of

P𝑙(𝑋, 𝑌, �
1≤𝑖≤𝑛

𝐴𝑖(𝑥𝑖, 𝑦𝑖)),

which requires to also guess a homomorphism 𝜌 hom−−−→ 𝛿path from a refine-
ment 𝜌 of⋀1≤𝑖≤𝑛𝐴𝑖(𝑥𝑖, 𝑦𝑖).

Further, a simple test can ensure that the first and last bags of the decomposi-
tion coincide with the guessed assignment 𝜇. Since the number of pointers
(bounded by 𝑘 + 1) is fixed, this subroutine is in NL, and hence in polynomial
time. This yields an NP algorithm for testing 𝜉 ⫅ Appzip

𝒯𝑤𝑘
(𝛾).

As a consequence of the two claims, we obtain a Σ𝑝
2 algorithm for non-

containment of 𝛾 ⫅ Appzip
𝒯𝑤𝑘
(𝛾): We first guess an expansion 𝜉 of 𝛾 of polyno-

mial size, and we then test 𝜉 " Appzip
𝒯𝑤𝑘
(𝛾) in coNP. This gives aΠ𝑝

2 algorithm
for the semantic tree-width 𝑘 problem, which is correct by Lemma V.6.3
and Claim V.6.4.

V.7 Acyclic Queries: the Case 𝑘 = 1

Observe that in the previous sections we have treated the cases of semantic
tree-width 𝑘 for every 𝑘 ≥ 2. However, the case 𝑘 = 1 remains rather elusive
so far. While the Key Lemma holds for 𝑘 = 1, it proves the computability of
an object that is irrelevant to study semantic tree-width 1, see Remark V.5.1.
The problem comes from Example V.3.7, namely that App𝒯𝑤1

(𝛾) ≢ App⋆𝒯𝑤1
(𝛾).

This is the main obstacle why our approach does not directly yield an al-
gorithm for the case 𝑘 = 1, which had been previously solved by Barceló,
Romero and Vardi [BRV16]. However, as we argue in this section, a rather
elegant modification on the notion of tree-width allows to use our approach as
a unifying framework for both the case 𝑘 = 1 and the cases 𝑘 ≥ 2. Concretely,
we introduce a family of classes {𝒞𝑡𝑤𝑘}𝑘 such that App𝒯𝑤𝑘

(𝛾) ≡ App⋆𝒞𝑡𝑤𝑘
(𝛾)

for every 𝛾 and 𝑘, and where App⋆𝒞𝑡𝑤1
(𝛾) ≡ App⋆,≤poly(‖𝛾‖)𝒞𝑡𝑤1

(𝛾). As a corollary,
we reprove [BRV16, Theorem 6.1], namely that the semantic tree-width 1
problem is ExpSpace-complete. Further, we can also solve the one-way seman-
tic tree-width 1 problem, which is outside the scope of [BRV16]. Remember
that for 𝑘 = 1, the semantic tree-width and one-way semantic tree-width 1
problems are two independent problems, since there are queries of semantic
tree-width 1 but not of one-way semantic tree-width 1 (cf. Remark V.3.13).

V.7.1 Contracted Tree-Width

We next formally define the notion of “contracted tree-width”, meaning the
tree-width of the graph obtained by contracting paths (or directed paths) into
edges. This altered notion of tree-width will allow us to seamlessly prove the
case of 𝑘 = 1 for Theorem V.1.3.

163

v. semantic tree-width and path-width of conjunctive regular path queries

Definition V.7.1. Define the contracted tree-width (resp. one-way contracted
tree-width) of a C2RPQ as the minimum of the tree-width among its contrac-
tions (resp. of its one-way contractions). Let 𝒞𝑡𝑤𝑘 and 1𝒞𝑡𝑤𝑘 be, respectively,
the set of all C2RPQs of contracted tree-width at most 𝑘 and of CRPQs of
one-way contracted tree-width at most 𝑘.

For instance, the query

𝑥0 𝑥1
𝛾(𝑥0, 𝑥1) =̂

𝑦

𝐾

𝐿 𝑀

has contracted tree-width one since the internal path 𝑥0
𝐿−→ 𝑦 𝑀←− 𝑥1 can

be contracted into 𝑥0
𝐿𝑀−

−−−→ 𝑥1. On the other hand, its one-way contracted
tree-width is two, since there is no non-trivial one-way internal path as 𝑥1 is
an output variable.

Note that, by definition:
• the contracted tree-width is at most the one-way contracted tree-width,
which is in turn at most the tree-width;

• for 𝑘 ≥ 2, these notions collapse (by Fact V.2.1);
• for 𝑘 = 1, both inequalities can be strict.
Moreover, for any 𝑘 ≥ 1, contracted tree-width at most 𝑘 and one-way con-
tracted tree-width at most 𝑘 are both closed under refinements: if a query
has tree-width at most 𝑘, so does any refinement thereof. In fact, the CQs
of contracted tree-width 1 precisely correspond to what in [BRV16, §5.2.1,
p1358] is known as “pseudoacyclic graph databases”.

Fact V.7.2. Let 𝑘 ≥ 1. For any CRPQ 𝛾, we have App1𝒯𝑤𝑘
(𝛾) ≡ App⋆1𝒞𝑡𝑤𝑘

(𝛾).
Moreover, for any C2RPQ 𝛾, App𝒯𝑤𝑘

(𝛾) ≡ App⋆𝒞𝑡𝑤𝑘
(𝛾).

Proof.

App𝒯𝑤𝑘
(𝛾) ≡ App𝒞𝑡𝑤𝑘

(𝛾) since contractions preserve semantics,

≡ App⋆𝒞𝑡𝑤𝑘
(𝛾) by Fact V.3.5.

The same arguments work with one-wayness.

V.7.2 The Key Lemma for Contracted Tree-Width One

We show next that contracted tree-width 1 has all the needed properties for
the analogue of Key Lemma for 𝑘 = 1 to hold.

Lemma V.7.3. For any CRPQ 𝛾, we have App⋆1𝒞𝑡𝑤1
(𝛾) ≡ App⋆,≤`11𝒞𝑡𝑤1

(𝛾), where

`1 = Θ(‖𝛾‖3at). Similarly, for a C2RPQ 𝛾, App⋆𝒞𝑡𝑤1
(𝛾) ≡ App⋆,≤`1𝒞𝑡𝑤1

(𝛾).

Proof. Consider the proof of the Key Lemma (Lemma V.3.8). We claim that:
1. the constructions of Lemmas V.5.2 and V.5.4 both preserve contracted

tree-width at most 1 and one-way contracted tree-width at most 1;

164

v.7. acyclic queries: the case 𝑘 = 1

2. the upper bound ` ∈ 𝒪(‖𝛾‖2at ⋅ 2‖𝛾‖at) can be easily boiled down to `1 ∈
𝒪(‖𝛾‖3at) in the special case of 𝑘 = 1.
X (1) Preservation of contracted tree-width. We claim that all constructions

of Section V.5 preserve contracted tree-width at most 1. The setting is similar,
except that now, a trio consists of a triple 𝑓∶ 𝜌 → 𝛼 where 𝜌 is a refinement
of a fixed C2RPQ 𝛾, and 𝛼 is a C2RPQ of contracted tree-width 1. We now
apply the constructions not to a decomposition of 𝛼 but to a fine tagged tree
decomposition of a contraction of 𝛼 of tree-width 1.

Fact V.7.4. Let 𝛾 be a C2RPQ, 𝜒 be a contraction of 𝛾, and (𝑇, v, t) be a fine
tagged tree decomposition of 𝜒 of width at most 1. Let 𝑧, 𝑧′ ∈ v(𝑏) for some
bag 𝑏 ∈ 𝑇. Then 𝛾 ∧ 𝑧 𝜆−→ 𝑧′ still has contracted tree-width at most 1.

As a consequence, the construction of Lemma V.5.2—which takes us from
Figure V.5 to Figure V.7—preserves contracted tree-width 1. Then, Proposi-
tion V.4.5—illustrated in Figure V.6—can be trivially adapted to our setting as
follows:

Fact V.7.5. Let 𝛾, 𝛾′ be two C2RPQ with a disjoint set of variables. Let 𝑧 (resp.
𝑧′) be a variable of 𝛾 (resp. 𝛾′). If both 𝛾 and 𝛾′ have contracted tree-width
at most 1, then so does 𝛾 ∧ 𝛾′ ∧ 𝑧 𝜆−→ 𝑧′.

As a consequence, the construction of Lemma V.5.4—which takes us from
Figure V.7 to Figure V.10—preserves contracted tree-width 1.

X (2) Improved upper bound. In the proof claiming that in a sufficiently
long non-branching path, we can always find two non-full, non-atomic bags
with the same profile (see the proof of Lemma V.5.4), we obtain a bound of
𝒪(2‖𝛾‖at). We actually claim that it can be improved to obtain a polynomial
bound. This is because, for width 1, a non-full bag 𝑏 contains exactly 1 variable
𝑧𝑏. So, its profile consists simply on a set of atoms of 𝛾—namely the set of
atoms whose refinement induces a path which leaves the bag 𝑏 at 𝑧𝑏. But we
claim that in a non-branching path, not all of these 2‖𝛾‖at profiles can occur
at the same time. Indeed, in tree decompositions, the set of bags containing
a given variable must be connected. This property can be lifted to paths in
tagged tree decompositions in the following way.

Fact V.7.6. Let (𝑇, v, t) be a tagged tree decomposition of some homomor-
phism 𝑓∶ 𝜌 hom−−−→ 𝛼. Let 𝜋 be a path in 𝜌. Assume that:
• the simple path in 𝑇 from 𝑏 to 𝑏″ goes through 𝑏′,
• there exists some variable 𝑧 of 𝛼 such that t[𝜋] leaves 𝑏 at 𝑧, and
• there is no variable like that for the bag 𝑏′.
Then, there is no variable 𝑧 of 𝛼 such that t[𝜋] leaves 𝑏″ at 𝑧.

Proof of Fact V.7.6. Fix a tagged tree decomposition (𝑇, v, t) of some homo-
morphism 𝑓∶ 𝜌 hom−−−→ 𝛼 and 𝜋 be a path in 𝜌. Let 𝑏, 𝑏′, 𝑏″ be bags such that
the simple path in 𝑇 from 𝑏 to 𝑏″ goes through 𝑏′. Say that an induced path
t[𝜋] = (�𝑏𝑖𝑧𝑖�)𝑖 visits a bag 𝑏 if 𝑏𝑖 = 𝑏 for some 𝑖. Note that this is equivalent
to saying that there exists a variable 𝑧 of 𝛼 s.t. t[𝜋] leaves 𝑏 at 𝑧. Hence,

165

v. semantic tree-width and path-width of conjunctive regular path queries

Fact V.7.6 boils down to the following property: if t[𝜋] visits both 𝑏 and 𝑏″,
then it must also visit 𝑏′. This property holds because by construction, the
sequence (𝑏𝑖)𝑖—namely the projection of t[𝜋] onto 𝑇—is a path in 𝑇, with
some node repetition.

As a consequence, if an atom occurs in a bag, but not in a latter one,
then it can never occur again. Hence, the number of bags of size 1 in a
non-branching path where each bag has a different profile must be at most
𝑛 = ‖𝛾‖at. Hence, Fact V.5.7 yields a bound of 𝒪(‖𝛾‖2at). Finally, we can
conclude like in Section V.5.3: we obtain a tree with at most 𝒪(‖𝛾‖at) leaves,
and with non-branching paths of length at most 𝒪(‖𝛾‖2at), so the tree has
size at most `1 ∈ 𝒪(‖𝛾‖3at). By local acyclicity, this concludes the proof
of Lemma V.7.3. The case of one-way contracted tree-width is completely
similar.

Lemma V.7.7. Let 𝑘 ≥ 1.
1. Given a UCRPQ Γ, it has one-way semantic tree-width at most 1 iff Γ ≡

App⋆,≤`11𝒞𝑡𝑤1
(Γ);

2. Given a UC2RPQ Γ, it has semantic tree-width atmost 1 iff Γ ≡ App⋆,≤`1𝒞𝑡𝑤1
(Γ);

where `1 ∈ 𝒪(‖𝛾‖3at).

Proof. To prove the first point:
• if Γ is equivalent to a UCRPQΔ of tree-width at most 1, thenΔ ⊆ App𝒯𝑤1

(Γ)
and by Fact V.7.2 and Lemma V.7.3, Δ ⫅ App⋆,≤`11𝒞𝑡𝑤1

(Γ), and hence:

Γ ≡ Δ ⫅ App⋆,≤`11𝒞𝑡𝑤1
(Γ) ⫅ Γ.

• If Γ ≡ App⋆,≤`11𝒞𝑡𝑤1
(Γ), then Γ is equivalent to a UCRPQ of contracted tree-

width at most 1, and hence (by contraction) it is equivalent a UCRPQ of
tree-width at most 1.

The second point can be proven similarly.

Corollary V.7.8 (Upper bound of Theorem V.1.3 for 𝑘 = 1). The semantic
tree-width 1 problem and one-way semantic tree-width 1 problem are in
ExpSpace.

Proof. The fact that the semantic tree-width 1 problem is in ExpSpace is
actually the main result of [BRV16, Theorem 6.1], but we show how the upper
bound follows as a direct corollary of Lemma V.7.7 above. Since `1 ∈ 𝒪(‖𝛾‖3at),
App⋆,≤`1𝒞𝑡𝑤1

(𝛾) is an exponential union of polynomial sized C2RPQs, and thus
by Proposition V.3.10 the containment problem Γ ⫅ App⋆,≤`1𝒞𝑡𝑤1

(Γ) is in
ExpSpace, and so is the semantic tree-width 1 problem (since the converse
containment App⋆,≤`1𝒞𝑡𝑤1

(Γ) ⫅ Γ always holds, cf. Remark V.3.2). The proof for
one-way semantic tree-width 1 problem is analogous.

Lastly, note that we can derive from Lemma V.7.3 a characterization of
semantic tree-width 1 somewhat similar to Theorem V.3.12.

166

v.8. semantic path-width

Corollary V.7.9. Assume that ℒ is closed under sublanguages.
X Two-way queries: For any query Γ ∈ UC2RPQ(ℒ), the following are
equivalent:
1. Γ is equivalent to an infinitary union of conjunctive queries of contracted

tree-width at most 1;
2. Γ has semantic tree-width at most 1;
3. Γ is equivalent to a UC2RPQ(ℒ) of contracted tree-width at most 1;
4. Γ is equivalent to a UC2RPQ(ℒ′) of tree-width at most 1, where ℒ′ is the

closure of ℒ under concatenation and inverses, i.e. ℒ′ is the smallest class
containing ℒ and such that if 𝐾, 𝐿 ∈ ℒ′ then 𝐾 ⋅ 𝐿 ∈ ℒ′ and 𝐾− ∈ ℒ′.

X One-way queries: Similarly, if Γ ∈ UCRPQ(ℒ), then the following are
equivalent:
1. Γ is equivalent to an infinitary union of conjunctive queries of one-way

contracted tree-width at most 1;
2. Γ has one-way semantic tree-width at most 1;
3. Γ is equivalent to a UCRPQ(ℒ) of one-way contracted tree-width at most
1;

4. Γ is equivalent to a UCRPQ(ℒ′) of tree-width at most 1, where ℒ′ is the
closure of ℒ under concatenation, i.e. ℒ′ is the smallest class containing
ℒ and such that if 𝐾, 𝐿 ∈ ℒ′ then 𝐾 ⋅ 𝐿 ∈ ℒ′.

Note in particular how point (4) of each characterization reflects that a
UCRPQ of semantic tree-width 1 can have one-way semantic tree-width at
least 2—as we showed in Remark V.3.13. More generally, the differences
between this last corollary and Theorem V.3.12 highlight the different com-
binatorial behaviour that semantic tree-width 𝑘 has, depending on whether
𝑘 = 1 or 𝑘 > 1.

Remark V.7.10. Finally, note that results of Sections V.6 and V.7 can be joined
in order to show that the semantic tree-width 1 problems are decidable in
Π𝑝
2 for UC2RPQs over the closure under concatenation and inverses of SREs

(resp. for UCRPQs over the closure under concatenation of SREs).5 5 While this the whole class of UCR-
PQs over SREs has the same expres-
sivity as UCRPQs over the closure
under concatenation of SREs, this is
not true if one adds the constraint
of having tree-width at most 1, see
Corollary V.7.9.

V.8 Semantic Path-Width

In this section, we extend our results to path-width. Our motivation lies in
the fact that UC2RPQs of bounded semantic path-width admit a paraNL6

6 This is the parametrized counter-
part of non-deterministic logspace.algorithm for the evaluation problem—see Theorem V.8.8—to be compared

with FPT for bounded semantic tree-width.

V.8.1 Path-Width of Queries

Recall that for tree-width, for any 𝑘 ≥ 2, we proved that a CRPQ is equivalent
to a finite union of C2RPQs of tree-width at most 𝑘 iff it is equivalent to
finite union of CRPQs of tree-width at most 𝑘 (Theorem V.3.12). In other
words, two-way navigation does not help to minimize further the semantic

167

v. semantic tree-width and path-width of conjunctive regular path queries

tree-width of a query that does not use two-way navigation. This property
does not hold for 𝑘 = 1 (Remark V.3.13). We show in Section V.8.2 that it also
does not hold for path-width, no matter the value of 𝑘 ≥ 1.

This motivates the following two definitions:
• the semantic path-width of a UC2RPQ is the minimal path-width of a

UC2RPQ equivalent to it
• the one-way semantic path-width of a UCRPQ is the minimal path-width of

a UCRPQ equivalent to it.
For a given UCRPQ, the two natural numbers are well-defined, and the former
is always less or equal to the letter. The semantic path-width 𝑘 problems ask,
given a UCRPQ (resp. UC2RPQ), if it has semantic path-width (resp. one-way
semantic path-width) at most 𝑘.

In this section, we first show that the semantic path-width 𝑘 problems are
decidable (TheoremV.8.6), and then after showing that evaluation of UC2RPQs
of bounded path-width is NL (Lemma V.8.9) we deduce that for the evaluation
problem for UC2RPQs of bounded semantic path-width (in particular, this
captures the case of UCRPQs of bounded one-way semantic path-width) is in
paraNL when parametrized in the size of the query (Theorem V.8.8).

V.8.2 Deciding Bounded Semantic Path-Width

The key (implicit) ingredient in the proof of Theorem V.3.12 and Section V.3
is that tree-width at most 𝑘 is closed under expansions (Fact V.2.1). Unfortu-
nately, this property fails for path-width.

Fact V.8.1. For each 𝑘 ≥ 1, the class of graphs of path-width at most 𝑘 is not
closed under expansions.

The counterexample is illustrated in Figure V.12. A formal proof can be
found in Section V.B. Contrary to the case of semantic tree-width, for every
𝑘 there are CRPQs which are of semantic path-width 𝑘 but not of one-way
semantic path-width 𝑘.

Proof. Indeed, let

𝛾𝑘(�̄�, �̄�) =̂ � �
1≤𝑖<𝑗≤𝑘−1

𝑥𝑖
𝑎−→ 𝑥𝑗� ∧ � �

1≤𝑖≤𝑘−1
�
0≤𝑗≤3

𝑥𝑖
𝑏−→ 𝑦𝑖�

∧ � �
0≤𝑗<3

𝑦𝑖
𝑐−→ 𝑦𝑖+1� ∧ 𝑦1

𝑑−→ 𝑧 ∧ 𝑦2
𝑒−→ 𝑧,

whose underlying graph corresponds to Figure V.12b. Observe that it is a
core and that only 𝑧 is existentially quantified. Then in 𝛾𝑘(�̄�, �̄�), one can
replace the two atoms 𝑦1

𝑑−→ 𝑧 ∧ 𝑦2
𝑒−→ 𝑧 by 𝑦1

𝑑 𝑒−−−→ 𝑦2, while preserving the
semantics. The underlying graph of this new query being Figure V.12a, it
shows that 𝛾𝑘 has semantic path-width 𝑘.

Finally, we claim that 𝛾𝑘 has one-way semantic path-width 𝑘+ 1. The upper
bound follows from Figure V.12d. For the lower bound, consider a UCRPQ
Δ𝑘(�̄�, �̄�) such that 𝛾𝑘 ≡ Δ𝑘. Since 𝛾𝑘 is a CQ, the equivalence implies that there

168

v.8. semantic path-width

<latexit sha1_base64="sTfaWQejViI6oDhTJws7x09yO7A=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlO62BeTCZKKYI/4FY/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqbX1hcKi6XVlbX1jfKm1utNM4k400WB7Hs+F7KAxHxphIq4J1Eci/0A972b850vH3LZSri6FKNE94LvVEkhoJ5iqiLcd/plytO1THLngVuDirIVyMuv+AKA8RgyBCCI4IiHMBDSk8XLhwkxPUwIU4SEibOcY8SaTPK4pThEXtD3xHtujkb0V57pkbN6JSAXklKG3ukiSlPEtan2SaeGWfN/uY9MZ76bmP6+7lXSKzCNbF/6aaZ/9XpWhSGODU1CKopMYyujuUumemKvrn9pSpFDglxGg8oLgkzo5z22Taa1NSue+uZ+JvJ1Kzeszw3w7u+JQ3Y/TnOWdA6qLrH1aPzw0rNyUddxA52sU/zPEENdTTQJO8RHvGEZ6tuRVZm3X2mWoVcs41vy3r4AAvjkBk=</latexit>y0
<latexit sha1_base64="zFEqQVF3nInPiWRRWZneCZs+Cx4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlOazAvJhOlFMEfcKufJv6B/oV3ximoRXRCkjPn3nNm7r1+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2f3Om4u1bLrIgiS/lOOW9yBvFwTBgniTqYtx3++WKU3X0smeBa0AFZjWS8guuMEAChhwROGJIwiE8ZPR04cJBSlwPE+IEoUDHOe5RIm1OWZwyPGJv6DuiXdewMe2VZ6bVjE4J6RWktLFHmoTyBGF1mq3juXZW7G/eE+2p7jamv2+8ImIlron9SzfN/K9O1SIxxKmuIaCaUs2o6phxyXVX1M3tL1VJckiJU3hAcUGYaeW0z7bWZLp21VtPx990pmLVnpncHO/qljRg9+c4Z0HroOoeV4/ODys1x4y6iB3sYp/meYIa6migSd4jPOIJz1bdiq3cuvtMtQpGs41vy3r4AA5DkBo=</latexit>y1

<latexit sha1_base64="SeilSt04p0o5SowUdsZpr3Dzulc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZLia1lw02VF+4BaSjKd1qFpEiYTpRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/dePw5EohznNWctLC4tr+RXC2vrG5tbxe2dZhKlkvEGi4JItn0v4YEIeUMJFfB2LLk39gPe8kfnOt665TIRUXilJjHvjr1hKAaCeYqoy0mv0iuWnLJjlj0P3AyUkK16VHzBNfqIwJBiDI4QinAADwk9HbhwEBPXxZQ4SUiYOMc9CqRNKYtThkfsiL5D2nUyNqS99kyMmtEpAb2SlDYOSBNRniSsT7NNPDXOmv3Ne2o89d0m9PczrzGxCjfE/qWbZf5Xp2tRGODM1CCoptgwujqWuaSmK/rm9peqFDnExGncp7gkzIxy1mfbaBJTu+6tZ+JvJlOzes+y3BTv+pY0YPfnOOdBs1J2T8rHF0elqpONOo897OOQ5nmKKmqoo0HeQzziCc9WzQqt1Lr7TLVymWYX35b18AEQo5Ab</latexit>y2
<latexit sha1_base64="QcFezRq+HXNgfNH3yLq9ddr3d38=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLfy4KbLivaB9RSkum0Dk2TMJkopQj+gFv9NPEP9C+8M6agFtEJSc6ce8+Zuff6cSAS5TivOWtufmFxKb9cWFldW98obm41kiiVjNdZFESy5XsJD0TI60qogLdiyb2RH/CmPzzX8eYtl4mIwis1jnln5A1C0RfMU0RdjruH3WLJKTtm2bPAzUAJ2apFxRdco4cIDClG4AihCAfwkNDThgsHMXEdTIiThISJc9yjQNqUsjhleMQO6TugXTtjQ9prz8SoGZ0S0CtJaWOPNBHlScL6NNvEU+Os2d+8J8ZT321Mfz/zGhGrcEPsX7pp5n91uhaFPs5MDYJqig2jq2OZS2q6om9uf6lKkUNMnMY9ikvCzCinfbaNJjG16956Jv5mMjWr9yzLTfGub0kDdn+OcxY0DsruSfn44qhUcbJR57GDXezTPE9RQRU11Ml7gEc84dmqWqGVWnefqVYu02zj27IePgATA5Ac</latexit>y3

<latexit sha1_base64="IL9UdtcmIX+Vv34LMQ4UUfxJu50=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+wAtkqTTOnSahMlEKEV/wK1+m/gH+hfeGaegFtEJSc6ce8+ZufeGqeCZ8rzXgjM3v7C4VFwurayurW+UN7daWZLLiDWjRCSyEwYZEzxmTcWVYJ1UsmAUCtYOh2c63r5jMuNJfKnGKeuOgkHM+zwKFFGNzk254lU9s9xZ4FtQgV31pPyCa/SQIEKOERhiKMICATJ6ruDDQ0pcFxPiJCFu4gz3KJE2pyxGGQGxQ/oOaHdl2Zj22jMz6ohOEfRKUrrYI01CeZKwPs018dw4a/Y374nx1Hcb0z+0XiNiFW6J/Us3zfyvTtei0MepqYFTTalhdHWRdclNV/TN3S9VKXJIidO4R3FJODLKaZ9do8lM7bq3gYm/mUzN6n1kc3O861vSgP2f45wFrYOqf1w9ahxWap4ddRE72MU+zfMENVygjqbxfsQTnp1zRziZk3+mOgWr2ca35Tx8ABzyj1U=</latexit>

X

(a) Graph 𝒢𝑘 with a path decom-
position of width 𝑘, with three
bags.

<latexit sha1_base64="sTfaWQejViI6oDhTJws7x09yO7A=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlO62BeTCZKKYI/4FY/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqbX1hcKi6XVlbX1jfKm1utNM4k400WB7Hs+F7KAxHxphIq4J1Eci/0A972b850vH3LZSri6FKNE94LvVEkhoJ5iqiLcd/plytO1THLngVuDirIVyMuv+AKA8RgyBCCI4IiHMBDSk8XLhwkxPUwIU4SEibOcY8SaTPK4pThEXtD3xHtujkb0V57pkbN6JSAXklKG3ukiSlPEtan2SaeGWfN/uY9MZ76bmP6+7lXSKzCNbF/6aaZ/9XpWhSGODU1CKopMYyujuUumemKvrn9pSpFDglxGg8oLgkzo5z22Taa1NSue+uZ+JvJ1Kzeszw3w7u+JQ3Y/TnOWdA6qLrH1aPzw0rNyUddxA52sU/zPEENdTTQJO8RHvGEZ6tuRVZm3X2mWoVcs41vy3r4AAvjkBk=</latexit>y0
<latexit sha1_base64="zFEqQVF3nInPiWRRWZneCZs+Cx4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlOazAvJhOlFMEfcKufJv6B/oV3ximoRXRCkjPn3nNm7r1+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2f3Om4u1bLrIgiS/lOOW9yBvFwTBgniTqYtx3++WKU3X0smeBa0AFZjWS8guuMEAChhwROGJIwiE8ZPR04cJBSlwPE+IEoUDHOe5RIm1OWZwyPGJv6DuiXdewMe2VZ6bVjE4J6RWktLFHmoTyBGF1mq3juXZW7G/eE+2p7jamv2+8ImIlron9SzfN/K9O1SIxxKmuIaCaUs2o6phxyXVX1M3tL1VJckiJU3hAcUGYaeW0z7bWZLp21VtPx990pmLVnpncHO/qljRg9+c4Z0HroOoeV4/ODys1x4y6iB3sYp/meYIa6migSd4jPOIJz1bdiq3cuvtMtQpGs41vy3r4AA5DkBo=</latexit>y1

<latexit sha1_base64="SeilSt04p0o5SowUdsZpr3Dzulc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZLia1lw02VF+4BaSjKd1qFpEiYTpRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/dePw5EohznNWctLC4tr+RXC2vrG5tbxe2dZhKlkvEGi4JItn0v4YEIeUMJFfB2LLk39gPe8kfnOt665TIRUXilJjHvjr1hKAaCeYqoy0mv0iuWnLJjlj0P3AyUkK16VHzBNfqIwJBiDI4QinAADwk9HbhwEBPXxZQ4SUiYOMc9CqRNKYtThkfsiL5D2nUyNqS99kyMmtEpAb2SlDYOSBNRniSsT7NNPDXOmv3Ne2o89d0m9PczrzGxCjfE/qWbZf5Xp2tRGODM1CCoptgwujqWuaSmK/rm9peqFDnExGncp7gkzIxy1mfbaBJTu+6tZ+JvJlOzes+y3BTv+pY0YPfnOOdBs1J2T8rHF0elqpONOo897OOQ5nmKKmqoo0HeQzziCc9WzQqt1Lr7TLVymWYX35b18AEQo5Ab</latexit>y2
<latexit sha1_base64="QcFezRq+HXNgfNH3yLq9ddr3d38=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLfy4KbLivaB9RSkum0Dk2TMJkopQj+gFv9NPEP9C+8M6agFtEJSc6ce8+Zuff6cSAS5TivOWtufmFxKb9cWFldW98obm41kiiVjNdZFESy5XsJD0TI60qogLdiyb2RH/CmPzzX8eYtl4mIwis1jnln5A1C0RfMU0RdjruH3WLJKTtm2bPAzUAJ2apFxRdco4cIDClG4AihCAfwkNDThgsHMXEdTIiThISJc9yjQNqUsjhleMQO6TugXTtjQ9prz8SoGZ0S0CtJaWOPNBHlScL6NNvEU+Os2d+8J8ZT321Mfz/zGhGrcEPsX7pp5n91uhaFPs5MDYJqig2jq2OZS2q6om9uf6lKkUNMnMY9ikvCzCinfbaNJjG16956Jv5mMjWr9yzLTfGub0kDdn+OcxY0DsruSfn44qhUcbJR57GDXezTPE9RQRU11Ml7gEc84dmqWqGVWnefqVYu02zj27IePgATA5Ac</latexit>y3

<latexit sha1_base64="IL9UdtcmIX+Vv34LMQ4UUfxJu50=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+wAtkqTTOnSahMlEKEV/wK1+m/gH+hfeGaegFtEJSc6ce8+ZufeGqeCZ8rzXgjM3v7C4VFwurayurW+UN7daWZLLiDWjRCSyEwYZEzxmTcWVYJ1UsmAUCtYOh2c63r5jMuNJfKnGKeuOgkHM+zwKFFGNzk254lU9s9xZ4FtQgV31pPyCa/SQIEKOERhiKMICATJ6ruDDQ0pcFxPiJCFu4gz3KJE2pyxGGQGxQ/oOaHdl2Zj22jMz6ohOEfRKUrrYI01CeZKwPs018dw4a/Y374nx1Hcb0z+0XiNiFW6J/Us3zfyvTtei0MepqYFTTalhdHWRdclNV/TN3S9VKXJIidO4R3FJODLKaZ9do8lM7bq3gYm/mUzN6n1kc3O861vSgP2f45wFrYOqf1w9ahxWap4ddRE72MU+zfMENVygjqbxfsQTnp1zRziZk3+mOgWr2ca35Tx8ABzyj1U=</latexit>

X

<latexit sha1_base64="11mYoO4JtEs5w57X9fkAlau38Bc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+4BaJEmnNXTyYDIRatEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1+ysNMOs5rwZqbX1hcKi6XVlbX1jfKm1utLMlFwJpBwhPR8b2M8TBmTRlKzjqpYF7kc9b2R2cq3r5lIguT+FKOU9aLvGEcDsLAk0Q17q7LFafq6GXPAteACsyqJ+UXXKGPBAFyRGCIIQlzeMjo6cKFg5S4HibECUKhjjPco0TanLIYZXjEjug7pF3XsDHtlWem1QGdwukVpLSxR5qE8gRhdZqt47l2Vuxv3hPtqe42pr9vvCJiJW6I/Us3zfyvTtUiMcCpriGkmlLNqOoC45Lrrqib21+qkuSQEqdwn+KCcKCV0z7bWpPp2lVvPR1/05mKVfvA5OZ4V7ekAbs/xzkLWgdV97h61Dis1Bwz6iJ2sIt9mucJarhAHU3t/YgnPFvnFrcyK/9MtQpGs41vy3r4AG2yj3c=</latexit>z

(b) Expansion 𝒢′
𝑘 of 𝒢𝑘 with a

path decomposition of width 𝑘 +
1, with three bags.

<latexit sha1_base64="sTfaWQejViI6oDhTJws7x09yO7A=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlO62BeTCZKKYI/4FY/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqbX1hcKi6XVlbX1jfKm1utNM4k400WB7Hs+F7KAxHxphIq4J1Eci/0A972b850vH3LZSri6FKNE94LvVEkhoJ5iqiLcd/plytO1THLngVuDirIVyMuv+AKA8RgyBCCI4IiHMBDSk8XLhwkxPUwIU4SEibOcY8SaTPK4pThEXtD3xHtujkb0V57pkbN6JSAXklKG3ukiSlPEtan2SaeGWfN/uY9MZ76bmP6+7lXSKzCNbF/6aaZ/9XpWhSGODU1CKopMYyujuUumemKvrn9pSpFDglxGg8oLgkzo5z22Taa1NSue+uZ+JvJ1Kzeszw3w7u+JQ3Y/TnOWdA6qLrH1aPzw0rNyUddxA52sU/zPEENdTTQJO8RHvGEZ6tuRVZm3X2mWoVcs41vy3r4AAvjkBk=</latexit>y0
<latexit sha1_base64="zFEqQVF3nInPiWRRWZneCZs+Cx4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlOazAvJhOlFMEfcKufJv6B/oV3ximoRXRCkjPn3nNm7r1+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2f3Om4u1bLrIgiS/lOOW9yBvFwTBgniTqYtx3++WKU3X0smeBa0AFZjWS8guuMEAChhwROGJIwiE8ZPR04cJBSlwPE+IEoUDHOe5RIm1OWZwyPGJv6DuiXdewMe2VZ6bVjE4J6RWktLFHmoTyBGF1mq3juXZW7G/eE+2p7jamv2+8ImIlron9SzfN/K9O1SIxxKmuIaCaUs2o6phxyXVX1M3tL1VJckiJU3hAcUGYaeW0z7bWZLp21VtPx990pmLVnpncHO/qljRg9+c4Z0HroOoeV4/ODys1x4y6iB3sYp/meYIa6migSd4jPOIJz1bdiq3cuvtMtQpGs41vy3r4AA5DkBo=</latexit>y1

<latexit sha1_base64="SeilSt04p0o5SowUdsZpr3Dzulc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZLia1lw02VF+4BaSjKd1qFpEiYTpRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/dePw5EohznNWctLC4tr+RXC2vrG5tbxe2dZhKlkvEGi4JItn0v4YEIeUMJFfB2LLk39gPe8kfnOt665TIRUXilJjHvjr1hKAaCeYqoy0mv0iuWnLJjlj0P3AyUkK16VHzBNfqIwJBiDI4QinAADwk9HbhwEBPXxZQ4SUiYOMc9CqRNKYtThkfsiL5D2nUyNqS99kyMmtEpAb2SlDYOSBNRniSsT7NNPDXOmv3Ne2o89d0m9PczrzGxCjfE/qWbZf5Xp2tRGODM1CCoptgwujqWuaSmK/rm9peqFDnExGncp7gkzIxy1mfbaBJTu+6tZ+JvJlOzes+y3BTv+pY0YPfnOOdBs1J2T8rHF0elqpONOo897OOQ5nmKKmqoo0HeQzziCc9WzQqt1Lr7TLVymWYX35b18AEQo5Ab</latexit>y2
<latexit sha1_base64="QcFezRq+HXNgfNH3yLq9ddr3d38=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLfy4KbLivaB9RSkum0Dk2TMJkopQj+gFv9NPEP9C+8M6agFtEJSc6ce8+Zuff6cSAS5TivOWtufmFxKb9cWFldW98obm41kiiVjNdZFESy5XsJD0TI60qogLdiyb2RH/CmPzzX8eYtl4mIwis1jnln5A1C0RfMU0RdjruH3WLJKTtm2bPAzUAJ2apFxRdco4cIDClG4AihCAfwkNDThgsHMXEdTIiThISJc9yjQNqUsjhleMQO6TugXTtjQ9prz8SoGZ0S0CtJaWOPNBHlScL6NNvEU+Os2d+8J8ZT321Mfz/zGhGrcEPsX7pp5n91uhaFPs5MDYJqig2jq2OZS2q6om9uf6lKkUNMnMY9ikvCzCinfbaNJjG16956Jv5mMjWr9yzLTfGub0kDdn+OcxY0DsruSfn44qhUcbJR57GDXezTPE9RQRU11Ml7gEc84dmqWqGVWnefqVYu02zj27IePgATA5Ac</latexit>y3

<latexit sha1_base64="IL9UdtcmIX+Vv34LMQ4UUfxJu50=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+wAtkqTTOnSahMlEKEV/wK1+m/gH+hfeGaegFtEJSc6ce8+ZufeGqeCZ8rzXgjM3v7C4VFwurayurW+UN7daWZLLiDWjRCSyEwYZEzxmTcWVYJ1UsmAUCtYOh2c63r5jMuNJfKnGKeuOgkHM+zwKFFGNzk254lU9s9xZ4FtQgV31pPyCa/SQIEKOERhiKMICATJ6ruDDQ0pcFxPiJCFu4gz3KJE2pyxGGQGxQ/oOaHdl2Zj22jMz6ohOEfRKUrrYI01CeZKwPs018dw4a/Y374nx1Hcb0z+0XiNiFW6J/Us3zfyvTtei0MepqYFTTalhdHWRdclNV/TN3S9VKXJIidO4R3FJODLKaZ9do8lM7bq3gYm/mUzN6n1kc3O861vSgP2f45wFrYOqf1w9ahxWap4ddRE72MU+zfMENVygjqbxfsQTnp1zRziZk3+mOgWr2ca35Tx8ABzyj1U=</latexit>

X

<latexit sha1_base64="11mYoO4JtEs5w57X9fkAlau38Bc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+4BaJEmnNXTyYDIRatEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1+ysNMOs5rwZqbX1hcKi6XVlbX1jfKm1utLMlFwJpBwhPR8b2M8TBmTRlKzjqpYF7kc9b2R2cq3r5lIguT+FKOU9aLvGEcDsLAk0Q17q7LFafq6GXPAteACsyqJ+UXXKGPBAFyRGCIIQlzeMjo6cKFg5S4HibECUKhjjPco0TanLIYZXjEjug7pF3XsDHtlWem1QGdwukVpLSxR5qE8gRhdZqt47l2Vuxv3hPtqe42pr9vvCJiJW6I/Us3zfyvTtUiMcCpriGkmlLNqOoC45Lrrqib21+qkuSQEqdwn+KCcKCV0z7bWpPp2lVvPR1/05mKVfvA5OZ4V7ekAbs/xzkLWgdV97h61Dis1Bwz6iJ2sIt9mucJarhAHU3t/YgnPFvnFrcyK/9MtQpGs41vy3r4AG2yj3c=</latexit>z

(c) Tree decomposition of 𝒢′
𝑘 of

width 𝑘, with four bags.

<latexit sha1_base64="sTfaWQejViI6oDhTJws7x09yO7A=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlO62BeTCZKKYI/4FY/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqbX1hcKi6XVlbX1jfKm1utNM4k400WB7Hs+F7KAxHxphIq4J1Eci/0A972b850vH3LZSri6FKNE94LvVEkhoJ5iqiLcd/plytO1THLngVuDirIVyMuv+AKA8RgyBCCI4IiHMBDSk8XLhwkxPUwIU4SEibOcY8SaTPK4pThEXtD3xHtujkb0V57pkbN6JSAXklKG3ukiSlPEtan2SaeGWfN/uY9MZ76bmP6+7lXSKzCNbF/6aaZ/9XpWhSGODU1CKopMYyujuUumemKvrn9pSpFDglxGg8oLgkzo5z22Taa1NSue+uZ+JvJ1Kzeszw3w7u+JQ3Y/TnOWdA6qLrH1aPzw0rNyUddxA52sU/zPEENdTTQJO8RHvGEZ6tuRVZm3X2mWoVcs41vy3r4AAvjkBk=</latexit>y0
<latexit sha1_base64="zFEqQVF3nInPiWRRWZneCZs+Cx4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy46bKifUAtJZlOazAvJhOlFMEfcKufJv6B/oV3ximoRXRCkjPn3nNm7r1+GgaZdJzXgjU3v7C4VFwurayurW+UN7daWZILxpssCRPR8b2Mh0HMmzKQIe+kgnuRH/K2f3Om4u1bLrIgiS/lOOW9yBvFwTBgniTqYtx3++WKU3X0smeBa0AFZjWS8guuMEAChhwROGJIwiE8ZPR04cJBSlwPE+IEoUDHOe5RIm1OWZwyPGJv6DuiXdewMe2VZ6bVjE4J6RWktLFHmoTyBGF1mq3juXZW7G/eE+2p7jamv2+8ImIlron9SzfN/K9O1SIxxKmuIaCaUs2o6phxyXVX1M3tL1VJckiJU3hAcUGYaeW0z7bWZLp21VtPx990pmLVnpncHO/qljRg9+c4Z0HroOoeV4/ODys1x4y6iB3sYp/meYIa6migSd4jPOIJz1bdiq3cuvtMtQpGs41vy3r4AA5DkBo=</latexit>y1

<latexit sha1_base64="SeilSt04p0o5SowUdsZpr3Dzulc=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZLia1lw02VF+4BaSjKd1qFpEiYTpRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/dePw5EohznNWctLC4tr+RXC2vrG5tbxe2dZhKlkvEGi4JItn0v4YEIeUMJFfB2LLk39gPe8kfnOt665TIRUXilJjHvjr1hKAaCeYqoy0mv0iuWnLJjlj0P3AyUkK16VHzBNfqIwJBiDI4QinAADwk9HbhwEBPXxZQ4SUiYOMc9CqRNKYtThkfsiL5D2nUyNqS99kyMmtEpAb2SlDYOSBNRniSsT7NNPDXOmv3Ne2o89d0m9PczrzGxCjfE/qWbZf5Xp2tRGODM1CCoptgwujqWuaSmK/rm9peqFDnExGncp7gkzIxy1mfbaBJTu+6tZ+JvJlOzes+y3BTv+pY0YPfnOOdBs1J2T8rHF0elqpONOo897OOQ5nmKKmqoo0HeQzziCc9WzQqt1Lr7TLVymWYX35b18AEQo5Ab</latexit>y2
<latexit sha1_base64="QcFezRq+HXNgfNH3yLq9ddr3d38=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLfy4KbLivaB9RSkum0Dk2TMJkopQj+gFv9NPEP9C+8M6agFtEJSc6ce8+Zuff6cSAS5TivOWtufmFxKb9cWFldW98obm41kiiVjNdZFESy5XsJD0TI60qogLdiyb2RH/CmPzzX8eYtl4mIwis1jnln5A1C0RfMU0RdjruH3WLJKTtm2bPAzUAJ2apFxRdco4cIDClG4AihCAfwkNDThgsHMXEdTIiThISJc9yjQNqUsjhleMQO6TugXTtjQ9prz8SoGZ0S0CtJaWOPNBHlScL6NNvEU+Os2d+8J8ZT321Mfz/zGhGrcEPsX7pp5n91uhaFPs5MDYJqig2jq2OZS2q6om9uf6lKkUNMnMY9ikvCzCinfbaNJjG16956Jv5mMjWr9yzLTfGub0kDdn+OcxY0DsruSfn44qhUcbJR57GDXezTPE9RQRU11Ml7gEc84dmqWqGVWnefqVYu02zj27IePgATA5Ac</latexit>y3

<latexit sha1_base64="IL9UdtcmIX+Vv34LMQ4UUfxJu50=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+wAtkqTTOnSahMlEKEV/wK1+m/gH+hfeGaegFtEJSc6ce8+ZufeGqeCZ8rzXgjM3v7C4VFwurayurW+UN7daWZLLiDWjRCSyEwYZEzxmTcWVYJ1UsmAUCtYOh2c63r5jMuNJfKnGKeuOgkHM+zwKFFGNzk254lU9s9xZ4FtQgV31pPyCa/SQIEKOERhiKMICATJ6ruDDQ0pcFxPiJCFu4gz3KJE2pyxGGQGxQ/oOaHdl2Zj22jMz6ohOEfRKUrrYI01CeZKwPs018dw4a/Y374nx1Hcb0z+0XiNiFW6J/Us3zfyvTtei0MepqYFTTalhdHWRdclNV/TN3S9VKXJIidO4R3FJODLKaZ9do8lM7bq3gYm/mUzN6n1kc3O861vSgP2f45wFrYOqf1w9ahxWap4ddRE72MU+zfMENVygjqbxfsQTnp1zRziZk3+mOgWr2ca35Tx8ABzyj1U=</latexit>

X

<latexit sha1_base64="11mYoO4JtEs5w57X9fkAlau38Bc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+4BaJEmnNXTyYDIRatEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1+ysNMOs5rwZqbX1hcKi6XVlbX1jfKm1utLMlFwJpBwhPR8b2M8TBmTRlKzjqpYF7kc9b2R2cq3r5lIguT+FKOU9aLvGEcDsLAk0Q17q7LFafq6GXPAteACsyqJ+UXXKGPBAFyRGCIIQlzeMjo6cKFg5S4HibECUKhjjPco0TanLIYZXjEjug7pF3XsDHtlWem1QGdwukVpLSxR5qE8gRhdZqt47l2Vuxv3hPtqe42pr9vvCJiJW6I/Us3zfyvTtUiMcCpriGkmlLNqOoC45Lrrqib21+qkuSQEqdwn+KCcKCV0z7bWpPp2lVvPR1/05mKVfvA5OZ4V7ekAbs/xzkLWgdV97h61Dis1Bwz6iJ2sIt9mucJarhAHU3t/YgnPFvnFrcyK/9MtQpGs41vy3r4AG2yj3c=</latexit>z

(d) Path decomposition of 𝒢′
𝑘 of

width 𝑘 + 1, with three bags.

Figure V.12: The class of multigraphs
with path-width at most 𝑘 ≥ 1 is
not closed under expansions: illus-
tration of a multigraph 𝒢𝑘 of path-
width 𝑘 (Figure V.12a) whose expan-
sion 𝒢′

𝑘 has path-width 𝑘 + 1 (Fig-
ures V.12b and V.12d)—but tree-width
𝑘 (Figure V.12c). Set 𝑋 represents a
(𝑘 − 1)-clique.

exists an expansion 𝜉 of a CRPQ of Δ𝑘 such 𝛾𝑘 and 𝜉 are homomorphically
equivalent. Since 𝛾𝑘 is a core, it follows that 𝜉 contains it as a subgraph.
Hence, the underlying directed multigraph of the CRPQ in Δ𝑘 from which
𝜉 originated must contain a one-way contraction of 𝜉 as a subgraph. But
the only one-way contraction of 𝜉 is itself, and so it follows that at least one
CRPQ in Δ𝑘 contains the underlying graph of 𝜉 as a subgraph. Therefore, Δ𝑘
has path-width at least 𝑘 + 1, which concludes the proof that the one-way
semantic path-width of 𝛾𝑘 is at least (and hence exactly) 𝑘 + 1.

As done for contracted tree-width, we define contracted path-width.

Definition V.8.2. Define the contracted path-width (resp. one-way contracted
path-width) of a C2RPQ as the minimum of the path-width among its contrac-
tions (resp. of its one-way contractions). Let 𝒞𝑝𝑤𝑘 and 1𝒞𝑝𝑤𝑘 be, respectively,
the set of all C2RPQs of contracted path-width at most 𝑘 and of CRPQs of
one-way contracted path-width at most 𝑘.

The statements and proofs of this section are analogous to the ones of
Section V.7 in the context of contracted tree-width 1. We keep the order and
structure to make this correspondence evident.

Again, by definition, contracted path-width at most 𝑘 and one-way con-
tracted path-width at most 𝑘 are both closed under refinements: if a query
has width at most 𝑘, so does any refinement thereof.

Fact V.8.3. Let 𝑘 ≥ 1. For any CRPQ 𝛾, we have App1𝒫𝑤𝑘
(𝛾) ≡ App⋆1𝒞𝑝𝑤𝑘

(𝛾).

169

v. semantic tree-width and path-width of conjunctive regular path queries

Moreover, for any C2RPQ 𝛾, App𝒫𝑤𝑘
(𝛾) ≡ App⋆𝒞𝑝𝑤𝑘

(𝛾).

Proof.

App1𝒫𝑤𝑘
(𝛾) ≡ App1𝒞𝑝𝑤𝑘

(𝛾) since contractions preserves the semantics,

≡ App⋆1𝒞𝑝𝑤𝑘
(𝛾) by Fact V.3.5.

The same arguments work for C2RPQs.

Lemma V.8.4. For 𝑘 ≥ 1 and CRPQ 𝛾, we have App⋆1𝒞𝑝𝑤𝑘
(𝛾) ≡ App⋆,≤`1𝒞𝑝𝑤𝑘

(𝛾),
where ` = Θ(‖𝛾‖2at ⋅ (𝑘 + 1)‖𝛾‖at). Similarly, for a C2RPQ 𝛾, App⋆𝒞𝑝𝑤𝑘

(𝛾) ≡
App⋆,≤`𝒞𝑝𝑤𝑘

(𝛾).

Proof. Consider the proof of the Key Lemma (Lemma V.3.8): both construc-
tions (Lemmas V.5.2 and V.5.4) preserve the contracted path-width of 𝛼 if the
operations are applied to a suitable path decomposition of a contraction of 𝛼
of width 𝑘.

Lemma V.8.5. Let 𝑘 ≥ 1.
1. Given UCRPQ Γ, it has one-way semantic path-width at most 𝑘 iff Γ ≡

App⋆,≤`1𝒞𝑝𝑤𝑘
(Γ);

2. Given a UC2RPQ Γ, it has semantic path-width at most 𝑘 iff Γ ≡ App⋆,≤`𝒞𝑝𝑤𝑘
(Γ).

Proof. To prove the first point:
• if 𝛾 is equivalent to a UCRPQ Δ of path-width at most 𝑘, then Δ ⊆

App𝒫𝑤𝑘
(𝛾) and by Fact V.8.3 and Lemma V.8.4, Δ ⫅ App⋆,≤`1𝒞𝑝𝑤𝑘

(𝛾), and
hence:

𝛾 ≡ Δ ⫅ App⋆,≤`1𝒞𝑝𝑤𝑘
(𝛾) ⫅ 𝛾.

• If 𝛾 ≡ App⋆,≤`1𝒞𝑝𝑤𝑘
(𝛾), then 𝛾 is equivalent to a UCRPQ of contracted path-

width at most 𝑘, and hence it is equivalent a UCRPQ of path-width at most
𝑘.

The second point can be proven similarly.

We can now prove the main theorem.

Theorem V.8.6. For each 𝑘 ≥ 1, the semantic path-width 𝑘 problems are
decidable. Moreover, they lie in 2ExpSpace and are ExpSpace-hard. Moreover,
if 𝑘 = 1, these problems are in fact ExpSpace-complete.

Proof. The upper bounds follow from Lemma V.8.5. The lower bounds will be
shown in Lemma V.9.1. Lastly, to prove the ExpSpace upper bound for 𝑘 = 1,
we can apply the same trick as in Corollary V.7.8.

Similarly to Corollary V.7.9, we can derive from Lemma V.8.4 a characteri-
zation of semantic path-width at most 𝑘.

Corollary V.8.7. Assume that ℒ is closed under sublanguages, and let 𝑘 ≥ 1.
X Two-way queries: For any query Γ ∈ UC2RPQ(ℒ), the following are
equivalent:

170

v.8. semantic path-width

1. Γ is equivalent to an infinitary union of conjunctive queries of contracted
path-width at most 𝑘;

2. Γ has semantic path-width at most 𝑘;
3. Γ is equivalent to a UC2RPQ(ℒ) of contracted path-width at most 𝑘;
4. Γ is equivalent to a UC2RPQ(ℒ′) of path-width at most 𝑘, where ℒ′ is the

closure of ℒ under concatenation and inverses, i.e. ℒ′ is the smallest class
containing ℒ and such that if 𝐾, 𝐿 ∈ ℒ′ then 𝐾 ⋅ 𝐿 ∈ ℒ′ and 𝐾− ∈ ℒ′.

X One-way queries: Similarly, if Γ ∈ UCRPQ(ℒ), then the following are
equivalent:
1. Γ is equivalent to an infinitary union of conjunctive queries of one-way

contracted path-width at most 𝑘;
2. Γ has one-way semantic path-width at most 𝑘;
3. Γ is equivalent to a UCRPQ(ℒ) of one-way contracted path-width at most
𝑘;

4. Γ is equivalent to a UCRPQ(ℒ′) of path-width at most 𝑘, where ℒ′ is the
closure of ℒ under concatenation, i.e. ℒ′ is the smallest class containing
ℒ and such that if 𝐾, 𝐿 ∈ ℒ′ then 𝐾 ⋅ 𝐿 ∈ ℒ′.

V.8.3 Evaluation of Queries of Bounded Semantic Path-Width

In this section, we show that, as a consequence of Theorem V.8.6, we can
obtain an efficient algorithm for the evaluation problem.

Theorem V.8.8. For each 𝑘 ≥ 1, the evaluation problem, restricted to
UC2RPQs of semantic path-width at most 𝑘 is in paraNL when parametrized
in the size of the query. More precisely, the problem, on input ⟨Γ, 𝐺⟩, can
be solved in non-deterministic space 𝑓(|Γ|) + log(|𝐺|), where 𝑓 is a single
exponential function.

The class paraNL was introduced in [CCDF97, Definition, p. 123] under
the name “uniform NL + advice”. It was renamed paraNL in [FG03, Definition
1, p. 294]. For the sake of simplicity, instead of either of those definitions, we
use the characterization of paraNL proven in [FG03, Theorem 4, p. 296].

We define paraNL as the class of parametrized languages 𝐿 ⊆ Σ ∗ ×ℕ for
which there is a Turing machine ℳ s.t.

ℳ accepts ⟨𝑥, 𝑘⟩ iff ⟨𝑥, 𝑘⟩ ∈ 𝐿,

input parameter

and, moreover, ℳ runs in non-deterministic space 𝑓(𝑘) +𝒪(log(|𝑥|)), where
𝑓∶ ℕ → ℕ is a computable function. A typical example of paraNL problem
is the model-checking problem for first-order logic on finite structures, when
parametrized by the maximum degree of the structure [FG03, Example 6].

To show Theorem V.8.8, we first focus on the evaluation of queries of
bounded path-width.

Lemma V.8.9. For each 𝑘 ≥ 1, the evaluation problem, restricted to UC2RPQs

171

v. semantic tree-width and path-width of conjunctive regular path queries

of path-width at most 𝑘, is NL-complete.

Proof. The exact same proof as for CQs works, see Lemma V.8.9.7 To get 7 For the full proof, see [FM25,
Lemma 8.10].the NL complexity, we require an extra argument: namely that each atomic

check—checking if there is an 𝐿-labelled path from 𝑓(𝑥) to 𝑓(𝑦)—can be done
in non-deterministic space. In fact, using a straightforward adaptation of the
NL algorithm for graph reachability, we obtain an algorithm in 𝒪(log(|𝐷|) +
log(|𝒜𝐿|)) where 𝒜𝐿 is an NFA for 𝐿, ; note that these atomic checks are
independent of one another, so we can reuse this space.

We can now conclude and prove that the evaluation problem for UC2RPQs
of semantic path-width 𝑘 is in paraNL.

Proof of Theorem V.8.8. Given a UC2RPQ Γ(�̄�) of semantic path-width at most
𝑘 and a database𝐺(�̄�), we first compute App⋆,≤`1𝒞𝑝𝑤𝑘

(Γ)—where ` = Θ(‖Γ‖2at ⋅ (𝑘 +
1)‖Γ‖at)—, which is equivalent to Γ by Lemma V.8.5. Then, we use Lemma V.8.9
to evaluate each 𝛿(�̄�) ∈ App⋆,≤`1𝒞𝑝𝑤𝑘

(Γ) on 𝐺(�̄�). If one of the queries accepts, we
accept. Otherwise, we reject.

The non-deterministic space needed by the algorithm is:
• 𝒪(`) bits to enumerate and store 𝛿(�̄�), where ` = Θ(‖Γ‖2at ⋅ (𝑘 + 1)‖Γ‖at)
• 𝒪(log |𝐺| + log ‖𝛿‖) ⊆ 𝒪(log |𝐺| + log |`| + log ‖Γ‖) to evaluate 𝛿(�̄�) on𝐺(�̄�),

by Lemma V.8.9 and since ‖𝛿‖ ≤ ‖Γ‖ ⋅ `.
Overall, we use non-deterministic space 𝑓(‖Γ‖) + 𝒪(log(|𝐺|)) where 𝑓 is a
single exponential, which concludes the proof.

V.9 Lower Bounds for Deciding Semantic Tree-Width and
Path-Width

An ExpSpace lower bound follows by a straightforward adaptation from the
ExpSpace lower bound for the case 𝑘 = 1 [BRV16, Proposition 6.2].

LemmaV.9.1 (Lower bound of TheoremV.1.3). For every 𝑘 ≥ 1, the following
problems are ExpSpace-hard, even if restricted to Boolean CRPQs:
• the semantic tree-width 𝑘 problem;
• the one-way semantic tree-width 𝑘 problem;
• the semantic path-width 𝑘 problem;
• the one-way semantic path-width 𝑘 problem.

We say that a C2RPQ is connected when its underlying undirected graph is
connected. We first give a small useful fact.

Fact V.9.2 (Implicit in [BRV16, Proof of Proposition 6.2]).
1. Let 𝐺,𝐺′ be two databases and 𝛿 be a connected Boolean C2RPQ. If the

disjoint union 𝐺⊎𝐺′ satisfies 𝛿, then either 𝐺 satisfies 𝛿 or 𝐺′ satisfies 𝛿.
2. Let 𝛾, 𝛿 be Boolean C2RPQs. If 𝛿 is connected and 𝛾 ⫅ 𝛿, then there exists a

subquery 𝛾′ of 𝛾, obtained as connected component of 𝛾, such that 𝛾′ ⫅ 𝛿.

172

v.9. lower bounds for deciding semantic tree-width and path-width

Notice first that if 𝛾 and 𝛿 are CQs then the proof of Fact V.9.2 follows
directly from the equivalence of 𝛾 ⫅ 𝛿 (resp. 𝐺 satisfies 𝛾) and the existence
of a homomorphism from 𝛿 to 𝛾 (resp. 𝛾 to 𝐺).

Proof. We first prove the second point. Write 𝛾 =̂ 𝛾1 ∧ … ∧ 𝛾𝑛 where
𝛾1, … , 𝛾𝑛 are connected components of 𝛾, and assume by contradiction that
for all 𝑖, 𝛾𝑖 " 𝛿. Then there exists a database 𝐺𝑖 such that 𝐺𝑖 satisfies 𝛾𝑖 but
not 𝛿. Consider the disjoint union 𝐺 = 𝐺1 ⊎…⊎𝐺𝑛.

On the one hand, since the 𝛾𝑖’s have disjoint variables and 𝐺𝑖 satisfies
𝛾𝑖 for each 𝑖, then 𝐺 satisfies 𝛾. On the other hand, 𝐺 cannot satisfy 𝛿: if
there was a homomorphism from 𝛿 to 𝐺, since 𝛿 is connected, there would
exist an index 𝑖 such that 𝛿 is mapped on 𝐺𝑖, which would contradict the fact
that 𝐺𝑖 does not satisfy 𝛿. Hence, 𝐺 does not satisfy 𝛿, which contradicts the
containment 𝛾 ⫅ 𝛿.

To prove the first point, we simply apply the second one, by letting 𝛾 be the
conjunction of the canonical CQ associated with 𝐺 and 𝐺′—which is in fact
the canonical CQ associated with 𝐺⊎𝐺′. From the assumption that 𝐺⊎𝐺′

satisfies 𝛿 it follows that 𝛾 ⫅ 𝛿 and so, by the first point, there is either a
homomorphism from 𝛿 to 𝐺 or from 𝛿 to 𝐺′.

We can then prove Lemma V.9.1.

Proof of Lemma V.9.1. Fix 𝑘 ≥ 1. We focus on semantic tree-width, but the
exact same reduction works for the other three problems. We introduce an
intermediate problem, called the asymmetric containment problem for tree-
width 𝑘: given two Boolean CRPQs 𝛾 and 𝛾′, where 𝛾 has tree-width 𝑘, 𝛾′ is
connected and does not have semantic tree-width 𝑘, it asks whether 𝛾 ⫅ 𝛾′.
The proof of the lemma then contains two parts:
1. first, we reduce the asymmetric containment problem for tree-width 𝑘 to

the semantic tree-width 𝑘 problem,
2. then, we prove that the asymmetric containment problem for tree-width 𝑘

is ExpSpace-hard.
X (1): We reduce the instance (𝛾, 𝛾′) of the asymmetric containment problem
for tree-width 𝑘 to the instance 𝛾 ∧ 𝛾′ of the semantic tree-width 𝑘 problem.
We simply have to check that 𝛾 ⫅ 𝛾′ if and only if 𝛾 ∧ 𝛾′ has semantic tree-
width 𝑘. The left-to-right implication is straightforward since 𝛾 ⫅ 𝛾′ implies
that 𝛾 ∧ 𝛾′ ≡ 𝛾 and 𝛾 was assumed to have tree-width 𝑘. For the converse
implication, if 𝛾 ∧ 𝛾′ ≡ 𝛿 where 𝛿 is a UC2RPQ of tree-width 𝑘 then write
𝛿 = ⋁𝑛

𝑖=1 𝛿𝑖 where the 𝛿𝑖’s are C2RPQs and let 𝛿𝑖,1, … , 𝛿𝑖,𝑘𝑖 be the connected
components of 𝛿𝑖.

Since for each 𝑖 we have 𝛿𝑖 ⫅ 𝛿 ≡ 𝛾 ∧ 𝛾′ ⫅ 𝛾′, by Fact V.9.2, there exists
𝑗𝑖 such that 𝛿𝑖,𝑗𝑖 ⫅ 𝛾′. Let 𝛿′ =̂ ⋁𝑛

𝑖=1 𝛿𝑖,𝑗𝑖 so that, by construction 𝛿′ ⫅ 𝛾′.
However, note that 𝛿′ has tree-width at most 𝑘 but 𝛾′ was assumed not to

173

v. semantic tree-width and path-width of conjunctive regular path queries

have semantic tree-width 𝑘, hence 𝛿′ ⫋ 𝛾′, so there exists 𝐺′ such that:

𝐺′ satisfies 𝛾′ and 𝐺′ does not satisfy 𝛿′. (V.5)

We now prove that 𝛾 ⫅ 𝛾′. Let 𝐺 be a database satisfying 𝛾. Then the
disjoint union 𝐺⊎𝐺′ satisfies 𝛾∧ 𝛾′ since 𝐺 satisfies 𝛾, 𝐺′ satisfies 𝛾′ and 𝛾
and 𝛾′ are Boolean so we can assume w.l.o.g. that they have disjoint variables.
As a consequence, 𝐺 ⊎ 𝐺′ satisfies 𝛿 and hence 𝛿′, so there exists 𝑖 such
that 𝐺⊎𝐺′ satisfies 𝛿𝑖,𝑗𝑖 . Since 𝛿𝑖,𝑗𝑖 is connected, either 𝐺 satisfies 𝛿𝑖,𝑗𝑖 or 𝐺

′

satisfies 𝛿𝑖,𝑗𝑖 . By Equation (V.5), the latter cannot hold, so 𝐺 satisfies 𝛿𝑖,𝑗𝑖 and
hence 𝛾′.

Therefore, we have shown that for each database 𝐺 that satisfies 𝛾, then 𝐺
satisfies 𝛾′, i.e., 𝛾 ⫅ 𝛾′. Overall, 𝛾 ∧ 𝛾′ has semantic tree-width 𝑘 if and only
if 𝛾 ⫅ 𝛾′.

X (2): We now show that the asymmetric containment problem for tree-
width 𝑘 is ExpSpace-hard. It was shown in [Fig20, Lemma 8] that the con-
tainment of CRPQs was still ExpSpace-hard when restricted to inputs of the
form:

𝛾() = • • ⫅? • • = 𝛿(),𝐾
𝐿1
⋮

𝐿𝑝

where𝐾, 𝐿1, … , 𝐿𝑝 are regular languages over𝔸. We reduce it to the following
problem:

•

𝛾′() =̂ • • ⫅? • • • • = 𝛿′().

•

#
#𝐾

𝐿1
⋮

𝐿𝑝

𝔸∗

#

#

#

where the right-hand side of 𝛿′ is a directed (𝑘 + 2)-clique and where # is a
new symbol, i.e. # ∉ 𝔸.

We claim that 𝛾 ⫅ 𝛿 if and only if 𝛾′ ⫅ 𝛿′. The forward implication is
direct and the converse implication simply relies on the fact that # ∉ 𝔸.8 8 Indeed, the only possible homomor-

phisms from expansions of 𝛿′ to ex-
pansions of 𝛾′ are the ones sending
the expansions of atoms containing
𝐿1, … , 𝐿𝑝 inside the expansion of the
atom on 𝐾.

Then, observe that 𝛾′ has tree-width 1 ≤ 𝑘, and that 𝛿′ is connected but do
not have semantic tree-width at most 𝑘.

To prove the last point, consider a UC2RPQ Δ″ that is equivalent to 𝛿′.
Pick any expansion 𝜉′1 of 𝛿′. Since Δ″ ⫅ 𝛿′, there exists an expansion 𝜉″ of
Δ″ such that there is a homomorphism from 𝜉′1 to 𝜉″. Dually, since 𝛿′ ⫅ Δ″,
there exists an expansion 𝜉′2 of 𝛿′ such that there is a homomorphism from
𝜉″ → 𝜉′2. Overall, we have homomorphisms 𝜉′1 → 𝜉″ → 𝜉′2. Since 𝜉′1
and 𝜉′2 are both expansions of 𝛿′, they contain a #-labelled directed (𝑘 + 2)-
clique, and the #-letter appears nowhere else. Should the homomorphism
𝜉′1 → 𝜉″ not be injective, 𝜉″ would contain a #-labelled self-loop, and hence,
the homomorphism 𝜉″ → 𝜉′2 would yield a #-self loop in 𝜉′2, which does not
exist! Hence, the homomorphism from 𝜉′1 to 𝜉″ is injective on the (𝑘 + 2)-
clique. As a result, 𝜉″ contains a (𝑘 + 2)-clique and has tree-width at least

174

v.10. discussion

𝑘+ 1. We conclude that Δ″ has tree-width at least 𝑘+ 1 by Fact V.2.1, provided
that 𝑘 ≥ 2.

Hence, we have shown that 𝛾 ⫅ 𝛿 if and only if 𝛾′ ⫅ 𝛿′ where 𝛾′ has
tree-width at most 𝑘, where 𝛿′ is connected and has semantic tree-width at
least 𝑘 + 1. Since our reduction can be implemented in polynomial time, we
conclude that the problems of Lemma V.9.1 are ExpSpace-hard.

V.10 Discussion

V.10.1 Complexity

We have studied the definability and approximation of UC2RPQ queries by
queries of bounded tree-width and shown that themaximal under-approximation
in terms of an infinitary union of conjunctive queries of tree-width 𝑘 can
be always effectively expressed as a UC2RPQ of tree-width 𝑘 (Section V.3).
However, while the semantic tree-width 1 problem is shown to be ExpSpace-
complete (which was also established in [BRV16, Theorem 6.1, Proposition
6.2]), we have left a gap between our lower and upper bounds in Theorem V.1.3
for every 𝑘 > 1.

Question V.10.1. For 𝑘 > 1, is the semantic tree-width 𝑘 problem ExpSpace-
complete?

A related question is whether the containment problem between a C2RPQ
and a summary query is in ExpSpace. Should this be the case, then the
semantic tree-width 𝑘 problem would be in ExpSpace. We also point out that
since every path-𝑙 approximation can be expressed by a polynomial UC2RPQ
of tree-width 2𝑘—this is the same idea as in [RBV17, Lemma IV.13]—, one can
produce, for every UC2RPQ Δ a union Γ of poly-sized C2RPQ of tree-width
2𝑘 such that App𝒯𝑤𝑘

(Δ) ⫅ Γ ⫅ Δ. This implies that the following “promise”

problem9 is decidable in ExpSpace: given a UC2RPQ Γ, answer ‘yes’ if Γ is 9 In reference to “promise constraint
satisfaction problems” [BG21, Defini-
tion 2.3].

of semantic tree-width 2𝑘, and answer ‘no’ if Γ is not of semantic tree-width
𝑘. The fact that App𝒯𝑤𝑘

(Δ) can be approximated by an exponential query
of tree-width 2𝑘 + 1 can also be seen as a corollary of the proof of [RBV17,
Theorem V.1].

We also do not know whether the Π𝑝
2 bound on the semantic tree-width

𝑘 problem for UCRPQ(SRE) has a matching lower bound. The known lower
bound for the UCRPQ(SRE) containment problem [Fig+20, Theorem 5.1]
does not seem to be useful to be employed in a reduction in this context, since
it necessitates queries of arbitrary high tree-width.

V.10.2 Characterization of Tractability

Our result implies that for each 𝑘 the evaluation problem for UC2RPQs Γ of
semantic tree-width 𝑘 is fixed-parameter tractable when parametrized by
the size of the query, i.e. it works in time 𝒪(|𝐺|𝑐 ⋅ 𝑓(|Γ|)) for a computable

175

v. semantic tree-width and path-width of conjunctive regular path queries

function 𝑓 and constant 𝑐, where 𝐺 is the database given as input. While this
was a known fact [RBV17, Corollary IV.12], the dependence on the database
was 𝑐 = 2𝑘 + 1. Our results show that the dependence can be improved to
𝑐 = 𝑘 + 1, similarly to [BRV16, Theorem 6.3] for the case 𝑘 = 1. It has been
further shown by Feier, Gogacz and Murlak that the evaluation can be done
with a single-exponential 𝑓 [FGM24, Theorem 22].

In a similar vein, our results show that the evaluation problem for UC2RPQs
of semantic path-width 𝑘 is in paraNL. It is unknown whether the semantic
bounded width properties characterize all FPT and paraNL classes.

Question V.10.2. Does every recursively enumerable class of CRPQs with
paraNL evaluation have bounded semantic path-width?

Question V.10.3 (Also mentioned in [RBV17, §IV-(4)]). Does every recur-
sively enumerable class of CRPQs with FPT evaluation have bounded semantic
tree-width?

Note that the classes of bounded contracted path-width or contracted
tree-width are not counterexamples to Questions V.10.2 and V.10.3, since
the path-width is upper-bounded by one plus the contracted path-width,
and lower-bounded by the contracted path-width—and similarly for tree-
width—and so a width is bounded iff its contracted variant is bounded.

In the case of CQs, the answer is ‘yes’ to Question V.10.3 [Gro07, Theo-
rem 1] under standard complexity-theoretic hypotheses (𝑊[1] ≠ FPT). For
Question V.10.2, the answer is still ‘yes’ [CM13, Theorem 3.1] conditional to
a less standard assumption10 (no Tree-hard problem is in paraNL). 10 By [CM13, Theorems 3.1 & 4.3],

if the class has bounded semantic
path-width, then the problem is in
Path ⊆ paraNL; by [CM13, Theorems
3.1 & 5.5], if the class does not have
bounded semantic path-width, then
the problem is Tree-hard.

However, attempting at answering these questions for CRPQs is consid-
erably more challenging. In particular, one important technical difficulty is
that a class of CRPQs with unbounded tree-width may contain queries with
no expansions which are hom-minimal in the sense of containment. That
is, for every 𝑘, for every query 𝛾 of semantic tree-width > 𝑘 and expansion
𝜉 of semantic tree-width > 𝑘 there may be another expansion 𝜉′ such that
𝜉′ hom−−−→ 𝜉 (i.e., such that 𝜉 ⫅ 𝜉′). In fact, for classes of CRPQs avoiding such
problematic behavior, Question V.10.3 can be positively answered. We next
show why.

Let us call a UC2RPQ finitely-redundant if there is no infinite chain 𝜉1(�̄�) ⫋
𝜉2(�̄�) ⫋ ⋯ among its expansions. See Figure V.13 for a non-example. Observe

<latexit sha1_base64="GeOvDDfZ1dBqNdEBaKbGR/lxgvI=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2skt/M5py8M5Y9D+4Ucpffw+uPvYdhsZn9bLQimoQoNOVEqbrrxNrrE6kZ5TjINBKFMaFd0sa6QUFCVF5/POjAPjROyw4iaZ7Q9tj93dEnoVK90DeVIdEdNZuNzP+yeqKDC6/PRJxoFHTyUZBwW0f2aGu7xSRSzXsGCJXMzGrTDpGEanObjDmCO7vyPFRO8u5Z/rTk5ApHMFEa9uEAjsGFcyjADRShDBQQHuEZXqw768l6td4mpSlr2rMLf2S9/wC82ZFE</latexit>

b
<latexit sha1_base64="zfTCOMPnzZPZwRrPJ2we9bw3nPg=">AAAB6nicbZC7SgNBFIbPxluMt3jpbAaDIhZhN+ClM2ChZURzgWQNs5PZZMjs7DIzK8Qlj2BjoYittQ9jZ5k38BGcXApN/GHg4//PYc45XsSZ0rb9ZaXm5hcWl9LLmZXVtfWN7OZWRYWxJLRMQh7KmocV5UzQsmaa01okKQ48Tqte92KYV++pVCwUt7oXUTfAbcF8RrA21g2+O2pmc3beHgnNgjOB3Pn34PJj52FQamY/G62QxAEVmnCsVN2xI+0mWGpGOO1nGrGiESZd3KZ1gwIHVLnJaNQ+2jdOC/mhNE9oNHJ/dyQ4UKoXeKYywLqjprOh+V9Wj7V/5iZMRLGmgow/8mOOdIiGe6MWk5Ro3jOAiWRmVkQ6WGKizXUy5gjO9MqzUCnknZP88bWdKx7AWGnYhT04BAdOoQhXUIIyEGjDIzzDi8WtJ+vVehuXpqxJzzb8kfX+A9Rukd8=</latexit>

a⇤ <latexit sha1_base64="4LlB5xE2k1sqHTVDdVman1MeJxQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2sEmlmc07eGcueB3cKucvv4fXH3sOw2Mx+NloRTUIUmnKiVN11Yu31idSMchxkGonCmNAuaWPdoCAhKq8/HnRgHxqnZQeRNE9oe+z+7uiTUKle6JvKkOiOms1G5n9ZPdHBhddnIk40Cjr5KEi4rSN7tLXdYhKp5j0DhEpmZrVph0hCtblNxhzBnV15Hionefcsf1pycoUjmCgN+3AAx+DCORTgBopQBgoIj/AML9ad9WS9Wm+T0pQ17dmFP7LefwC7VZFD</latexit>

a

<latexit sha1_base64="GeOvDDfZ1dBqNdEBaKbGR/lxgvI=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2skt/M5py8M5Y9D+4Ucpffw+uPvYdhsZn9bLQimoQoNOVEqbrrxNrrE6kZ5TjINBKFMaFd0sa6QUFCVF5/POjAPjROyw4iaZ7Q9tj93dEnoVK90DeVIdEdNZuNzP+yeqKDC6/PRJxoFHTyUZBwW0f2aGu7xSRSzXsGCJXMzGrTDpGEanObjDmCO7vyPFRO8u5Z/rTk5ApHMFEa9uEAjsGFcyjADRShDBQQHuEZXqw768l6td4mpSlr2rMLf2S9/wC82ZFE</latexit>

b <latexit sha1_base64="4LlB5xE2k1sqHTVDdVman1MeJxQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2sEmlmc07eGcueB3cKucvv4fXH3sOw2Mx+NloRTUIUmnKiVN11Yu31idSMchxkGonCmNAuaWPdoCAhKq8/HnRgHxqnZQeRNE9oe+z+7uiTUKle6JvKkOiOms1G5n9ZPdHBhddnIk40Cjr5KEi4rSN7tLXdYhKp5j0DhEpmZrVph0hCtblNxhzBnV15Hionefcsf1pycoUjmCgN+3AAx+DCORTgBopQBgoIj/AML9ad9WS9Wm+T0pQ17dmFP7LefwC7VZFD</latexit>

a

<latexit sha1_base64="GeOvDDfZ1dBqNdEBaKbGR/lxgvI=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2skt/M5py8M5Y9D+4Ucpffw+uPvYdhsZn9bLQimoQoNOVEqbrrxNrrE6kZ5TjINBKFMaFd0sa6QUFCVF5/POjAPjROyw4iaZ7Q9tj93dEnoVK90DeVIdEdNZuNzP+yeqKDC6/PRJxoFHTyUZBwW0f2aGu7xSRSzXsGCJXMzGrTDpGEanObjDmCO7vyPFRO8u5Z/rTk5ApHMFEa9uEAjsGFcyjADRShDBQQHuEZXqw768l6td4mpSlr2rMLf2S9/wC82ZFE</latexit>

b <latexit sha1_base64="4LlB5xE2k1sqHTVDdVman1MeJxQ=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8GgeAozgsvNgAc9JmAWSIbQ06lJ2vT0DN09Qgx5Ai8eFPHqA/gw3jzmDXwEO8tBE39o+Pj/Krqq/JgzpR3ny0otLC4tr6RXM2vrG5tb2e2diooSSbFMIx7Jmk8UciawrJnmWIslktDnWPW7V6O8eo9SsUjc6l6MXkjaggWMEm2sEmlmc07eGcueB3cKucvv4fXH3sOw2Mx+NloRTUIUmnKiVN11Yu31idSMchxkGonCmNAuaWPdoCAhKq8/HnRgHxqnZQeRNE9oe+z+7uiTUKle6JvKkOiOms1G5n9ZPdHBhddnIk40Cjr5KEi4rSN7tLXdYhKp5j0DhEpmZrVph0hCtblNxhzBnV15Hionefcsf1pycoUjmCgN+3AAx+DCORTgBopQBgoIj/AML9ad9WS9Wm+T0pQ17dmFP7LefwC7VZFD</latexit>

a

<latexit sha1_base64="3paGCFyxMi0svKTWa/k9axs1HQo=">AAAB7nicbZDLSgMxFIbP1Futt3rZuQkWRRDKjOBlZ8GFLivYC7RjyaSZNkwmMyQZoQ59CDcuFHHryodx57Jv4COYXhba+kPg4//PIeccL+ZMadv+sjJz8wuLS9nl3Mrq2vpGfnOrqqJEElohEY9k3cOKciZoRTPNaT2WFIcepzUvuBzmtXsqFYvEre7F1A1xRzCfEayNVcN3qThy+q18wS7aI6FZcCZQuPgeXH3sPAzKrfxnsx2RJKRCE46Vajh2rN0US80Ip/1cM1E0xiTAHdowKHBIlZuOxu2jfeO0kR9J84RGI/d3R4pDpXqhZypDrLtqOhua/2WNRPvnbspEnGgqyPgjP+FIR2i4O2ozSYnmPQOYSGZmRaSLJSbaXChnjuBMrzwL1eOic1o8ubELpQMYKwu7sAeH4MAZlOAaylABAgE8wjO8WLH1ZL1ab+PSjDXp2YY/st5/ANlgk58=</latexit>

an+1

<latexit sha1_base64="qD//IMoI+EsNgAMAoRFRLOsmjDI=">AAAB7HicbZC7SgNBFIbPxluMt3jpbAaDYhV2A146AxZaRnCTQLKG2clsMmR2dpmZFeKSZ7CxUMTW0oexs8wb+AhOLoUm/jDw8f/nMOccP+ZMadv+sjILi0vLK9nV3Nr6xuZWfnunqqJEEuqSiEey7mNFORPU1UxzWo8lxaHPac3vXY7y2j2VikXiVvdj6oW4I1jACNbGcvFdKgatfMEu2mOheXCmULj4Hl597D0MK638Z7MdkSSkQhOOlWo4dqy9FEvNCKeDXDNRNMakhzu0YVDgkCovHQ87QIfGaaMgkuYJjcbu744Uh0r1Q99Uhlh31Ww2Mv/LGokOzr2UiTjRVJDJR0HCkY7QaHPUZpISzfsGMJHMzIpIF0tMtLlPzhzBmV15HqqlonNaPLmxC+UjmCgL+3AAx+DAGZThGirgAgEGj/AML5awnqxX621SmrGmPbvwR9b7DwA/ky8=</latexit>

an

<latexit sha1_base64="UQk3GUZoDkHJ92oOE2mppqxeauY=">AAACm3icbVHNbtNAEN4YWoppSwu9ISSLiKqHKrIR/blUVOoBhDgE1LSVYqsab8bJquu1sztbSK28Rq/wBLwPx74Bj8DGiRBNGGmlT9833+z8pKUUhsLwV8N78HBp+dHKY//J6tr6043NZ2emsJpjhxey0BcpGJRCYYcESbwoNUKeSjxPr04m+vk1aiMKdUqjEpMc+kpkggM5Ko6NTQ2SwuHQv9xohq2wjmARRDPQfPf77v3PrZu79uVmYxT3Cm5zVMQlGNONwpKSCjQJLnHsx9ZgCfwK+th1UEGOJqnqpsfBa8f0gqzQ7ikKavZfRwW5MaM8dZk50MDMaxPyf1rXUnaYVEKVllDx6UeZlQEVwWQDQU9o5CRHDgDXwvUa8AFo4OT25Pt+/AWH1uW0Z/VOo6SatFgXmxeJjjKQBnfr2tERaYtJJUWKbgkKFw3XoIc2qW7E20Xtry2pFH6lb/WI9+buWeIDDnLsjhXNn2YRnL1pRfutvc9h83ibTWOFvWCv2A6L2AE7Zh9Ym3UYZyW7Zd/ZD++ld+J99D5NU73GzPOc3Quv8wfFhNT+</latexit>

$

<latexit sha1_base64="mdHbrxMH+l2D3XQVdbQZXO+zvD4=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxqDES5gRXI4BLx4jMQskIfR0apImPT1Dd48QhnyCFw+KePXsx3jz6pfYWQ6a+KDg8V4VVfX8WHBtXPfLyaysrq1vZDdzW9s7u3v5/YO6jhLFsMYiEammTzUKLrFmuBHYjBXS0BfY8Ic3E7/xgErzSN6bUYydkPYlDzijxkrVIj/r5gtuyZ2CLBNvTgrl3fijis53pZv/bPciloQoDRNU65bnxqaTUmU4EzjOtRONMWVD2seWpZKGqDvp9NQxObFKjwSRsiUNmaq/J1Iaaj0KfdsZUjPQi95E/M9rJSa47qRcxolByWaLgkQQE5HJ36THFTIjRpZQpri9lbABVZQZm07OhuAtvrxM6ucl77J0cWfTOIUZsnAEx1AED66gDLdQgRow6MMjPMOLI5wn59V5m7VmnPnMIfyB8/4Dn7aQQw==</latexit>

(i)
<latexit sha1_base64="WKthGVYVfvhxEE/O/oTfpKwKmGw=">AAAB63icbVA9SwNBEN2LXzFqjFraLAYlNuFO8KMM2FhGNB+QHGFvM5cs2d07dveEcOQv2FgoYmvrj7Gz9Ze4l6TQxAcDj/dmmJkXxJxp47pfTm5ldW19I79Z2NreKe6W9vabOkoUhQaNeKTaAdHAmYSGYYZDO1ZARMChFYyuM7/1AEqzSN6bcQy+IAPJQkaJyaQKY6e9UtmtulPgZeLNSblWjD/uwPmu90qf3X5EEwHSUE607nhubPyUKMMoh0mhm2iICR2RAXQslUSA9tPprRN8bJU+DiNlSxo8VX9PpERoPRaB7RTEDPWil4n/eZ3EhFd+ymScGJB0tihMODYRzh7HfaaAGj62hFDF7K2YDoki1Nh4CjYEb/HlZdI8q3oX1fNbm8YJmiGPDtERqiAPXaIaukF11EAUDdEjekYvjnCenFfnbdaac+YzB+gPnPcfZMuQtg==</latexit>

(ii)

Figure V.13: (𝑖) A simple non-finitely-
redundant Boolean CRPQ. (𝑖𝑖) For
every 𝑛, there is a homomorphism
from the (𝑛 + 1)-expansion to the
𝑛-expansion, but no homomorphism
in the converse direction.that the classes of CQs and UCQs are finitely-redundant, and also the class of

loopless CRPQs, meaning no directed cycle in its underlying directed graph
and no empty word 𝜀 in the atom languages.

Lemma V.10.4. The class of loopless CRPQs is finitely-redundant.

176

v.10. discussion

Proof. By means of contradiction, let 𝛾 be loopless and suppose there is an
infinite chain 𝜉1(�̄�) ⫋ 𝜉2(�̄�) ⫋ ⋯ of expansions of 𝛾. Hence, there must
be an atom expansion which grows arbitrarily in the chain. Take 𝜉𝑖 such
that it contains an atom expansion of size bigger than 𝜉1. Since such atom
expansion is a directed path (as we are dealing with one-way CRPQs), the
fact that 𝜉𝑖

hom−−−→ 𝜉1 implies that there is some cycle in 𝜉1. Since 𝛾 cannot
contain the empty word in the atom languages, this is in contradiction with
the hypothesis that there are no directed cycles in 𝛾.

We next show that, restricted to classes of finitely-redundant UC2RPQ, we
can obtain a characterization of evaluation in FPT.

Theorem V.10.5. Assuming W[1] ≠ FPT, for any recursively enumerable
class 𝒞 of finitely-redundant Boolean UC2RPQs, the evaluation problem for
𝒞 is FPT if, and only if, 𝒞 has bounded semantic tree-width.

Proof. X Left-to-right By contraposition, we show that if 𝒞 has unbounded
tree-width, then its evaluation problem is W[1]-hard via an FPT-reduction
from the parameterized clique problem. This is the problem of, given a param-
eter 𝑘 and a simple graph 𝐺, whether 𝐺 contains a 𝑘-clique. We do this by a
simple adaptation of the proof of Grohe [Gro07, Theorem 4.1] for the case of
CQs.

Given an instance ⟨𝐺, 𝑘⟩ of the parameterized clique problem, the idea is
to first search for a query 𝛾 ∈ 𝒞 of “sufficiently large” semantic tree-width.

Proposition V.10.6. For any 𝑘 ≥ 3, if a finitely-redundant C2RPQ has seman-
tic tree-width ≥ 𝑘, then there is a hom-minimal expansion thereof of semantic
tree-width ≥ 𝑘.

Proof. Let 𝛾 be a finitely-redundant C2RPQ. Consider the infinitary UCQ

Ξ =̂ {�̌� ∣ 𝜉 is a hom-minimal expansion of 𝛾}.

Since 𝛾 is finitely-redundant, we have 𝛾 ≡ Ξ. We prove the fact by contrapo-
sition. If all hom-minimal expansions of 𝛾 have semantic tree-width ≤ 𝑘 − 1,
then all CQs of Ξ have tree-width ≤ 𝑘 − 1, and so by the implication (1) ⇒ (3)
of Theorem V.3.12, query 𝛾 has semantic tree-width at most 𝑘 − 1. Note that
for Theorem V.3.12 to apply, we need 𝑘 − 1 > 1 i.e. 𝑘 ≥ 3.

Proposition V.10.7. The set of all hom-minimal expansions of queries from
𝒞 is recursively enumerable.

Proof. We first show that given an expansion 𝜉 of some C2RPQ 𝛾, it is decid-
able whether 𝜉 is hom-minimal. This follows from the following claim: there
exists an expansion 𝜉′ of 𝛾 s.t. 𝜉′ hom−−−→ 𝜉 and 𝜉���hom−−−→ 𝜉′ iff there exists such an
expansion whose atom expansions have length at most 2𝑚 ⋅ |𝜉| ⋅ |𝔸|2|𝜉| where
|𝜉| is the number of variables of 𝜉 and 𝑚 is the greatest number of states
of an NFA labelling an atom of 𝛾. Decidability of hom-minimality clearly

177

v. semantic tree-width and path-width of conjunctive regular path queries

follows from this claim: it suffices to check if 𝜉′ hom−−−→ 𝜉 implies 𝜉 hom−−−→ 𝜉′ for
all “small” 𝜉′.

To prove the claim, let 𝜉′ be an expansion of 𝛾, and assume that there is a
homomorphism 𝑓∶ 𝜉′ → 𝜉 and that 𝜉���hom−−−→ 𝜉′. Consider an atom expansion

𝜋′ = 𝑥0
𝑎1−→ 𝑥1

𝑎2−→ ⋯ 𝑎𝑛−1−−−→ 𝑥𝑛−1
𝑎𝑛−→ 𝑥𝑛

of 𝜉′, and let 𝒜 denote the NFA associated with the atom. For any index
𝑖 ∈ ⟦0, 𝑛⟧ which is neither among the |𝜉| first positions nor the |𝜉| last
positions, define its type 𝜏𝑖 as the word 𝑎𝑖−|𝜉| − 1⋯𝑎𝑖𝑎𝑖+1⋯𝑎𝑖+|𝜉| of length
2|𝜉|—note that 𝜏𝑖 uniquely describes the ball of radius |𝜉| centred at 𝑥𝑖 in
𝜉. Consider the function which maps index 𝑖 ∈ ⟦|𝜉|, 𝑛 − |𝜉| + 1⟧ to the pair
⟨𝑓(𝑥𝑖), 𝑄𝑖, 𝜏𝑖⟩, where 𝑄𝑖 is the set of states 𝑞 of 𝒜 which admit a path from
an initial state to 𝑞 labelled by 𝑎1⋯𝑎𝑖. If 𝑛 ≥ |𝜉| ⋅ 2|𝒜| ⋅ |𝔸|2|𝜉| + 2|𝜉| then
by the pigeon-hole principle, there exists 𝑖, 𝑗 ∈ ⟦|𝜉|, 𝑛 − |𝜉| + 1⟧ s.t. 𝑖 < 𝑗,
𝑓(𝑥𝑖) = 𝑓(𝑥𝑗), 𝑄𝑖 = 𝑄𝑗 and 𝜏𝑖 = 𝜏𝑗. Letting

𝜋″ = 𝑥0
𝑎1−→ 𝑥1

𝑎2−→ ⋯ 𝑎𝑖−1−−→ 𝑥𝑖−1
𝑎𝑖−→ 𝑥𝑖 = 𝑥𝑗

𝑎𝑗+1−−→ 𝑥𝑗+1
𝑎𝑗+2−−→ ⋯ 𝑎𝑛−1−−−→ 𝑥𝑛−1

𝑎𝑛−→ 𝑥𝑛,

consider the query 𝜉″ obtained from 𝜉′ by replacing 𝜋′ with 𝜋″. Since 𝑄𝑖 =
𝑄𝑗, 𝜉″ is still an expansion of 𝛾. Moreover, 𝑓(𝑥𝑖) = 𝑓(𝑥𝑗) implies that there is
a homomorphism from 𝜉″ to 𝜉. Lastly, it there was a homomorphism from
𝜉 to 𝜉″, then this homomorphism should contain 𝑥𝑖 in its image—otherwise
there would clearly be a homomorphism from 𝜉 to 𝜉′. Note that the image
of this homomorphism is included in the ball of 𝜉″ centered at 𝑥𝑖 = 𝑥𝑗 of
radius |𝜉|. But since 𝜏𝑖 = 𝜏𝑗 this ball is equal to the ball of 𝜉′ centered at 𝑥𝑖
(or equivalently at 𝑥𝑗) of radius |𝜉|, and so we found a homomorphism from
𝜉 to 𝜉′, which is not possible. Hence, there cannot be any homomorphism
from 𝜉 to 𝜉″, which concludes the proof.

Finally, to enumerate all hom-minimal expansions of queries from 𝒞, it
suffices to enumerate all expansions of queries from 𝒞—which is doable since
𝒞 is recursively enumerable—and only keep those which are hom-minimal,
using the previous algorithm.

We proceed with the reduction. For any value of 𝑘 which is big enough, we
enumerate all hom-minimal expansions of 𝒞 until we find one such expansion
𝜉 whose core contains a 𝐾 × 𝐾 grid as a minor, for 𝐾 = �𝑘2�. We know that
this must happen by Proposition V.10.6 and the Excluded Minor Theorem
[RS86], stating that there exists a function 𝑓 ∶ ℕ → ℕ such that for every
𝑛 ∈ ℕ every graph of tree-width at least 𝑓(𝑛) contains a (𝑛 × 𝑛)-grid as a
minor. Once we get hold of such a hom-minimal expansion 𝜉, we proceed
as in [Gro07, proof of Theorem 4.1] to produce, in polynomial time, a graph
database 𝐺𝜉 such that:
1. there is a homomorphism 𝐺𝜉

hom−−−→ 𝜉, and
2. 𝐺𝜉 satisfies 𝜉 if, and only if, 𝐺 has a clique of size 𝑘.

178

v.10. discussion

Now consider the UC2RPQ Γ ∈ 𝒞 of which 𝜉 is an expansion, and observe
that if 𝐺𝜉 satisfies Γ, then we must have that 𝐺𝜉 also satisfies 𝜉, by the fact
that 𝐺𝜉

hom−−−→ 𝜉 and 𝜉 is hom-minimal. Hence, the following are equivalent:
• 𝐺𝜉 satisfies Γ,
• 𝐺𝜉 satisfies 𝜉,
• 𝐺 contains a 𝑘-clique.
This finishes the FPT-reduction.

X Right-to-left This direction does not need any of the hypotheses (neither
finite-redundancy, W[1] ≠ FPT, nor r.e.), by Section V.3.

V.10.3 Larger Classes

A natural and simple approach to extend the expressive power of CRPQs
is to close the queries by transitive closure. That is, given a binary CRPQ
𝛾(𝑥, 𝑦) we can consider CRPQ over the extended alphabet 𝔸 ∪ {𝛾}, where
the label 𝛾 is interpreted as the binary relation defined by 𝛾(𝑥, 𝑦). This is
the principle behind Regular Queries [RRV17]. The notion of tree-width can
be easily lifted to this class, and classes of bounded tree-width still have a
polynomial-time evaluation problem. However, this class has not yet been
studied in the context of the semantic tree-width. It is not known if the
semantic tree-width 𝑘 problem is decidable, nor whether classes of bounded
semantic tree-width have an FPT evaluation problem.

Question V.10.8. Is the semantic tree-width 𝑘 problem for Regular Queries
decidable?

V.10.4 Different Notions

Query class Membership problem Evaluation problem

path-width ≤ 𝑘 L-c [KM10, Theorem 1.3, p. 2] NL-c (Lemma V.8.9)

sem. path-w. ≤ 𝑘 2ExpSpace & ExpSpace-h paraNL (Theorem V.8.8)

(Theorem V.8.6)

tree-width ≤ 𝑘 L-c [EJT10, Lemma 1.4] P (Folklore)11

sem. tree-w. ≤ 𝑘 2ExpSpace & ExpSpace-h12 FPT [RBV17, Corollary V.2]13

(Theorem V.1.3) NP-c [RBV17, Theorem V.3]

Table 14: Complexity of the member-
ship and evaluation problem for some
classes of UC2RPQs studied in this
chapter, where 𝑘 ≥ 1 is fixed. The
same results hold for the contracted
variants. The abbreviation “-c” (resp.
“-h”) stands for “-complete” (resp. “-
hard”).

11 Originally proven by Chekuri & Ra-
jaraman [CR00, Theorem 3] for CQs.
The generalization to UC2RPQs is
trivial, see e.g. Proposition V.1.1 or
[RBV17, Theorem IV.3].
12 See also [BRV16, Theorem 6.1] for
𝑘 = 1.
13 See also Section V.3 and [FGM24,
Theorem 22].

CRPQs of small tree-width or path-width enjoy a tractable evaluation prob-
lem, see Table 14. However, it must be noticed that containment between tree-
width 𝑘 or path-width 𝑘 queries is still very hard: ExpSpace-complete (even for
𝑘 = 1) [CDLV00]. The more restrictive measure of “bridge-width” [Fig20] has
been proposed as a more robust measure, which results in classes of queries
which are well-behaved both for evaluation (since bridge-width 𝑘 implies
tree-width ≤ 𝑘) and for containment (since containment of bounded-bridge-
width classes is in PSpace). It is not hard to see that bridge-width is closed

179

v. semantic tree-width and path-width of conjunctive regular path queries

under refinements, and thus that this notion is amenable to our approach (cf.
Fact V.3.5).

Question V.10.9. Is the problem of whether a UC2RPQ is equivalent to a
UC2RPQ of bridge-width at most 𝑘 decidable?

180

v.a. alternative upper bound for containment of uc2rpqs

Appendices

V.A Alternative Upper Bound for Containment of UC2RPQs

In Section V.3, in order to prove the 2ExpSpace upper bound to the semantic
tree-width 𝑘 problem (Lemma V.3.9), we proved an upper bound on contain-
ment of UC2RPQs (Proposition V.3.10) by relying on the notion of bridge-
width. In this section, we give a slightly different bound, which is more
elementary (in the sense that it does not rely on bridge-width) and still yields
a 2ExpSpace upper bound to the semantic tree-width 𝑘 problem.

PropositionV.A.1. The containment problem Γ ⫅ Δ between twoUC2RPQs
can be solved in non-deterministic space 2𝑐⋅‖Γ‖ + 𝑝Δ ⋅ 2𝑐⋅𝑚Δ , where 𝑚Δ is the
size of the greatest disjunct of Δ, namely 𝑚Δ = max {‖𝛿Δ‖ ∣ 𝛿 ∈ Δ}, 𝑝Δ is the
number of disjuncts of Δ, and 𝑐 is a constant.

Proof sketch. The proposition can be shown by close inspection of the stan-
dard containment problem for UC2RPQs [CDLV00, Theorem 5]: the con-
tainment problem is reduced, in this instance, to checking the inclusion
between NFAs of the form14 14 𝒜Γ and 𝒜𝛿 are denoted 𝐴1 and

𝐴3, respectively, in [CDLV00].

𝒜Γ ⊆? �
𝛿∈Δ

𝒜𝛿, (V.6)

where 𝐴Γ is a regular expression which is exponential in ‖Γ‖, and 𝒜𝛿 has
size exponential in ‖𝛿‖ ≤ 𝑚Δ. Should (V.6) not hold, there must exist a
counterexample of size at most

2|𝒜Γ| ×�
𝛿∈Δ

2|𝒜𝛿|

Letting 𝑝Δ be the number of queries in Δ, we get that the logarithm of the
expression above—representing the size of the non-deterministic space needed
by the algorithm—is upper bounded by

𝑐0�|𝒜Γ| +�
𝛿∈Δ

|𝒜𝛿|� ≤
eventually

2𝑐⋅‖Γ‖ + 𝑝Δ ⋅ 2𝑐⋅𝑛Δ ,

for some constants 𝑐0 and 𝑐.

V.B Path-Width is not Closed under Refinements

Fact V.8.1. For each 𝑘 ≥ 1, the class of graphs of path-width at most 𝑘 is not
closed under expansions.

Proof. Let 𝑋 be a set of 𝑘 − 1 variables. Consider the undirected multigraph
𝒢𝑘 whose set of nodes is 𝑋 ∪ {𝑦0, 𝑦1, 𝑦2, 𝑦3} with the following edge set:
• each 𝑋 ∪ {𝑦𝑖} (𝑖 ∈ {0, 1, 2, 3}) is a clique,
• there is an edge from 𝑦𝑖 to 𝑦𝑖+1 for 𝑖 ∈ {0, 1, 2}, and

181

v. semantic tree-width and path-width of conjunctive regular path queries

• there is a second edge from 𝑦1 to 𝑦2.
By definition, this graph has path-width exactly 𝑘: it is as least 𝑘 since it
contains a (𝑘 + 1)-clique—namely 𝑋 ∪ {𝑦𝑖, 𝑦𝑖+1}—and, moreover the following
sequence of bags—cf. Figure V.12a—defines a path decomposition of 𝒢𝑘 of
width 𝑘:

⟨𝑋 ∪ {𝑦0, 𝑦1}, 𝑋 ∪ {𝑦1, 𝑦2}, 𝑋 ∪ {𝑦2, 𝑦3}⟩.

Let 𝒢′
𝑘 be the graph obtained by refining the second edge from 𝑦1 to 𝑦2,

into two edges ⟨𝑦1, 𝑧⟩ and ⟨𝑧, 𝑦2⟩, where 𝑧 is a new variable—see Figures V.12b
and V.12d. We claim that 𝒢′

𝑘 has path-width at least 𝑘 + 1. Indeed, let ⟨𝑇, v, t⟩
be a path decomposition of 𝒢′

𝑘.
Note that 𝑋 ∪ {𝑦0, 𝑦1}, 𝑋 ∪ {𝑦1, 𝑦2}, 𝑋 ∪ {𝑦2, 𝑦3} and {𝑧, 𝑦1, 𝑦2} are cliques,

so there must be bags of ⟨𝑇, v, t⟩ containing each of them. Let 𝑏0,1, 𝑏1,2, 𝑏2,3
and 𝑏𝑍 denote these bags—note that they do not have to be distinct.
1. If 𝑏𝑍 appears in 𝑇 between at least two bags among 𝑏0,1, 𝑏1,2 and 𝑏2,3 (as

in Figure V.12b), since 𝑋 ⊆ v(𝑏𝑖,𝑗) for all (𝑖, 𝑗), then 𝑋 ⊆ v(𝑏𝑧). Hence
𝑋 ∪ {𝑧, 𝑦1, 𝑦2} ⊆ v(𝑏𝑧) and so 𝑏𝑧 has 𝑘 + 2 elements.

2. Otherwise, w.l.o.g. 𝑏𝑧 appears strictly before all three bags 𝑏0,1, 𝑏1,2 and
𝑏2,3, as in Figure V.12d. We consider the way 𝑏0,1, 𝑏1,2 and 𝑏2,3 are ordered
in the path decomposition. If 𝑏0,1 or 𝑏2,3 appears first, then they are located
between 𝑏𝑧 and 𝑏1,2, which both contain {𝑦1, 𝑦2}, and so this bag must also
contain {𝑦1, 𝑦2}, and so it has size at least 𝑘 + 2. Otherwise, if 𝑏1,2 appears
first, depending on the relative ordering of 𝑏0,1 and 𝑏2,3, we either get that
𝑦2 ∈ v(𝑏0,1) or that 𝑦1 ∈ v(𝑏2,3). In both cases, we have a bag with at least
𝑘 + 2 elements.
In all cases, the path decomposition has width at least 𝑘 + 1, showing that

𝒢′
𝑘 has path-width at least15 𝑘 + 1. 15 In fact it has path-width exactly

𝑘 + 1.

182

Chapter VI
Conclusion & Open Problems

Abstract

We conclude the first part of the thesis on graph databases. We recall the most
interesting open problems and conjectures on minimization that we discussed in the
previous chapters. We conclude by presenting the notion of profinite databases: we
briefly explain that while the notion does seem promising to help understand the
structure of CRPQs, we unfortunately failed to use it in an interesting manner.

Contents

VI.1 Minimization Problems 184

VI.2 Profinite Databases 185

VI.A Tree-Like Queries 189

VI.A.1 Forest-Shaped and DAG-Shaped Queries 189

VI.A.2 Semantically DAG-Shaped Queries 189

VI.A.3 Semantically Forest-Shaped 189

183

vi. conclusion & open problems

VI.1 Minimization Problems

Rather than closing the complexity gaps between our 𝑘-ExpSpace upper
bounds and the ExpSpace lower bounds in the decision problems studied in
Chapters IV and V, we believe that the most interesting questions w.r.t. to
minimization are actually those related to structure, and more precisely those
that try to connect the different notions of minimality together.

Conjecture IV.6.1. There exist (atom) minimal CRPQs which are not variable
minimal.

Minimization& Trees. The question ofwhether the seminal results of [CMNP18]
could be lifted from tree patterns to their encoding as CRPQs remain open.

Conjecture IV.6.4. If a tree pattern is minimal among tree patterns, then its
encoding as a CRPQ should also be minimal among CRPQs, up to contracting
internal variables.

On a similar note, an interesting question is whether two goals (e.g. the
number of variables and the number of atoms) can be simultaneously min-
imized. For CQs, this is always the case by Proposition III.1.19. However,
this question seems quite hard for CRPQs, even on concrete examples. We
say that a CRPQ is forest-shaped if its underlying directed graph is a disjoint
union of directed trees.

Question VI.1.1. Is it the case that every Boolean CRPQ that is (1) equivalent
to a forest-shaped CRPQ and (2) equivalent to a CRPQ with at most 𝑘 atoms
is necessarily equivalent to a forest-shaped CRPQ with at most 𝑘 atoms?

We conjecture the answer to this question to be yes, but we were unable
to prove it: we only managed to prove that, under these assumptions, the
query should be equivalent to a forest-shaped CRPQ with at most 2𝑘 atoms
(Theorem VI.A.2).

Maximal Under-Approximations. Both the result on UCRPQ minimization of
Chapter IV and of semantic tree-width minimization of Chapter V rely on the
existence—and computability—of maximal under-approximations. In the first
case, the target class consists of finitely many graphs (Lemma IV.4.6), but in
the second case, it is infinite (Lemma V.3.8): as such the proof is significantly
harder. Having the remarkable genericity of Proposition III.1.19 in mind, we
could only hope to be able to capture both Lemmas IV.4.6 and V.3.8.

Question VI.1.2. Given a class 𝒞 of graphs that is closed under minors, do
maximal under-approximations by UC(2)RPQs over 𝒞 always exist? If so, are
they computable?

184

vi.2. profinite databases

VI.2 Profinite Databases

Figure VI.1: Circle Limit III , M. C. Es-
cher, © The M.C. Escher Company.

As we have seen in Section III.1, duality—namely the existence of a dual
isomorphism between queries and models—provides a remarkable framework
to study conjunctive queries. For the more complex language of conjunctive
regular path queries, however, this isomorphism fails, making static analysis
much harder. We thought that part of the enjoyable properties of conjunctive
queries could be recovered for CRPQs by considering the notion of profinite
databases. In short, a profinite database consists of, a “projective system” of
finite graph databases, i.e. an 𝜔-sequence of homomorphisms

𝐆0
hom←−−− 𝐆1

hom←−−− … hom←−−− 𝐆𝑛
hom←−−− 𝐆𝑛+1

hom←−−− …

that we denote by lim←−−
𝑛∈ℕ

𝐆𝑛.

A typical example of such a system can be obtained as follows: just like
we did in Section III.1, we let 𝐂𝑛 (𝑛 ∈ ℕ>0) denote the directed cycle with
domain ℤ/𝑛ℤ and with an edge from 𝑖 to 𝑗 iff 𝑖 + 1 = 𝑗, see Figure VI.2. Recall
that 𝐂𝑛

hom−−−→ 𝐂𝑚 iff 𝑛 is a multiple of 𝑚. In particular, we have

𝐂1
hom←−−− 𝐂2

hom←−−− … hom←−−− 𝐂2𝑛
hom←−−− 𝐂2𝑛+1

hom←−−− … .

Figure VI.2: The graphs 𝐂6 (left)
and 𝐂3 (right) and a homomorphism
from the former to the latter, de-
scribed by colour coding. (Replica
of Figure III.5.)

The crucial point is that projective system have a natural semantics: we
define the semantics of

lim←−−
𝑛∈ℕ

𝐆𝑛

as the set of points that above some element of this sequence, i.e. as

𝐇 ⊨ ⟦ lim←−−
𝑛∈ℕ

𝐆𝑛⟧ when ∃𝑛. 𝐆𝑛
hom−−−→ 𝐇.

For instance
lim←−−
𝑛∈ℕ

𝐂2𝑛

has a simple semantical interpretation: letting 𝐆 be a graph database, for
any 𝑛 ∈ ℕ, we get that 𝐂2𝑛

hom−−−→ 𝐆 if, and only if, 𝐆 contains a directed
cycle of length 2𝑛. And so, there exists 𝑛 ∈ ℕ s.t. 𝐂2𝑛

hom−−−→ 𝐆 if, and only
if, 𝐆 contains a directed cycle whose length is a power of 2. In fact the true
definition of projective system allows the sequence to be indexed by a directed

185

https://mcescher.com/gallery/symmetry/#iLightbox[gallery_image_1]/12
https://ncatlab.org/nlab/show/isomorphism

vi. conclusion & open problems

set rather than ℕ: in the case we would obtain an object

lim←−−
𝑛∈⟨ℕ>0,∣⟩

𝐂𝑛,

where we order ℕ>0 by divisibility, and whose semantics is “the database
contains a directed cycle”!

How Profinite Databases Arise. Profinite models naturally arise by consider-
ing Stone duality. Roughly, Stone duality is a theory that, starting from a logic
and its models, adds new idealized/abstract models which are necessary to
make the theory compact, well-behaved and nicely describable. For instance,
applied to first-order logic over all structures, this construction does nothing!
This is precisely because this logic is already compact. On the other hand,
when applied to regular languages of finite words, we obtained profinite
words, which are exactly the models needed to describe pseudovarieties of
monoids! We refer the reader to [GG24] for a not so short survey of the topic.

Second, profinite databases naturally appear when dealing with the seman-
tics of CRPQs.1 Indeed, let 𝛾() and 𝛿() be CRPQs, and assume that 𝛾() ≡ 𝛿(). 1 They actually are at the heart of the

proof of Theorem VI.A.2!Over CQs, it would mean that their core are isomorphic (by Proposition II.2.3
and duality), but over CRPQs, we do not have such a nice characterization.
However, pick a canonical database 𝐆0 ⊨⋆ 𝛾. From the fact that 𝛾 ⫅ 𝛿, we
get the existence of 𝐃0 ⊨⋆ 𝛿 s.t. 𝐆0

hom←−−− 𝐃0. In turn, using the converse
containment 𝛿 ⫅ 𝛾, we get that there exists 𝐆1 ⊨⋆ 𝛾1 s.t. 𝐃0

hom←−−− 𝐆1. By
induction, we obtain an infinite sequence

𝐆0
hom←−−− 𝐃0

hom←−−− … . hom←−−− 𝐆𝑛
hom←−−− 𝐃𝑛

hom←−−− 𝐆𝑛+1
hom←−−− 𝐃𝑛+1

hom←−−− … .

In other words, we get that the profinite databases

lim←−−
𝑛∈ℕ

𝐆𝑛 and lim←−−
𝑛∈ℕ

𝐃𝑛

are semantically equivalent!

What Profinite Databases Could Help Us Achieve. In the previous chapters, we
presented two results that where conditional to the existence of hom-minimal
expansions:
• the semantical structure theorem (Theorem IV.2.8), which provides lower

bounds on the complexity required to express a CRPQ—and which is, to
out knowledge, actually the only result of this form for CRPQs;

• a very partial generalization of Grohe’s theorem to finitely-redundant
Boolean UC2RPQs (Theorem V.10.5).

However, a very simple CRPQ such as 𝛾() =̂ 𝑥 𝔸∗

−−→ 𝑥, expressing that the
database contains directed cycle no do not have hom-minimal expansions,

186

https://en.wikipedia.org/wiki/Compactness_theorem

vi.2. profinite databases

Figure VI.3: Semantics of a query
that does admit a hom-minimal
model (in yellow), together with a
profinite database built out of its
models in an effort to lift the opaque
veil of the infinite structure of the dis-
tributive lattice of graph databases
(in orange).

but it does have a hom-minimal profinite database, which is

lim←−−
𝑛∈⟨ℕ>0,∣⟩

𝐂𝑛.

More generally, by Zorn’s lemma, every CRPQ admits at least one hom-
minimal profinite database, see Figure VI.3!

Question VI.2.1. Can we generalize Theorems IV.2.8 and V.10.5 to handle
hom-minimal profinite databases rather than hom-minimal finite databases?

A positive answer to this question would provide a necessary and sufficient
condition on all CRPQs to be expressibly by simple CRPQs, and might lead to
a characterization of tractable classes of CRPQs—which are results we can
only dream of given our current knowledge.

Question V.10.3 (Also mentioned in [RBV17, §IV-(4)]). Does every recur-
sively enumerable class of CRPQs with FPT evaluation have bounded semantic
tree-width?

Figure VI.4: When your Ph.D. stu-
dent talks about the Stone dual space
of the Heyting algebra of conjunctive
queries for the forth time this month.
Skrik , by Edvard Munch.

One the positive side, we managed to prove—in an unpublished work with
Sam van Gool—that the Stone dual of the Heyting algebra of conjunctive
queries is isomorphic to the space of profinite databases, which seems to
point towards the fact that profinite databases are natural objects.

On the negative side, we do not know what to do with this result… One
of the main difficulties however is to find a reasonable definition for the
notion of “𝒞-profinite databases”. We would like this notion to be defined

187

https://commons.wikimedia.org/wiki/File:Edvard_Munch,_1893,_The_Scream,_oil,_tempera_and_pastel_on_cardboard,_91_x_73_cm,_National_Gallery_of_Norway.jpg

vi. conclusion & open problems

at least whenever 𝒞 is a minor-closed class of CRPQs, and intuitively 𝒞-
profinite databases should generalize the 𝒞-finite databases. For instance, for
tree-width, we might have that homomorphisms

𝐆 hom←−−− 𝐃 hom←−−− 𝐆′

where 𝐆 and 𝐆′ have tree-width at most 𝑘, but where 𝐃 is nowhere having
semantic tree-width at most 𝑘… More abstractly: homomorphisms do not
interact that well with the notion of minor.2 2 This contrasts with the fact that

minor-closed classes are closed un-
der taking cores.

188

vi.a. tree-like queries

Appendices

VI.A Tree-Like Queries

Hypothesis. In this section, all CRPQs are assumed to be positive,
meaning that no language can contain the empty word.

VI.A.1 Forest-Shaped and DAG-Shaped Queries

We say that a CRPQ is semantically forest-shaped if it is semantically equivalent
to a CRPQ which is forest-shaped.

Say that a CRPQ is DAG-shaped if its underlying directed multigraph is a
DAG—parallel edges are allowed, not self loops. If 𝛿 is DAG-shaped, define
its unfolding, denoted by 𝒰(𝛿), as the following CRPQ:
• its variables are exactly labelled path of 𝛿 of the form 𝑥0

𝐿1−→ ⋯ 𝐿𝑛−→ 𝑥𝑛 with
𝑛 ∈ ℕ and 𝑥0 is a vertex of 𝛿 with no predecessor;

• the atoms exactly go from 𝑥0
𝐿1−→ ⋯ 𝐿𝑛−→ 𝑥𝑛 to 𝑥0

𝐿1−→ ⋯ 𝐿𝑛−→ 𝑥𝑛
𝐿𝑛+1−−−→ 𝑥𝑛+1,

with label 𝐿𝑛+1.

Fact VI.A.1. If 𝛿 is a DAG-shaped CRPQ, then 𝒰(𝛿) is a forest-shaped CRPQ,
and moreover 𝛿 ⫅ 𝒰(𝛿).

The rest of this section is devoted to proving the following result.

Theorem VI.A.2. Let 𝛿 be a CRPQ. The following are equivalent:
1. 𝛿 is semantically forest-shaped,
2. 𝛿 is DAG-shaped and for every hom-minimal canonical database 𝐃 of 𝛿,

the core of 𝐃 is a forest,
3. 𝛿 is DAG-shaped and 𝛿 ≡ 𝒰(𝛿).

Note that since semantical equivalence is decidable in ExpSpace and since
𝒰(𝛿) has exponential size, it follows that one can test if a CRPQ is semantically
forest-shaped in 2ExpSpace.

VI.A.2 Semantically DAG-Shaped Queries

Fact VI.A.3. A CRPQ is semantically DAG-shaped iff it is DAG-shaped.

Corollary VI.A.4. If a CRPQ is semantically forest-shaped, then it is DAG-
shaped.

VI.A.3 Semantically Forest-Shaped

From the fact that a CRPQ 𝛿 is equivalent to a forest-shaped query 𝜙we know
that for all canonical database 𝐃0 of 𝛿, since 𝛿 ⫅ 𝜙, there exists a canonical
database 𝐅0 of 𝜙 s.t. 𝐃0

hom←−−− 𝐅0. But dually since 𝜙 ⫅ 𝛿, there exists𝐃1 ⊨⋆ 𝛿
s.t. 𝐅0

hom←−−− 𝐃1. By induction—and the axiom of choice—we obtain an infinite

189

vi. conclusion & open problems

co-chain of homomorphisms

𝐃0
hom←−−− 𝐅0

hom←−−− 𝐃1
hom←−−− 𝐅1

hom←−−− ⋯ hom←−−− 𝐃𝑛
hom←−−− 𝐅𝑛

hom←−−− ⋯ .

We show that co-chains of forests are actually quite simple.

Fact VI.A.5. If 𝐅0
hom←−−− 𝐅1

hom←−−− ⋯ hom←−−− 𝐅𝑛
hom←−−− ⋯ is an infinite co-chain of

homomorphisms betweens forests, then there exists 𝑛 ∈ ℕ s.t. all 𝐹𝑚 with
𝑚 ≥ 𝑛 are hom-equivalent to one another.

Proof. For all 𝑛 ∈ ℕ, from 𝐹𝑛
hom←−−− 𝐹𝑛+1 it follows that the maximal depth of

a tree in 𝐹𝑛+1 is smaller or equal to the maximal depth of a tree in 𝐹𝑛. So, at
some point this parameter must become stationary, say 𝑑. Then observe that
there are finitely many forests with depth at most 𝑑, up to hom-equivalence,
and hence, one of these must occur infinitely often in the co-chain.

Corollary VI.A.6. If 𝛿 is semantically forest-shaped, then for any 𝐃 ⊨⋆ 𝛿,
there exists𝐃′ ⊨⋆ 𝛿 such that𝐃 hom←−−− 𝐃′,𝐃′ is hom-minimal and the core of
𝐃′ is a forest.

We can now proceed with the proof of Theorem VI.A.2, after giving a
proposition that will prove useful.

Proposition VI.A.7. Let 𝐅 be a forest and 𝐃 a graph. If 𝐅 hom−−−→ 𝐃 then
𝐹 hom−−−→ 𝒰(𝐷).

Proof. The homomorphism 𝐅 hom−−−→ 𝒰(𝐃) can be defined by induction on 𝐹,
from roots to leaves.

Proof of Theorem VI.A.2. X (1) ⇒ (2). This follows from Corollaries VI.A.4
and VI.A.6.

X (2) ⇒ (3). By Fact VI.A.1 we have 𝛿 ⫅ 𝒰(𝛿) so it suffices to prove the
converse containment. Let 𝑈 be a canonical database of 𝒰(𝛿). Then there
exists 𝐃 ⊨⋆ 𝛿 s.t. 𝐔 = 𝒰(𝐃). By Corollary VI.A.6 there exists 𝐃′ ⊨⋆ 𝛿
s.t. 𝐃 hom←−−− 𝐃′ and the core of 𝐃′ is a forest. So 𝐃 hom←−−− �̌�′, and so by
Proposition VI.A.7, since �̌�′ is a forest, then 𝒰(𝐃) hom←−−− �̌�′ i.e. 𝒰(𝐃) hom←−−− 𝐃′,
which proves that 𝒰(𝐃) ⊨ 𝛿. Therefore, 𝒰(𝛿) ⫅ 𝛿.

X (3) ⇒ (1). This is because 𝒰(𝛿) is forest-shaped by Fact VI.A.1.

190

Entracte: What the Hare Said to Patroclus

Figure E.1: Overconfident, the Hare
preferred to think about algebraic
language theory rather than how to
win the upcoming race, see [Car95].
The White Rabbit , by John Tenniel.

Waiting for Achilles to return from his race, Patroclus stumbled onto a Hare
that appeared to be lost in deep thought.

“Greetings, my friend. What seems to be bothering you?” inquired the
Greek.

“Well, I have been thinking about Automedon—an automaton I mean” an-
swered the Hare, “for I want to study rationality, but the notion of computation
eludes me. After all, Babbage’s machine hasn’t been invented yet!”

“By far themost natural way of understanding rational languages is through
the lens of algebra,” Achilles’ lover explained. “They simply consist of lan-
guages recognized by finite monoids.”

“A monoid? What in Zeus’s name is this?”
“Are you familiar with category theory? It is a branch of mathematics—”
“A branch of mathematics? What need do you have of having multiple

branches? Have you found inconsistencies in Euclid’s axioms?” interrupted
the Hare.

“Not exactly. It provides a useful framework to abstractly study different
structures. In geometry, points are considered atomic objects, and they are
connected through shapes. In category theory, points are abstracted, and
shapes are treated as first-class citizens, connected by shape transformations.”

“This seems rather pointless… But if such abstract nonsense is what you
have to endure to have provably consistent foundations of mathematics, I
suppose it might be worth it,” conceded the Hare.

“Anyway,” added Patroclus after a brief pause, “a monoid can simply be
defined as an Eilenberg-Moore algebra for the monad of finite words in the
category of sets.”

“A monad? Don’t tell me that after disavowing points you abjured all gods
but one.”

“It has nothing to do with religion, put some faith in category theory: a
monad is quite simple to define” said Patroclus. “Endofunctors of a category
form themselves a category, whose morphisms are natural transformations.
A monad consists of nothing else but a monoid in this category.”

“A monoid? What in Zeus’s name is this?” echoed the Hare.
At this point, the narrator, having to write his thesis, had to leave our two

protagonists to their discussion. Several days passed after he submitted his

191

https://commons.wikimedia.org/wiki/File:The_White_Rabbit_%28Tenniel%29_-_The_Nursery_Alice_%281890%29_-_BL.jpg#/media/File:Alice_par_John_Tenniel_02.svg

entracte: what the hare said to patroclus

manuscript when he went back to the spot, only to find the two companions
arguing.

“As I said, a monad is a monoid in the category of endofunctors!” Patroclus
exclaimed, visibly irritated.

“But that doesn’t help me understand what is a monoid…” the exhausted
Hare replied, “at least we can hope for logicians not to be foolish enough to
define rationality using monads.”

192

Part 2

The Frontier of Decidability
in Automatic Structures

193

Chapter VII
Finite-Word Relations and Automatic Structures

Abstract

This preliminary chapter surveys the literature on the notion of rationality for finite
word relations and automatic structures.
We start by reviewing competing definitions of rationality for 𝑘-ary relations of finite
words (𝑘 ≥ 2). We survey the corresponding hierarchy, which is mainly shaped by
the expressive power of multitape automata. We also briefly mention other models
such as transducers to emphasize their relationship with our hierarchy. Automatic
relations naturally emerge as one of the most expressive class of relations having
desirable closure properties and for which most “basic” problems are decidable.
After a brief logical interlude mostly dedicated to logical characterizations of auto-
matic relations, we move on to automatic structures, which are infinite relational
structures that can be finitely described using automatic relations. As a result, the
first-order theory of such structures is decidable, explaining why automatic struc-
tures play a central role when looking for algorithms dealing with infinite structures.
Unfortunately, other decision problems, such as the isomorphism problem, are un-
decidable, but become decidable when restricted to a specific subclass of structures.
We hence conclude this chapter by discussing the computability status of natural
decision problems on automatic structures.

Acknowledgements

Parts of Section VII.1 come from [Mor25, § 1] and [Mor25, § B].

195

Contents

VII.1 The Landscape of Rationality for Relations over Finite Words 197

VII.1.1 Regularity is Key 197

VII.1.2 Recognizable Relations 200

VII.1.3 Automatic Relations 202

VII.1.4 Rational Relations 205

VII.1.5 Deterministic Rational Relations 207

VII.1.6 Restricted Head Movements 209

VII.1.7 And All Other Multitape Automata 210

VII.1.8 The Surprisingly Strange World of Transducers 211

VII.2 A Logical Excursion 215

VII.2.1 First-Order Interpretation 215

VII.2.2 First-Order Reduction and First-Order Model Checking 217

VII.2.3 A Model-Theoretic Perspective on Automatic Relations 218

VII.2.4 Logical Characterization of Other Classes of Relations 220

VII.3 Automatic Structures 220

VII.3.1 Definitions 220

VII.3.2 Model-Checking 223

VII.3.3 Problems on Automatic Structures 227

VII.3.4 Automatic Graphs 228

196

vii.1. the landscape of rationality for relations over finite words

VII.1 The Landscape of Rationality for Relations over Finite
Words

VII.1.1 Regularity is Key

The study of classes of relations on words have always been a central topic
in language theory [EM65; Niv68; Ber79; FS93; Cho06]. More recently, their
study has also been motivated by database theory and verification, where they
are used to build expressive languages. For instance, suitable classes of word
relations where shown to be relevant for querying strings over relational
databases [BLSS03], comparing paths in graph databases [BLLW12]—see also
[Fig21b, §8, p. 17] for more context & results on extended conjunctive regular
path queries—, or defining string constraints for model checking [LB16]. We
start by showing that, while the notion of regular language is canonical and
admits numerous characterizations, these definitions are no longer equivalent
when dealing with finite word relations, leading to a hierarchy of notions of
rationality.

The class of regular languages is remarkably stable, and can be character-
ized as the languages recognized by either:
• deterministic or non-deterministic finite state automata,

see e.g. [Pin21a, Proposition 1.2.3, p. 7];
• two-way finite state automata by Shepherdson-Rabin-Scott theorem

[She59, Theorem 2, p. 198] [RS59, Theorem 15, p. 123];
• rational expressions1 by Kleene’s theorem, 1 Usually called “regular expressions”

by non-French speakers, however we
use the terminology “rational” for its
unambiguity.

see e.g. [Pin21a, Theorem 1.5.11, p. 34];
• monadic second-order logic by Trakhtenbrot-Büchi-Elgot theorem,

see e.g. [Boj20, Theorem 2.2, p. 32]; or
• finite monoids, see e.g. [Pin21a, § 1.4.2, p. 19].
Moreover, all transformations between these representations are effective—
although some models are strictly more succinct than others.

These equivalences explain why the terms recognizable language—meaning
implicitly “recognizable by a finite-state automaton” or “recognizable by a
finite monoid”—and rational language—meaning “described by a rational
expression”—are used interchangeably. In fact, in this thesis as well as in most
of the literature, we will use the generic term of “regular language”. However,
in more complex settings, for instance subsets of non-free monoids,2 the

2 Recall that a language is nothing
else but a subset of a free monoid.

equivalence between these classes no longer holds [Pin21b].
The landscape of rationality for 𝑘-ary relations of finite words (𝑘 ≥ 2) is

far more complex than for languages,3 as depicted in Figure VII.1. We will

3 Which can be seen as unary rela-
tions of finite words.

briefly present these classes, although this thesis will mostly deal with the
two most restrictive ones, namely recognizable and automatic relations.4

4 It should be noted that the names
of these classes were often coined in-
dependently of one another and the
terminology should be handled with
care: for instance, “regular relations”
do not correspond to the intersection
of regular functions with functional
relations.

We fix two alphabets Γ and Σ. In the rest of this section, we focus on
relations ℛ ⊆ Γ ∗ ×Σ ∗. We will sometimes provide definitions for relations of
higher arity when the generalization is not trivial.

197

vii. finite-word relations and automatic structures

same parity length relation

equal length relation

prefix relation

identity function

‘greatest suffix in 𝐿’
function

palindrome function

subword relation

suffix relation

Recognizable
relations

Automatic
relations

Detic rational
relations

Rational
relations

Detic two-way
rational
relations

Two-way
rational
relations

Functional
relations

Regular
functions

Figure VII.1: Clickable landscape of
rationality for binary relations. See
also Figures VII.8 and VII.9.

198

vii.1. the landscape of rationality for relations over finite words

Goal of this section. Beyond introducing the classes of recognizable and
automatic relations, the goal of this section is also to clarify the literature.
When dealing with relations, there are essentially two families of machines
for recognizing a relation ℛ ⊆ Γ ∗ ×Σ ∗:
• multitape automata: this model reads a pair of words ⟨𝑢, 𝑣⟩ ∈ Γ ∗ ×Σ ∗ and

decides if it belongs to ℛ;
• transducers: this model reads a word 𝑢 ∈ Γ ∗ and produces a word (or no
word, or multiple words) 𝑣 ∈ Σ ∗, in which case we say that ⟨𝑢, 𝑣⟩ ∈ ℛ.

The latter model is inherently passive while the former is more active: the
output is produced, or transduced, from the input. However, these two families
are far from being incomparable: when non-determinism is allowed and the
model is expressive enough, a transducer can always guess the output and
simulate a multitape automata. Despite this fact, the works on multitape
automata and transducers rarely reference each other, and the relationship
between classes of relations defined by these two families of models is often
unclear.5 For instance, we will see in Section VII.1.8 that deterministic two- 5 To witness this claim, I want to em-

phasize that I unwillingly included
an erroneous version of Figure VII.1
in [Mor25]: the suffix relation was
misplaced and, more importantly, the
regular functions were claimed to cor-
respond to the intersection of ratio-
nal relations with deterministic two-
way rational relations.

way rational relations and deterministic two-way transductions actually differ:
the distinction betweenmultitape automata and transducers is hence of capital
importance.

Thus, the goal of this section is to provide an overview of these classes
of relations/transductions, explain how they relate to one another, and give
pointers to suitable references. The aim of this section is not to be exhaustive,
which would be a daunting task,6 but rather to present a quick overview of 6 Sakarovitch’s book [Sak09] dedi-

cates its second part to “Rational-
ity in relations”, which spans over
more than two hundred pages—one
can only imagine how extensive this
part could have been if the book was
not dedicated to presenting elements
of automata theory but the full the-
ory itself ! Note in fact that the book
does not evenmention two-waymod-
els. What we call here multitape au-
tomata are called there “transduc-
ers” and our transducers are called
“sequential transducers” there. We
made this choice of terminology be-
cause it seems more consistent with
the literature, and we find both more
natural and more intuitive.

the most common classes of relations studied in the literature.

Relations vs. transductions. Often, in the literature, when the terminology
“transduction” is used, these relations are thought as functions from Γ ∗ to
𝔓(Σ ∗). These functions are equivalent7 to relations, i.e. subsets of Γ ∗×Σ ∗. For

7 Meaning formally that these cate-
gories are isomorphic.

deterministic transducers, the output is a singleton, and hence its semantics
can be seen as a partial function—or equivalently as a functional relation—from
Γ ∗ to Σ ∗.

When the terminology “relation” is used, we often take Γ = Σ.8 Note also

8 For instance this is somewhat im-
portant when dealing with logic or
defining automatic structures in Sec-
tions VII.2 and VII.3.

that most notions defined by multitape automata can be trivially extended
to 𝑘-ary relations (𝑘 ≥ 3): we simply work here with binary relations for
the sake of simplicity. On the other hand, transducers intrinsically recognize
functions Γ ∗ → 𝔓(Σ ∗), i.e. binary relations.

Given two classes of finite-word relations 𝒞 and 𝒟 s.t. 𝒞 ⊇ 𝒟,9 we will

9 Formally, for the decision problem
tomake sense 𝒞 and 𝒟 should rather
be classes of machines (recognizing
relations), but we abuse the terminol-
ogy for the sake of readability.

often want to know if this inclusion is effective:

𝒟-membership problem for 𝒞-relations
Input : A 𝒞-relation ℛ.

Question: Does ℛ ∈ 𝒟?

This problem is also called the 𝒞/𝒟-membership problem. Since Part 2 will
mostly focus on automatic relations, we use the terminology 𝒟-membership

199

vii. finite-word relations and automatic structures

problem to refer to the problem above when 𝒞 is the class of automatic
relations.

A natural extension of this problem is the so-called separability problem,
which has received a lot of attention.

𝒟-separability problem for 𝒞-relations
Input : Two 𝒞-relations ℛ and ℛ′.

Question: Is there a 𝒟-relation 𝒮 s.t. ℛ ⊆ 𝒮 and ℛ′ ∩ 𝒮 = ∅?

In this case, we say that 𝒮 separates ℛ from ℛ′. Note that when 𝒟 is closed
under complement, ℛ and ℛ′ play a symmetric role in this problem. Moreover,
if 𝒟 is effectively closed under complement, then membership reduces to
separability since ℛ ∈ 𝒟 if, and only if, ℛ and its complement are separable
by a 𝒟-relation. Since this thesis is focused on automatic relations, when
𝒞 is the class of automatic relations we simply call this problem the “𝒟-
separability problem”.

For a given class 𝒞, the inclusion problem takes two (machines recognizing
two) relations of 𝒞 and asks whether one is included in the other, and the
equivalence problem asks if these relations are equal.10 10 Note that functional relations rep-

resent partial functions, and hence
one can be included in the other with-
out the two relations being equal.

VII.1.2 Recognizable Relations

A relation ℛ ⊆ Γ ∗ × Σ ∗ is recognizable if there exists a finite monoid 𝐌
together with a monoid morphism

𝑓∶ Γ ∗ ×Σ ∗ →𝐌,

as well as a subset Acc ⊆ 𝑀 s.t. ℛ = 𝑓−1[Acc]. We denote by Rec the class
of recognizable relations.11 11 To avoid preposterous set-

theoretic paradoxes, we use the
classical shenanigan of defining this
as a function which maps any pair
of alphabets Γ and Σ to the set of
recognizable relations over Γ and Σ.

For instance the same parity relation

≈mod 2 =̂ {⟨𝑢, 𝑣⟩ ∈ Γ ∗ ×Σ ∗ ∣ |𝑢| = |𝑣| mod 2}

is recognizable. Indeed, letting 𝑓∶ Γ ∗ ×Σ ∗ → ℤ/2ℤ be defined by 𝑓(𝑢, 𝑣) =̂
|𝑢| − |𝑣| mod 2, then ≈mod 2 can be written as 𝑓−1[0]. These relations admit
a remarkably simple characterization.

Proposition VII.1.1 (Mezei theorem.).12 A relation ℛ is recognizable iff 12 See e.g. [Sak09, Corollary II.2.20,
p. 254]. [Sak09, § 2, “Notes & refer-
ences”] mentions that this proposi-
tion is “unanimously ascribed to G.
Mezei (unpublished)”.

there exist 𝑛 ∈ ℕ, regular languages ⟨𝐾𝑖⟩𝑖∈⟦1,𝑛⟧ over Γ and regular languages
⟨𝐿𝑖⟩𝑖∈⟦1,𝑛⟧ over Σ s.t.

ℛ =
𝑛
�
𝑖=1

𝐾𝑖 × 𝐿𝑖.

In other words, recognizable relations are exactly the finite unions of
Cartesian products of regular languages. For instance,

≈mod 2 = (ΓΓ)∗ × (ΣΣ)∗ ∪ Γ(ΓΓ)∗ ×Σ(ΣΣ)∗.

We provide a slightly more general statement of Mezei theorem.

200

vii.1. the landscape of rationality for relations over finite words

Proposition VII.1.2. Let 𝕍 be a pseudovariety of monoids and 𝒱 be the
corresponding pseudovariety of regular languages. Let ℛ ⊆ Γ ∗ × Σ ∗ be a
relation. The following are equivalent:
1. there exists a finite monoid𝐌 ∈ 𝕍, a monoid morphism 𝑓∶ Γ ∗ ×Σ ∗ →𝐌

and Acc ⊆ 𝐌 s.t. ℛ = 𝑓−1[Acc];
2. there exists 𝑛 ∈ ℕ and 𝐾1, … , 𝐾𝑛 ∈ 𝒱Γ and 𝐿1, … , 𝐿𝑛 ∈ 𝒱Σ s.t. ℛ =
⋃𝑛
𝑖=1 𝐾𝑖 × 𝐿𝑖,

13 13 𝒱Γ refers to all languages of 𝒱 over
the alphabet Γ.in which case we say that ℛ is 𝒱-recognizable.

When 𝕍 is the pseudovariety of all regular languages, we get back Propo-
sition VII.1.1.

Proof. X From monoids to products. Assume that ℛ is recognizable. Then by
definition

ℛ = �
𝑧∈Acc

𝑓−1[𝑧].

Observe then that 𝑓(𝑢, 𝑣) = 𝑓(⟨𝑢, 𝜀⟩ ⋅ ⟨𝜀, 𝑣⟩) = 𝑓(𝑢, 𝜀) ⋅ 𝑓(𝜀, 𝑣) for all 𝑢, 𝑣 ∈
Γ ∗ ×Σ ∗, and hence:

ℛ = �
𝑥,𝑦∈𝑀

s.t. 𝑥⋅𝑦∈Acc

{𝑢 ∈ Γ ∗ ∣ 𝑓(𝑢, 𝜀) = 𝑥}���������������������������
=̂ 𝐾𝑥

× {𝑣 ∈ Σ ∗ ∣ 𝑓(𝜀, 𝑣) = 𝑦}���������������������������
=̂ 𝐿𝑦

.

Since𝑀 is finite, the union is finite, and moreover, each 𝐾𝑥 and 𝐿𝑦 is recog-
nized by𝑀 ∈ 𝕍, and hence belong to 𝒱.

X From products to monoids. If ℛ = ⋃𝑛
𝑖=1 𝐾𝑖 × 𝐿𝑖 where all languages

belong to 𝒱, then let𝑀𝑖, 𝑁𝑖 ∈ 𝕍 be their syntactic monoids, 𝑔𝑖, ℎ𝑖 be their
syntactic morphism, and Acc𝑖,Bcc𝑖 be their accepting sets. Consider the
monoid morphism

Γ ∗ ×Σ ∗ → ∏
𝑖(𝑀𝑖 ×𝑁𝑖)

⟨𝑢, 𝑣⟩ ↦ ⟨𝑔𝑖(𝑢), ℎ𝑖(𝑣)⟩𝑖.

Then ℛ is the preimage by this morphism of

𝑛
�
𝑖=1
�⋯× (𝑀𝑖−1 ×𝑁𝑖−1) × (Acc𝑖 × Bcc𝑖) × (𝑀𝑖+1 ×𝑁𝑖+1) ×⋯�.

The conclusion follows from the fact that 𝕍 is closed under finite products.

Both the algebraic definition of recognizable relations and Mezei theorem
imply, informally, that all reasonable problems on recognizable relations
are decidable. For instance, from Proposition VII.1.2, we get that 𝒱 has
decidable membership iff the class of 𝒱-recognizable relations has decidable
membership.

On the other hand, Proposition VII.1.1 proves that recognizable relations
are not very expressive.

Corollary VII.1.3.14 Let ℛ ⊆ Σ ∗ ×Σ ∗ be a reflexive recognizable relation. 14 Of course, this property is far from
being sufficient at characterizing re-
flexive relations: note that the proof
does not even use the regularity of
the languages at hand...

201

vii. finite-word relations and automatic structures

Then ℛ contains an infinite clique, i.e. there exists an infinite language 𝐿 ⊆ Σ ∗

s.t. ⟨𝑢, 𝑣⟩ ∈ ℛ for all 𝑢, 𝑣 ∈ 𝐿.

Proof. Indeed, by Proposition VII.1.1, write ℛ as⋃𝑛
𝑖=1 𝐾𝑖 × 𝐿𝑖. Given a word

𝑢 ∈ Σ ∗, define 𝑓(𝑢) ∈ 𝟐2𝑛 where the 2𝑖-th (resp. (2𝑖 + 1)-th) bit of 𝑓(𝑢)
indicates if 𝑢 ∈ 𝐾𝑖 (resp. 𝑢 ∈ 𝐿𝑖) for all 𝑖. By pigeon-hole principle, there
exists a bit-sequence in 𝟐2𝑛 whose preimage 𝐿 by 𝑓 is infinite. Then pick
𝑢, 𝑣 ∈ 𝐿. Since ℛ is reflexive, then ⟨𝑢, 𝑢⟩ ∈ ℛ and so, since 𝑓(𝑢) = 𝑓(𝑣), we
have 𝑢 ∈ 𝐾𝑖 iff 𝑣 ∈ 𝐾𝑖 and 𝑢 ∈ 𝐿𝑖 iff 𝑣 ∈ 𝐿𝑖 for all 𝑖, and so ⟨𝑢, 𝑣⟩ ∈ ℛ.15 15 Another way of proving this result

would be to apply Ramsey’s infinite
theorem to 𝑓∶ Σ∗ ×Σ∗ →𝐌. Again,
we do not use the fact that 𝑓 is a
monoid morphism, but simply that it
is a finite-domain function.

In particular, this corollary implies that neither the prefix relation ≼pref =̂
{⟨𝑢, 𝑣⟩ ∈ Σ ∗ × Σ ∗ ∣ 𝑢 is a prefix of 𝑣}, the suffix relation ≼suff =̂ {⟨𝑢, 𝑣⟩ ∈
Σ ∗ ×Σ ∗ ∣ 𝑢 is a suffix of 𝑣}, the equality relation, nor the equal-length relation
≈len =̂ {⟨𝑢, 𝑣⟩ ∈ Γ ∗ ×Σ ∗ ∣ |𝑢| = |𝑣|} are recognizable.16 16 Note however that Corol-

lary VII.1.3 does not apply since we
assumed there that the input and
output alphabets are equal.VII.1.3 Automatic Relations

Automatic relations are a strictly larger class of relations, and trade some
decidability properties to gain in expressiveness. This is precisely what makes
this class interesting to us, and why we will focus on both automatic relations
and automatic structures: while being relatively expressive, some problems
remain decidable.17 17 They are known in the literature

under many names: “automatic rela-
tions” e.g. in [CCG06, Definition 2.3],
“regular relations” e.g. in [KN95,
Definition 2.2], “automatic relations”
e.g. in [LS19, § 2.1]. Frougny and
Sakarovitch’s work, which is often
referred as the first one that exten-
sively studied this class, refer to them
as “synchronized rational relations”
[FS93, § 4]. Of course, this class al-
ready appears in prior work, e.g. in
Hodgson’s work on automatic struc-
tures [Hod83], but no terminology
was coined on these relations there.

Given a word 𝑢 ∈ Γ ∗ and 𝑣 ∈ Σ ∗, we define its convolution 𝑢 ⊗ 𝑣 to be the
word 𝑖 ↦ ⟨𝑢𝑖, 𝑣𝑖⟩ of lengthmax (|𝑢|, |𝑣|), with the convention that 𝑢𝑖 = (resp.
𝑣𝑖 =) if 𝑢𝑖 (resp. 𝑣𝑖) is undefined, where is a new letter called blank symbol
or padding symbol. In other words, 𝑢 ⊗ 𝑣 is obtained by writing 𝑢 and 𝑣 on
two left-aligned horizontal tapes, adding padding symbols at the end of the
shorter word if their length differ, and then reading pairs of letters from left
to right. For this reason, the pair ⟨𝑎, 𝑏⟩ is instead written � 𝑎𝑏 �. We let Γ ⊗ Σ
denote the alphabet

(Γ × Σ) ∪ (Γ × { }) ∪ ({ } × Σ),

and we let Σ2⊗ =̂ Σ ⊗ Σ.
By construction, if 𝑢 ∈ Γ ∗ and 𝑣 ∈ Σ ∗, then 𝑢⊗𝑣 ∈ (Γ⊗Σ)∗.18 For instance 18 When dealing with relations of

higher arity, note that⊗ is associative
up to a trivial alphabet relabelling.𝑎𝑏𝑎 ⊗ 𝑏𝑎𝑎 = � 𝑎𝑏 �� 𝑏𝑎 �(𝑎𝑎) and 𝑎𝑏𝑎𝑏 ⊗ 𝑐𝑑𝑑 = (𝑎𝑐)� 𝑏𝑑 ��

𝑎
𝑑 �� 𝑏 �.

We denote by ℛ⊗ the language {𝑢 ⊗ 𝑣 ∣ ⟨𝑢, 𝑣⟩ ∈ ℛ} ⊆ (Γ ⊗ Σ)∗.
(𝑎𝑎), (𝑎) for 𝑎 ∈ Σ

Figure VII.2: A deterministic one-
state synchronous automaton recog-
nizing the prefix relation.

A (finite-state) synchronous automaton 𝒜 over input alphabet Γ and output
alphabet Σ is a finite-state automaton over Γ ⊗Σ.19 We say that 𝒜 accepts

19 In particular, just like for clas-
sical automata, we allow for non-
determinism unless otherwise speci-
fied.

the pair of words ⟨𝑢, 𝑣⟩ ∈ Γ ∗ ×Σ ∗ if it accepts 𝑢⊗ 𝑣 as a “classical automaton”.
Similarly, 𝒜 recognizes ℛ if it ℛ⊗ is exactly the set of words of the form
𝑢 ⊗ 𝑣 that are accepted by 𝒜 as a classical automaton. Figure VII.2 depicts a
synchronous automaton for the prefix relation. Note that (𝑎)(𝑎𝑎) corresponds
to a run of the automaton from an initial state to an accepting one. However,

202

https://en.wikipedia.org/wiki/Ramsey%27s_theorem#Infinite_graphs
https://en.wikipedia.org/wiki/Ramsey%27s_theorem#Infinite_graphs

vii.1. the landscape of rationality for relations over finite words

since (𝑎)(𝑎𝑎) cannot be written as 𝑢⊗𝑣, then this run plays no role whatsoever
in the semantics of this synchronous automaton.

We say that a relation is automatic if it is recognized by a finite-state syn-
chronous automaton, and we denote by Aut the class of automatic relations.

Remark VII.1.4. Note that some words of (Γ ⊗ Σ)∗ do not correspond to
encodings of pairs of words, in the sense that they are not of the form 𝑢 ⊗ 𝑣
for some 𝑢 ∈ Γ ∗ and 𝑣 ∈ Σ ∗. This is for instance the case of (𝑎)(𝑏). In
fact, (Γ ∗ × Σ ∗)⊗ = {𝑢 ⊗ 𝑣 ∣∈ 𝑢 ∈ Γ ∗ ∧ 𝑣 ∈ Σ ∗} precisely corresponds to the
words of (Γ ⊗ Σ)∗ s.t. if some padding symbol is seen on some tape, then all
subsequent symbols on this tape must also be padding symbols. These words
are called well-formed, and the set of all well-formed words over Γ and Σ is
denoted by WellFormedΓ,Σ.

20
20 When the alphabets are equal, we
will write WellFormedΣ instead of
WellFormedΣ,Σ.

Because of this last remark, some automata that are not classically equiva-
lent become equivalent when seen as synchronous automaton. For instance,
both synchronous automata of Figures VII.2 and VII.3 recognize the prefix
relation. However, they do not recognize the same language when seen as
classical automaton. Generalizing this example, it is trivial to check that two
synchronous automata have the same semantics if, and only if, they have the
same intersection of their semantics, when seen as classical automata, with
an automaton for WellFormedΓ,Σ.

(𝑎𝑎) for 𝑎 ∈ Σ

(𝑎) for 𝑎 ∈ Σ

(𝑎) for 𝑎 ∈ Σ

Figure VII.3: A deterministic two-
state synchronous automaton recog-
nizing the prefix relation.

Note that, by definition of synchronous automata, everything that can be
done on classical automata can be done with synchronous automata, including
determinisation, removal of 𝜀-transitions, completion, etc. Moreover, observe
by the previous paragraph that the universality of a synchronous automaton
𝒜 amounts to the universality of the disjoint union of 𝒜 with an automaton
for the complement of WellFormedΓ,Σ. A similar construction works for the
inclusion problem.

Property VII.1.5. Inclusion and universality of synchronous automata is
PSpace-complete.

Similarly, the emptiness of a synchronous automaton 𝒜 amounts to the
emptiness of the classical automaton obtained by intersecting 𝒜 with the set
of well-formed words WellFormedΓ,Σ.

Property VII.1.6. Emptiness and non-emptiness of synchronous automata
are NL-complete.

It is straightforward to prove that the equal-length relation and the equality
relation, a.k.a. the identity relation, denoted by ℐ𝑑, are automatic, but, as
already mentioned, not recognizable.

Proposition VII.1.7. Every recognizable relation is automatic.

Proof. Clearly, automatic relations are closed under union: it suffices to do
the disjoint union of their automata. So, to prove this result, it suffices to
show that if 𝐾 and 𝐿 are regular languages, then 𝐾 × 𝐿 is automatic. Let 𝒜

203

vii. finite-word relations and automatic structures

(resp. ℬ) be an automaton recognizing 𝐾 (resp. 𝐿). We build a synchronous
automaton 𝒜⊗ℬ as follows:
• its states are the pairs of states of 𝒜 and of states of ℬ,
• ⟨𝑝, 𝑞⟩ is initial if both 𝑝 and 𝑞 are initial,
• ⟨𝑝, 𝑞⟩ is accepting if both 𝑝 and 𝑞 are accepting, and
• transitions follow these rules:

𝑝 𝑎−→ 𝑝′ ∈ 𝒜 𝑞 𝑏−→ 𝑞′ ∈ ℬ

⟨𝑝, 𝑞⟩ � 𝑎𝑏 �−−→ ⟨𝑝′, 𝑞′⟩ ∈ 𝒜⊗ℬ
,

𝑝 𝑎−→ 𝑝′ ∈ 𝒜 𝑞 ∈ ℬ

⟨𝑝, 𝑞⟩ � 𝑎 �−−→ ⟨𝑝′, 𝑞⟩ ∈ 𝒜⊗ℬ
and

𝑝 ∈ 𝒜 𝑞 𝑏−→ 𝑞′ ∈ ℬ

⟨𝑝, 𝑞⟩ (𝑏)−−→ ⟨𝑝, 𝑞′⟩ ∈ 𝒜⊗ℬ
.

By construction, for any 𝑢 ∈ Γ ∗ and 𝑣 ∈ Σ ∗, there is an accepting path in
𝒜⊗ℬ labelled by 𝑢 ⊗ 𝑣 iff 𝑢 ∈ 𝐾 and 𝑣 ∈ 𝐿.

As often in automata theory, the pumping lemma provides a useful tool to
prove non-regularity, or rather here non-automaticity. For instance, the suffix
relation is not automatic: otherwise, using the pumping lemma on 𝑎𝑛 ⊗ 𝑏𝑛𝑎𝑛

for some sufficiently big 𝑛 ∈ ℕ would imply that 𝑎𝑛+𝑘 ⊗ 𝑏𝑛+𝑘𝑎𝑛 ∈ (≼suff)⊗ for
some 𝑘 ∈ ℕ>0. Similarly, the subword relation ≼subw is also not automatic.21 21 Recall that this relation is defined

by, for all 𝑢, 𝑣 ∈ Σ∗, 𝑢 ≼subw 𝑣 iff
there exists 𝑗1 < 𝑗2 < … < 𝑗|𝑢| s.t.
𝑢𝑖 = 𝑣𝑗𝑖 for all 𝑖 ∈ ⟦1, |𝑢|⟧: in other
words, 𝑢 can be obtained from 𝑣 by
removing letters.

Another useful tool to prove non-automaticity is the following one. Given
𝐼 ⊆ ⟦1, 𝑘⟧, we say that a 𝑘-ary relation ℛ ⊆ Σ ∗

1 ×⋯×Σ ∗
𝑘 is 𝐼-locally finite if

for every ⟨𝑤𝑖⟩𝑖∈𝐼 ∈ ∏𝑖∈𝐼 Σ
∗
𝑖 , there are only finitely many ⟨𝑤𝑗⟩𝑗∉𝐼 ∈ ∏𝑗∉𝐼 Σ

∗
𝑗 s.t.

⟨𝑤1, … , 𝑤𝑘⟩ ∈ ℛ.22 Note that every 𝑘-ary relation is trivially ⟦1, 𝑘⟧-locally
22 Note that this is one of the very
few statements that we spell out for
𝑘-ary relation since its generalization
from binary to 𝑘-ary relations is not
entirely trivial.

finite.

Proposition VII.1.8 (See e.g. [KNRS07, Proposition 3.1]).23 ,24 Let ℛ ⊆

23 [KNRS07] attributes this proposi-
tion to older work by Khoussainov,
Nerode and Blumensath, but we
failed to verify this claim.
24 By convention max∅ = −∞, and
so in the case of 𝐼 = ⟦1, 𝑘⟧, this state-
ment is trivially valid.

Σ ∗
1 ×⋯×Σ ∗

𝑘 be 𝐼-locally finite. If ℛ is automatic, then there exists a constant
𝑛 ∈ ℕ s.t. for every ⟨𝑤1, … , 𝑤𝑘⟩ ∈ ℛ,

max
𝑗∉𝐼

|𝑤𝑗| −max
𝑖∈𝐼

|𝑤𝑖| ≤ 𝑛.

For instance, consider the ternary relation of concatenation, consisting
of all triples ⟨𝑢, 𝑣, 𝑤⟩ s.t. 𝑢𝑣 = 𝑤, where 𝑢, 𝑣, 𝑤 ∈ Σ ∗. Then this relation
is {3}-locally finite, and so by Proposition VII.1.8, there exists 𝑛 ∈ ℕ s.t.
for all 𝑢, 𝑣 ∈ Σ ∗, |𝑢𝑣| ≤ max (|𝑢|, |𝑣|) + 𝑛. This is trivially false, and hence,
concatenation is not automatic.

Despite being somewhat expressive, automatic relations retain some decid-
ability properties.

Proposition VII.1.9 ([BHLLN19, Theorem 1], see also [BGLZ22, Corollary
2.9]).25 The Rec-membership problem for automatic relations is PSpace-

25 Decidability, first in 3ExpTime and
then in 2ExpTime was already known
in the 1970s as a consequence of
Proposition VII.1.13. An ExpTime up-
per bound was incorrectly claimed in
[CCG06, Table 1], and proved wrong
in [LS19, § 4.1]. Löding and Spinrath
noticed that the previous algorithm
was actually working in 2ExpTime,
and improved the bound to ExpTime
for binary relations in [LS19, Corol-
lary 22].

complete.

On the other hand, the associated separation problem remains open.
This part of this thesis is mostly motivated by this problem.

Open Problem VII.1.10. Is the Rec-separability problem for automatic

204

vii.1. the landscape of rationality for relations over finite words

relations decidable?

This problem goes back at least to 2006, when Choffrut and Grigorieff
solved a special subcase of commutative relations. While the general problem
is not explicitly mentioned in their paper, the question is rather obvious given
their contribution the and formulation of the result: they show that given two
rational relations of Σ ∗ ×ℕ𝑚, whether they are separable by a recognizable
relation is decidable [CG06, Theorem 1]. Note that relations ℛ ⊆ Σ ∗ ×ℕ𝑚

are in natural bijection with the relations ℛ′ ⊆ Σ ∗ ×Γ ∗ where Γ is an alphabet
with 𝑚 letters, satisfying the property that for each 𝑢 ∈ Σ ∗ and 𝑣 ∈ Γ ∗, for
any permutation 𝑣′ of the letters of 𝑣, we have ⟨𝑢, 𝑣⟩ ∈ ℛ′ iff ⟨𝑢, 𝑣′⟩ ∈ ℛ′.

Closure under morphisms. We say that a monoid morphism 𝑓∶ Γ ∗ → Σ ∗ is
length-multiplying when |𝑓(𝑎)| = |𝑓(𝑏)| for all 𝑎, 𝑏 ∈ Γ.

Proposition VII.1.11. Automatic relations are closed under direct images
and preimages of length-multiplying morphisms.26 26 For the notion of “direct image”

and “preimage” to make sense, we
need the input and output alphabets
to be equal.

Proof. Any length-multiplying morphism 𝑓∶ Γ ∗ → Σ ∗ induces a monoid
morphism �𝑓 ∶ (Γ2⊗)∗ → (Σ2⊗)∗ by letting �𝑓� 𝑎𝑏 � =̂ �

𝑓(𝑎)
𝑓(𝑏) �. Then for any relation,

(𝑓[ℛ])⊗ = �𝑓[ℛ⊗] and (𝑓−1[ℛ])⊗ = �𝑓−1[ℛ⊗]. The conclusion follows from
the fact that regular languages are closed under direct images and preimages
of monoid morphisms.

This is false for arbitrary monoid morphisms. For instance, {⟨0𝑛, 1𝑛⟩ ∣ 𝑛 ∈
ℕ} is automatic, but its image by the monoid morphism 𝑓∶ 𝟚∗ → 𝟚∗ defined
by 𝑓(0) =̂ 0 and 𝑓(1) =̂ 11 is {⟨0𝑛, 12𝑛⟩ ∣ 𝑛 ∈ ℕ}which is clearly not automatic.
Similarly, its preimage by the same morphism is {⟨02𝑛, 1𝑛⟩ ∣ 𝑛 ∈ ℕ} which is
not automatic either, by symmetry.

We will see more properties of automatic relations—or rather of automatic
structures—in Sections VII.2 and VII.3.

VII.1.4 Rational Relations

Rational relations are perhaps the most natural class of finite-word relations:
they are defined similarly to automatic relations, except that the automaton
used to defined them has one head per tape, and can move each head inde-
pendently of one another—however each head can only move from left to
right. For the sake of convenience, we assume that the automaton can move
multiple heads at every step. This can be formalized as follows.

Figure VII.4: 2 motifs, transitional
system I(a) - I(a), M. C. Escher, © The
M.C. Escher Company.

A multitape automaton over Γ, Σ can be syntactically defined as a classical
automaton over Γ ⊗Σ.27 We then let 𝜋1 ∶ (Γ ⊗ Σ)∗ → Γ ∗ and 𝜋2 ∶ (Γ ⊗ Σ)∗ → 27 They share the syntax as syn-

chronous automata, however be reas-
sured: their semantics will differ!

Σ ∗ be the monoid morphisms defined by

𝜋1�
𝑥
𝑦 � =̂

⎧⎪⎪⎨
⎪⎪⎩
𝑎 if 𝑥 = 𝑎 ∈ Γ,

𝜀 if 𝑥 = ,
and 𝜋2�

𝑥
𝑦 � =̂

⎧⎪⎪⎨
⎪⎪⎩
𝑏 if 𝑦 = 𝑏 ∈ Σ,

𝜀 if 𝑦 = ,

205

https://mcescher.com/gallery/symmetry/#iLightbox[gallery_image_1]/57
https://mcescher.com/gallery/symmetry/#iLightbox[gallery_image_1]/57

vii. finite-word relations and automatic structures

for all � 𝑥𝑦 � ∈ Γ ⊗ Σ. Then 𝜋word =̂ 𝜋1 ×𝜋2 defines a monoid morphism from
(Γ ⊗ Σ)∗ to Γ ∗ ×Σ ∗, that reads both tapes one after the other, while ignoring
padding symbols. For instance:

𝜋word� 𝑎 𝑏 𝑎 𝑐
𝑎𝑎𝑏𝑏𝑎𝑎𝑐𝑐 � = ⟨𝑎𝑏𝑎𝑐, 𝑎𝑎𝑏𝑏𝑎𝑎𝑐𝑐⟩.

The semantics of the multitape automaton can be defined as the image by
𝜋word of its semantics when seen as a classical automaton.28

28 These automata are often sim-
ply called “𝑘-tape automata”. They
are sometimes referred to as “asyn-
chronous automata”, e.g. in [CL11,
§ 3] or [Pel97, § 3.1.2.2, p. 88]. We do
not use this terminology following a
suggestion of AncaMuscholl to avoid
the confusion with Zielonka’s “asyn-
chronous automata” used in concur-
rency [Zie87, § 4].

We say that a relation ℛ ⊆ Γ ∗ × Σ ∗ is rational if it is recognized by a
multitape automaton, or equivalently if it is the image by 𝜋word of a regular
language over Γ ⊗ Σ. The class of all rational relations is denoted by Rat.

(𝑎) for 𝑎 ∈ Σ

(𝑎𝑎) for 𝑎 ∈ Σ

(𝑎𝑎) for 𝑎 ∈ Σ

∗

𝑞𝑎

𝑞𝑏

(𝑎)
(𝑏)

(𝑎)

� 𝑏 �
(𝑎)

(𝑏)

Figure VII.5: Multitape automata
for the suffix relation ≼suff (left-hand
side) and for the subword relation
≼subw when Σ = {𝑎, 𝑏} (right-hand
side).

For instance, the suffix relation is rational: see Figure VII.5. Similarly, the
subword relation≼subw is rational: the idea behind the automaton recognizing
it is that, when reading an 𝑎 on the first tape, it will only move its second
head right, until it reads an 𝑎; it then reads the next letter on the first tape
and iterates this process, see Figure VII.5.

Alternative definitions exist, but yield an equivalent definition of rational
relations. For instance, in [CCG06, Definition 2.1], the multitape automaton
are defined analogously (under the name “𝑘-tape automaton”) except that the
alphabet is not Γ⊗Σ but (Γ × { }) ∪ ({ } ×Σ). In other words, their model can
only move one head at a time. Of course, this makes little difference: we can
simulate an � 𝑎𝑏 �-transition in our model by two transitions labelled by (𝑎)
and (𝑏) in their model, at the cost of adding a new state. Moreover, rational
relations can be equally characterized as the rational subsets of Γ ∗ ×Σ ∗.29 29 Meaning the smallest collection

of subsets of Γ∗ ×Σ∗ containing the
empty set, all singletons, closed un-
der union, concatenation and Kleene
star, see e.g. [Ber79, § III.2, Defini-
tion].

Undecidability. While emptiness and finiteness of rational relations are
decidable—see e.g. [Ber79, § III, Proposition 8.2]—unfortunately rational
relations are maybe too expressive: most other decision problems on them are
undecidable, including intersection non-emptiness, inclusion, equivalence,
universality, co-finiteness and the Rat/Rec-membership problem, see [Ber79,
§ III, Theorem 8.4].30 30 All these results essentially follow

from an encoding of Post Correspon-
dence Problem into rational relations.Closure properties. More or less by construction, the class is closed under

union. However, it is not closed under intersection (see e.g. [Ber79, § III,
Example 2.5]), and hence, it is also not closed complementation.31 We will see 31 Indeed, closure under union and

complementation implies closure un-
der intersection, using De Morgan’s
law.

later that this has some interesting consequences, such as the undecidability of
the intersection non-emptiness problem (Example VII.1.14). The class is also
closed under concatenation, Kleene closure and reversal [FR68, § 3, Table I].

206

vii.1. the landscape of rationality for relations over finite words

VII.1.5 Deterministic Rational Relations

Because of the undecidability results above, a subclass of rational relations
was introduced: deterministic rational relations. We will see that, while still
strictly extending the class of automatic relations, its equivalence problem is
decidable.

Note that the automaton of Figure VII.5 is deterministic as a classical
automaton. However, we claim that it should not be considered to be “de-
terministic” as a multitape automaton. For instance, assume that we are
running this automaton over the pair ⟨𝑎𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑎𝑏⟩, and that we started
reading the sequence (𝑎), (𝑏), while staying in the initial state. Should we
take the (𝑎) and stay in the initial state, or take the transition (𝑎𝑎) and go to
final state? In the first case, we can obtain an accepting run, but in the second
case we cannot. In other word, assuming that 𝑢 ≼subw 𝑣, we need to guess
when we’ve reached the suffix of 𝑣 corresponding to 𝑢, and this is a source
of non-determinism. Observe that the automaton for ≼suff of Figure VII.5 is
deterministic as a classical automaton because (𝑎) and (𝑎𝑎) are distinct letters
of Γ ⊗ Σ, although in the multitape setting, both pairs can be simultaneously
admissible. In other words, the lack of injectivity of the function 𝜋word creates
another source of non-determinism. This motivates an alternative definition
for determinism.

Hence, we say that a 𝑘-ary multitape automaton over Σ1, … , Σ𝑘 is deter-
ministic when:
1. it has a unique initial state,
2. for any state 𝑞, for any �̄� ∈ Σ1 ⊗⋯⊗Σ𝑘, there is at most one outgoing

transition from 𝑞 labelled by �̄�, and
3. there exists a partition ⟨𝑄𝐻⟩𝐻∈𝔓+(⟦1,𝑘⟧) of its states s.t. for every 𝐻 ∈

𝔓+(⟦1, 𝑘⟧), for every 𝑞 ∈ 𝑄𝐻, every outgoing transition from 𝑞 can only
be labelled by elements of the form �̄� ∈ Σ1 ⊗⋯⊗Σ𝑘, with 𝑎ℎ ∈ Σℎ for
every ℎ ∈ 𝐻 and 𝑎ℎ = for every ℎ ∉ 𝐻.

In other words, we ask for classical determinism to hold, but moreover we
need to know a priori, at each state, which set of heads we will be moving
at the next step. For instance, in Figure VII.5, the automaton for ≼subw is
deterministic, but the automaton for ≼suff is not: its initial state has outgoing
transitions from both Σ×Σ and from { } × Σ.

Claim VII.1.12. Let 𝒜 be a 𝑘-ary deterministic multitape automaton over
Σ1, … , Σ𝑘. For any ⟨𝑤1, … , 𝑤𝑘⟩ ∈ Σ ∗

1 ×⋯Σ ∗
𝑘, for any state 𝑞 of 𝒜, there exists

at most one run of 𝒜 starting at 𝑞 labelled by a word 𝑤 ∈ (Σ1 ⊗⋯⊗Σ𝑘)∗ s.t.
𝜋word(𝑤) = ⟨𝑤1, … , 𝑤𝑘⟩.32 32 On the other hand, observe that

classical determinism only ensures at
most one run for each𝑤 ∈ (Σ1 ⊗⋯⊗
Σ𝑘)∗, and not for each ⟨𝑤1, … , 𝑤𝑘⟩ ∈
Σ∗1 ×⋯Σ∗𝑘.

We say that a relation ℛ ⊆ Γ ∗ ×Σ ∗ is deterministic rational if the relation

{⟨𝑢◁, 𝑣◁⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℛ}

is recognized by a deterministic multitape automaton, where ◁ is a new

207

vii. finite-word relations and automatic structures

symbol. We denote by DRat the class of all deterministic rational relations.
For instance, starting from Figure VII.5, it is easy to build a deterministic

multitape automaton for {⟨𝑢◁, 𝑣◁⟩ ∣ 𝑢 ≼subw 𝑣}, proving that the subword
relation is deterministic rational. The motivation behind this somewhat
strange definition is that, this way, deterministic rational relations generalize
automatic relations.

Proposition VII.1.13. Every automatic relation is deterministic rational.

(𝑎𝑎) for 𝑎 ∈ Σ

� ◁𝑎 � for 𝑎 ∈ Σ

(𝑎) for 𝑎 ∈ Σ

(◁) for 𝑎 ∈ Σ

Figure VII.6: Construction of the
proof of Proposition VII.1.13 applied
to the deterministic multitape au-
tomaton built from the synchronous
automaton of Figure VII.2 recogniz-
ing the prefix relation.

Proof sketch. Start from a synchronous automaton 𝒜 recognizing ℛ: w.l.o.g.
it can be assumed to be deterministic, when seen as a classical automaton.
However, when seen as a multitape automaton, some non-determinism re-
mains: for instance some state can have outgoing transitions labelled both by
(𝑎𝑎) and (𝑎). To fix this, we build a multitape automaton 𝒜′ by triplicating the
states: each original state 𝑞 yields a state 𝑞𝐻 for 𝐻 ∈ 𝔓+(⟦1, 2⟧). Transitions
are built using the following rules:

𝑝 � 𝑎𝑏 �−−→ 𝑞 ∈ 𝒜

𝑝{1,2}
� 𝑎𝑏 �−−→ 𝑞{1,2} ∈ 𝒜′

,

𝑝 � 𝑎 �−−→ 𝑞 ∈ 𝒜

𝑝{1,2}
� 𝑎◁ �−−→ 𝑞{1} ∈ 𝒜′

, 𝑝 � 𝑎 �−−→ 𝑞 ∈ 𝒜

𝑝{1}
� 𝑎 �−−→ 𝑞{1} ∈ 𝒜′

,

𝑝 (𝑎)−−→ 𝑞 ∈ 𝒜

𝑝{1,2}
� ◁𝑎 �−−→ 𝑞{2} ∈ 𝒜′

, and
𝑝 (𝑎)−−→ 𝑞 ∈ 𝒜

𝑝{2}
(𝑎)−−→ 𝑞{2} ∈ 𝒜′

.

We also add to 𝒜′ a single new state 𝑞∅, and for every accepting state 𝑝 of
𝒜, we add a transition from 𝑝𝐻 (𝐻 ∈ 𝔓+(⟦1, 𝑘⟧)) to 𝑞∅ labelled by the unique
tuple having ◁ at every index ℎ ∈ 𝐻, and at every other index. 𝑞∅ is the
unique accepting state of 𝒜′, and moreover 𝑝⟦1,𝑘⟧ is the unique initial state
of 𝒜′, where 𝑝 is the initial state of 𝒜. See Figure VII.6 for an example.

By construction, 𝒜′ is a deterministic multitape automaton. Using the fact
that 𝒜 is synchronous, it can be shown that if ℛ is the relation recognized
by 𝒜, then 𝒜′ precisely recognizes {⟨𝑢◁, 𝑣◁⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℛ}. And hence, ℛ is
deterministic rational.

Observe how the addition of the end-of-tape symbols is crucial for the
multitape automaton of the previous proof to be deterministic. For instance,
while the prefix relation is deterministic rational, it can be shown that ≼pref

cannot be recognized by a deterministic multitape automaton.
Clearly, the automaton for ≼suff of Figure VII.5 is not deterministic. But in

fact, we can prove a stronger result: ≼suff is not even deterministic rational.33

33 This can be shown by using e.g.
[Sak09, Lemma IV.5.15] on the pair
of words ⟨𝑎𝑛𝑏◁, 𝑎𝑛−1𝑏𝑎𝑛𝑏◁⟩ (𝑛 ∈ ℕ).
We remark that there is a typo in the
statement of [Sak09, Lemma IV.5.15]
and that “|(𝑓, 𝑔)| ≥ 0” should be re-
placed by “|(𝑓, 𝑔)| > 0”.

However, the next example shows that deterministic rational relations are
still quite expressive, leading to some undecidability results.

208

vii.1. the landscape of rationality for relations over finite words

Example VII.1.14 (Post Correspondence Problem (PCP) [RS59, Theorem 18]).
Deterministic multitape automata are actually quite expressive: given an
instance ⟨𝑢1, … , 𝑢𝑘, 𝑣1, … , 𝑣𝑘⟩ ∈ (Σ ∗)2𝑘 of PCP34, we can define a relation ℛ𝑢

34 Recall that this undecidable prob-
lem asks if there exists 𝑛 ∈ ℕ and a
sequence of (possibly repeating) in-
dices 𝑖1, … , 𝑖𝑛 ∈ ⟦1, 𝑘⟧ s.t.

𝑢𝑖1 ⋯𝑢𝑖𝑛 = 𝑣𝑖1 ⋯𝑣𝑖𝑛 .

that essentially encodes the function 𝑖 ↦ 𝑢𝑖, and a relation ℛ𝑣 that encodes
𝑖 ↦ 𝑣𝑖, and show that their Kleene stars (ℛ𝑢)∗ and (ℛ𝑣)∗ are deterministic
rational. By construction, any element in the intersection of (ℛ𝑢)∗ and (ℛ𝑣)∗

exactly corresponds to a solution of PCP. It follows that the intersection
non-emptiness problem for deterministic rational relations, taking two such
relations and asking if their intersection is non-empty, is undecidable.

Surprisingly, while the inclusion problem for deterministic multitape au-
tomata is undecidable [FR68], Harju and Karhumäki proved in 1991 that their
equivalence problem is decidable [HK91, Theorem 3.11].35 35 Back then, this was one of the

most prominent open questions in
the field: recall that this model was
introduced more than thirty years be-
fore by Rabin and Scott [RS59].

While the class is closed under complementation, it is in fact neither closed
under union, intersection [RS59, Theorem 17], concatenation, Kleene closure
nor reversal [FR68, Table 1].

Lastly, the DRat/Rec-membership problem is decidable. There is a double-
exponential time algorithm for binary relations given by Valiant [Val75],
improving Stearns’s triple-exponential bound [Ste67]. The decidability result
was later extended to relations of arbitrary arity by Carton, Choffrut and
Grigorieff [CCG06, Theorem 3.7].

VII.1.6 Restricted Head Movements

Observe that synchronous automata can be seen as multitape automata with
a restriction on the head movements: at each step, all heads must move. This
motivates the following generalization, introduced by Figueira and Libkin in
[FL15].

Given a word 𝑤 ∈ (Σ1 ⊗⋯⊗Σ𝑘)∗, we define 𝜋tape(𝑤) ∈ 𝔓+(⟦1, 𝑘⟧)∗ to be
the word whose 𝑖-th letter is the set of tape indices on which 𝑤𝑖 is distinct
from . For instance,

𝜋tape� 𝑎 𝑏 𝑎 𝑐
𝑎𝑎𝑏𝑏𝑎𝑎𝑐𝑐 � = {1, 2} ⋅ {2} ⋅ {1, 2} ⋅ {2} ⋅ {1, 2} ⋅ {2} ⋅ {1, 2} ⋅ {2}.

Note that neither 𝜋tape nor 𝜋word are injective, but putting both information
together

(Σ1 ⊗⋯⊗Σ𝑘)∗ → (Σ ∗
1 ×⋯×Σ𝑘)∗ ×𝔓+(⟦1, 𝑘⟧)∗

𝑤 ↦ ⟨𝜋word(𝑤), 𝜋tape(𝑤)⟩

yield an injective map. The word 𝜋tape(𝑤) describes, starting from 𝜋word(𝑤),
which head movements have to be done to obtain a word of (Σ1 ⊗⋯Σ𝑘)∗,
which represent possible runs of a multitape automaton.36 36 The information 𝜋tape is not unlike

what is called “origin information”
for transducers [Boj14].

Given a regular language 𝑇 over the alphabet 𝔓+(⟦1, 𝑘⟧), a 𝑇-multitape
automaton is a multitape automaton over Σ1, … , Σ𝑘 whose semantics is re-
stricted in the following way: a tuple ⟨𝑢1, … , 𝑢𝑘⟩ ∈ Σ ∗

1 ×⋯×Σ ∗
𝑘 is accepted if

there exists 𝑤 ∈ (Σ1 ⊗⋯⊗Σ𝑘)∗ s.t. 𝜋word(𝑤) = ⟨𝑢1, … , 𝑢𝑘⟩ and 𝜋tape(𝑤) ∈ 𝑇.

209

vii. finite-word relations and automatic structures

Binary synchronous automata exactly correspond to 𝑇sync-multitape au-
tomaton when 𝑇sync =̂ {1, 2}∗ ⋅ ({1}∗ + {2}∗):37 we start by moving both heads 37 In the expression above {1, 2} de-

notes a single letter!synchronously, and then only of them—and we stick to the choice we made.
Similarly, it can be shown that for 𝑇rec =̂ {1}∗ ⋅ {2}∗, then 𝑇rec-multitape au-
tomaton exactly recognize recognizable relation [FL15, Proposition 1]. Both
𝔓+(⟦1, 𝑘⟧)∗- and {{𝑖} ∣ 𝑖 ∈ ⟦1, 𝑘⟧}∗-multitape automata exactly recognize all
rational relations—corresponding to the models where we allow any set of
heads to move at a given time, or where we only want a single head to move
at each time, respectively.

A 𝑇-controlled relation is any relation that can be recognized by a 𝑇-
multitape automata.38 The central question around this notion is to character- 38 This notion was introduced in

[FL15, § 3]. In fact, the authors
only allow one head to move at each
step, i.e. 𝑇 is a regular language over
⟦1, 𝑘⟧ and not over 𝔓+(⟦1, 𝑘⟧) as de-
fined here. However both models are
clearly equivalent: up to duplicating
the states of the automaton, we can
simulate the movement of multiple
heads by moving one head at a time.

ize the expressiveness of 𝑇-multitape automata. [FL15, Theorem 1] provides
characterizations of 𝑇 s.t. all 𝑇-controlled relations are recognizable (resp.
automatic), and this characterization is actually effective [FL15, Corollary 3].
Descotte, Figueira and Puppis showed that given regular languages 𝑇1 and 𝑇2,
it is decidable if 𝑇1-controlled relations exactly correspond to 𝑇2-controlled
relations for binary relations (i.e. assuming 𝑘 = 2) [DFP18, Main Theorem].
Their algorithm fails to capture the general case, and the decidability of this
problem is still open for relations of arbitrary arity [DFP18, § 9].

Open Problem VII.1.15. Given 𝑘 ∈ ℕ>0, given regular languages 𝑇1 and
𝑇2 over ⟦1, 𝑘⟧, can we decide if 𝑇1-controlled relations exactly correspond to
𝑇2-controlled relations?

Similarly, Descotte, Figueira and Figueira showed that given a regular
language 𝑇, it is decidable whether the class of 𝑇-controlled relations is closed
under intersection, complement, concatenation, Kleene star and projection
[DFF19, Theorem, p. 2] but the problem remains open for relation of higher
arity [DFF19, § 6].

VII.1.7 And All Other Multitape Automata

“Regular prefix relations”, also known as “special relations”, are a subclass of
automatic relations introduced in 1984 that admits a nice logical characteriza-
tion [Cho06, § “1984”].

Right-automatic relations can be defined analogously to automatic relations
by putting padding symbol at the beginning of the words instead of at the end.
The prefix relation is automatic but not right-automatic, and dually the suffix
relation is right-automatic but not automatic. Hence, this class is orthogonal
to the class of automatic relations, and shares all its closure properties and
decidability results.

Multitape automaton have been extended to “two-way multitape automata”
by allowing heads to move both ways by Rabin and Scott [RS59, § 12]. Simi-
larly to what we did in the definition of deterministic rational relations, not
only do we add an end marker ◁ at the end of words, but also a beginning
marker ▷ at their beginning. We do not provide a formal definition but only

210

vii.1. the landscape of rationality for relations over finite words

an example in Figure VII.7.

� ▷▷ � ∶ (
→
→)

(𝑎𝑎) ∶ (→→)

� ◁ � ∶ �←↓ �

(𝑎𝑎) ∶ (←→)

� ▷◁ � ∶ �
↓
↓ �

Figure VII.7: A “two-way multitape
automaton” for the relation

{⟨𝑢, 𝑢 ⋅ 𝑢𝑟⟩ ∣ 𝑢 ∈ Σ∗}

where 𝑢𝑟 denotes the reverse of
𝑢. Arrows in the transitions of the
machine represent how the heads
should move: for instance, �←↓ �
means that the first head should
move left and the second one should
stay in place.

The resulting model, namely two-way rational relations contains the class
of rational relations. In fact, this model is closed under union and intersection:
since rational relations are not closed under intersection, it follows that two-
way rational relations are strictly more expressive than them [RS59, § 12].

Of course, since equivalence is already undecidable on rational relations, it
is also undecidable for this class.

It also makes sense to look at their deterministic models: informally, in a
given state, we should not only know on which tapes we will read non-blank
symbols, but also what head movements we will operate. This gives rise to
the notion of deterministic two-way multitape automata. This model is in fact
remarkably expressive: given two deterministic rational relations ℛ1 and
ℛ2, it is possible to describe their intersection ℛ1 ∩ℛ2 by a deterministic
two-way multitape automaton: the idea is to first simulate the first automaton
from left to right, then, when reaching the end markers, to go back to the
beginning of the tapes, and then simulate the second automaton from left to
right. Since the intersection non-emptiness problem of deterministic rational
relations is undecidable (see Example VII.1.14), it follows that non-emptiness
of deterministic two-way rational relations—i.e. relations recognized by deter-
ministic two-way multitape automata—is undecidable [RS59, Theorem 19].
It follows that both the inclusion problem and the equivalence problem are
undecidable: this class is simply too expressive.

Generalizing the construction above for the intersection, shows that both
deterministic two-way rational relations and two-way rational relations are
closed under union and intersection.39 39 The closure under union of deter-

ministic two-way rational relations is
slightly less immediate, see [CES17,
Lemma 4] for more details.

Deterministic two-way rational relations are closed under complement40

40 This can be proven like for classical
deterministic automata, by simply
complementing the set of accepting
states. This construction also works
for deterministic one-way rational re-
lations [RS59, Theorem 17]. How-
ever, in the case of two-way automa-
ton, we need to first assure that the
automaton does not reject by loop-
ing forever: as mentioned in [CES17,
Lemma 4] this can be dealt with us-
ing Sipser’s trick [Sip80, Theorem 1].

We believe two-way rational relations are not be closed under complement,
and that the proof is similar to rational relations; nonetheless, we could not
find any formal reference to back this claim. Neither model are closed under
composition [CES17, Theorem 5].

Two-way multitape automata where the two-wayness is restricted to mov-
ing all heads simultaneously back to the beginning of the words are known
as “rewind automaton”, and were introduced by Rosenberg in 1965, see e.g.
[Cha80, § 4]. Alternating two-way two-tape automata have been introduced
and studied by Carton, Exibard and Serre who showed that this class is not
closed under complementation [CES17, Theorem 1].

VII.1.8 The Surprisingly Strange World of Transducers

Recall that, by construction, multitape automata have access to a pair of
words ⟨𝑢, 𝑣⟩ and then can decide whether this pair should be accepted or not.
Transducers differ in that they have access to 𝑢 and can potentially produce,
from 𝑢, the word 𝑣.

Formally, non-deterministic one-way transducers, or transducers for short,

211

vii. finite-word relations and automatic structures

recognizable
bool ⋅ incl ⋅ equiv

automatic
bool ⋅ incl ⋅ equiv

right-automatic
bool ⋅ incl ⋅ equiv

deterministic
rational

¬bool ⋅ ¬incl ⋅ equiv

rational
¬bool ⋅ ¬incl ⋅ ¬equiv

deterministic
two-way rational
bool ⋅ ¬incl ⋅ ¬equiv

two-way
rational

¬incl ⋅ ¬equiv

Figure VII.8: The hierarchy of ratio-
nal relations. Arrows denote strict in-
clusions between classes of relations.
Predicates bool, incl and equiv indi-
cate whether the class is closed un-
der Boolean operators, has decidable
inclusion problem and equivalence
problem, respectively.

are defined as multitape automata, but their transition relation is a subset of

𝑄�
source state

× Γ∪ {𝜀}�������
input alphabet

× Σ ∗�
output word

× 𝑄.�
target state

We will also assume that the input word has markers at its extremities. This
model is quite clearly equivalent to the one of multitape automata, and so
transductions actually correspond to rational relations.41 41 This is to ensure this equivalence

that we allow a transducer to produce
an output on 𝜀. This feature is usu-
ally not allowed is most definitions
of transducers.

However, because we think of transducers and multitape automata dif-
ferently, the notion of deterministic transducer differs from the one of de-
terministic multitape automata: recall that the latter model has access to
both the input and output, and so we say that it is deterministic when its
behaviour it uniquely guided by both the input and the output. However, we
say that a transducer is deterministic when its transition relation can actually
be described by a partial function

𝑄�
source state

× Γ⏟
input alphabet

⇀ 𝑄�
target state

× Σ ∗.�
output word

Hence, by construction, a deterministic transducer recognizes a partial func-
tion from Γ ∗ to Σ ∗. Note however that the deterministic multitape automaton
of Figure VII.5 recognizes the subword relation, which is not functional. And
hence, deterministic transducers are strictly less expressive than deterministic
multitape automaton. But in fact we can prove a strictly stronger result: there
are functional relations that can be recognized by a deterministic rational but
that are not a deterministic transduction—i.e. recognizable by a deterministic
one-way transducer. For instance, consider the function, where Σ =̂ {𝑎, 𝑏, 𝑐},

212

vii.1. the landscape of rationality for relations over finite words

𝑓∶ Σ ∗ ⇀ Σ ∗

𝑎 ⋅ 𝑏𝑛 ⋅ 𝑐 ↦ 𝑐 ⋅ 𝑏𝑛 ⋅ 𝑎 (𝑛 ∈ ℕ)
𝑎 ⋅ 𝑏𝑛 ⋅ 𝑎 ↦ 𝑎 ⋅ 𝑏𝑛 ⋅ 𝑎 “ .

In fact, this relation is even automatic! A synchronous automaton can simply
use two states to remember if the first pair it reads is (𝑎𝑐) or (𝑎𝑎), in which
case it will know if it should expect to read (𝑐𝑎) or (𝑎𝑎) at the end of the word.
On the other hand, a deterministic one-way transducer only has access to
the input word, and while reading the first 𝑎, it has no choice but to non-
deterministically guess if it should produce a ‘𝑐’ or an ‘𝑎’.42 42 One can prove formally that this

function is not recognizable by a de-
terministic one-way transducer by
using [Sak09, Theorem V.4.2] since
𝑓 is clearly not Lipschitz for the pre-
fix distance.

The same complication happens for two-wayness: a two-way transducer
can move both left and right on its input tape, but not on the output, since
the output is produced and not read. We call two-way transductions and
deterministic two-way transductions the relations recognized by two-way
transducers and deterministic two-way tranducers, respecitvely.

Deterministic two-way transductions are actually widely known as reg-
ular functions, and have been extensively studied in the past decade. They
admit several characterizations, in the frameworks of multitape automata,
transducers, logic, etc.43 43 See [Boj22, 4th Paragraph] for

pointers.Remarkably, the intersection of the classes of functional relations and of
two-way transductions collapses exactly to the class of all regular functions
[EH01, Theorem 22, p. 243]. In other words non-determinism does not in-
crease the expressiveness of two-way multitape automata, when restricted to
functional relations. As a consequence, the hierarchy of functional relations is
surprisingly more linearly ordered than expected, as depicted in Figure VII.9.

Note however that the equivalence problem remains undecidable for (non-
functional) two-way transductions because the class includes all rational
relations. However, the problem becomes decidable—and even PSpace—when
one wants to check “origin equivalence”, which is a restricted form of equiv-
alence: informally not only we want the transducers to describe the same
relation, but we also require for the outputs to be produced in the same way
[BMPP18, Theorem 1].44 44 This “origin information” is not un-

like the function 𝜋tape introduced
earlier for multitape automata.

The equivalence problem of regular functions was shown to be decidable by
Gurari [Gur82, Theorem 1]. Note that for the subclass of functional rational
relations, this result was proven one decade earlier, by Schützenberger in
1975—see e.g. [Ber79, Corollary IV.1.3].

Polyregular functions. Regular functions all have a linear growth, in the
sense that if ⟨𝑢, 𝑣⟩ belongs to the relation, then |𝑣| ≤ 𝑘 ⋅ |𝑢| for some constant
𝑘.45 This model has been generalized to polyregular functions—which have 45 In the case of one-way determin-

istic transductions, this follows from
[Sak09, Theorem V.4.2].

polynomial growth—see [Boj22] for a recent survey: one way of defining
this class of functions is by allowing transducers to put and move a bounded
number of pebbles on the input word. A typical example of polyregular
function that is not regular is the squaring function, which takes a word 𝑢 and
maps it to the concatenation 𝑢|𝑢| of 𝑢 as many times as there are letters in the

213

vii. finite-word relations and automatic structures

functional
recognizable relations

incl ⋅ equiv

functional
automatic
relations
incl ⋅ equiv

functional right-
automatic relations

incl ⋅ equiv

determinstic
transductions

incl ⋅ equiv

functional deterministic
rational relations

incl ⋅ equiv

functional transductions
incl ⋅ equiv

regular functions
= functional two-
way transductions

= deterministic two-
way transductions

incl ⋅ equiv

functional deterministic
two-way rational

relations
¬incl ⋅ ¬equiv

functional two-way
rational relations

¬incl ⋅ ¬equiv

“polyregular
functions”

¿incl? ⋅ ¿equiv?

Figure VII.9: The hierarchy of func-
tional relations. Arrows denote strict
inclusions between classes of rela-
tions. “Functional foo” denotes the
intersection of the class foo with the
class of functional relations. Predi-
cates incl and equiv indicate whether
the class has decidable inclusion
problem and equivalence problem, re-
spectively.

214

vii.2. a logical excursion

word. Since this function has quadratic growth, it cannot be regular, but it
can easily be recognized by a deterministic two-way transducer with a single
pebble, that puts a pebble on the first position, outputs the input word, moves
the pebble one position to the right, and iterate this process until the pebble
reaches the end of the word. However, the decidability of the equivalence
problem for this class remains widely open [Boj22, § 8].

We represent the hierarchy in Figure VII.9. Note that some classes are
defined semantically and admit no machine characterization: for instance, the
class of “two-way rational relations” is the intersection of functional relations
with two-way rational relations. Given a two-way rational relation, it is unde-
cidable whether the relation it recognizes is functional.46 We refer the reader 46 This can be proven by reduction

from the inclusion of functional two-
way rational relation since a function
𝑓 is included in another function 𝑔 iff
𝑓 ∪ 𝑔 is functional and the domain of
𝑓 is included in the domain of 𝑔. This
reduction works for any class that is
effectively closed under union.

to Gauwin’s habilitation [Gau20], and in particular to the splendid [Gau20,
Figure 2.1, p. 16]47 for a clickable taxonomy of word-to-word transducers,

47 Note however that arrows are re-
versed compared to Figure VII.8.

and references towards decidability of their membership problem. See also
Douéneau’s Ph.D. thesis [Dou23, § 1] for variations on transducers models.
Lastly, let us note that most classes of relations usually become quite “simple”
when restricted to a unary alphabet, see e.g. [CG14, Theorem 1] for a simple
characterization of deterministic two-way rational relations over a unary
alphabet.

VII.2 A Logical Excursion

VII.2.1 First-Order Interpretation

A major construction in logic is to restrict the scope of the class of models—
thereafter called “universe”. Formally, given a universe 𝒰 and a class of queries
𝒬,48 given a subclass 𝒱 of 𝒰, we can consider the restriction 48 Recall that we see queries here in a

purely semantical way: it is nothing
but a subclass of 𝒰.𝒬|𝒱 =̂ {𝜙 ∩𝒱 ∣ 𝜙 ∈ 𝒬}.

For instance, letting𝒰 be the class of all 𝜎-structures and𝒬 be the set of all first-
order sentences over 𝜎, by taking 𝒱 to be the set of all finite 𝜎-structures, then
𝒬|𝒱 precisely corresponds to the first-order sentences over finite structures.
For instance, the class of all finite 𝜎-structures belongs to 𝒬|𝒱 but not to 𝒬.

However, this construction does not preserve any reasonable property
on 𝒬, since 𝒱 is an arbitrary subclass of 𝒰. The idea behind first-order
interpretation is precisely to circumvent this problem, by interpreting a class
of structures inside another one by using first-order logic, allowing this way
to preserve some properties.

Let 𝜎 and 𝜏 be relational signatures. A 𝑑-dimensional first-order interpreta-
tion ℐ consists of the following tuple of first-order formulas over 𝜎:
• domℐ(𝑥1, … , 𝑥𝑑) (specifying the domain)
• =ℐ(⟨𝑥1, … , 𝑥𝑑⟩, ⟨𝑦1, … , 𝑦𝑑⟩) (specifying equality)
• ℛℐ(⟨𝑥11, … , 𝑥𝑑1⟩, … , ⟨𝑥1𝑘 , … , 𝑥

𝑑
𝑘⟩) for any predicate ℛ ∈ 𝜏 of arity 𝑘,

such that =ℐ defines an equivalence relation on the domain of ℐ.

215

vii. finite-word relations and automatic structures

Given a 𝜎-structure 𝐀, the ℐ-interpretation of 𝐀 is the 𝜏-structure denoted
by ℐ(𝐀) defined as follows:49 49 For the sake of readability, we use

�̄� or �̄� to denote 𝑑-tuples of elements
of𝐀 and 𝑑-tuples of variables, respec-
tively.

• its domain is the quotient of {�̄� ∈ 𝐀𝑑 ∣ 𝐀, �̄� ⊨ domℐ(�̄�)} by the equivalence
relation {⟨�̄�, �̄�⟩ ∣ 𝐀, �̄�, �̄� ⊨ =ℐ(�̄�, �̄�)},

• for any predicate ℛ(𝑘) ∈ 𝜏, we have

ℛ(𝑘)(ℐ(𝐀)) = �⟨�̄�1, … , �̄�𝑘⟩ ∣ ∃�̄�1. … . ∃�̄�𝑘.
𝑘
�
𝑖=1
�̄�𝑖 =ℐ �̄�𝑖 ∧ℛℐ(�̄�1, … , �̄�𝑘)�.

For instance, letting 𝜎 = 𝜏 be the graph signature, consider the one-dimensional
interpretation ℐ where:
• the domain formula keeps all vertices,
• the equality formula is proper equality,
• the formula for the edge predicate puts two variables 𝑥 and 𝑦 in relation if

either there is an edge from 𝑥 to 𝑦, or if 𝑥 has no successor and 𝑦 has no
predecessor.

Then, the ℐ-interpretation of a directed path is a cycle, see Figure VII.10.
Figure VII.10: A directed path (left)
and its interpretation by ℐ (right),
that adds an edge from any vertex
with no successor to any vertex with
no predecessor.

The idea behind first-order interpretation is that first-order formulas about
the interpretation ℐ(𝐀) can be translated into first-order formulas over 𝐀.
Formally, given a first-order formula 𝜙(𝑥1, … , 𝑥𝑘) over 𝜏, we can define a
first-order formula 𝜙ℐ(�̄�1, … , �̄�𝑘) over 𝜎 defined inductively by:
• replacing each variable 𝑥 by a 𝑑-tuple �̄�,
• replacing every occurrence of ℛ(𝑥1, … , 𝑥𝑘) (with ℛ(𝑘) ∈ 𝜏) by the formula

∃�̄�′1. …∃�̄�′𝑘. �
𝑘
�
𝑖=1
�̄�𝑖 =ℐ �̄�′𝑖� ∧ℛℐ(�̄�′1, … , �̄�′𝑘),

• relativizing quantification with respect to domℐ, meaning that

(∃𝑥. 𝜙(𝑥))ℐ =̂ ∃�̄�. domℐ(�̄�) ∧ 𝜙ℐ(�̄�), and

(∀𝑥. 𝜙(𝑥))ℐ =̂ ∀�̄�. domℐ(�̄�) ⇒ 𝜙ℐ(�̄�).

Proposition VII.2.1. For any first-order formula 𝜙(𝑥1, … , 𝑥𝑘) over 𝜏, for any
pointed 𝜎-structure ⟨𝐀, �̄�1, … , �̄�𝑘⟩, we have:

⟨ℐ(𝐀), [�̄�1], … , [�̄�𝑘]⟩ ⊨ 𝜙(𝑥1, … , 𝑥𝑘) iff ⟨𝐀, �̄�1, … , �̄�𝑘⟩ ⊨ 𝜙ℐ(�̄�1, … , �̄�𝑘).

And so, in particular, if 𝒞 is a class of structures, then model checking (resp.
satisfiability, resp. validity) over the class ℐ(𝒞) can be reduced to the same
problem over 𝒞.

Typical examples of one-dimensional interpretations include restricting a
structure to a first-order definable subset, or taking the complement—that is,
swapping hyperedges and non-hyperedges.

Figure VII.11: Interpretation of the
directed path of Figure VII.10 by the
“box product interpretation”.

Example VII.2.2. We consider a 2-dimensional interpretation that we call
“box product”. Let 𝜎 and 𝜏 be the graph signature. We define a two-dimensional

216

vii.2. a logical excursion

interpretation ℐ with trivial domain and equality50 and we put an edge from 50 Meaning formally that

domℐ(𝑥1, 𝑥2) =̂ ⊤, and

and =ℐ(⟨𝑥1, 𝑥2⟩, ⟨𝑦1, 𝑦2⟩) is the for-
mula 𝑥1 = 𝑦1 ∧ 𝑥2 = 𝑦2.

⟨𝑥1, 𝑥2⟩ to ⟨𝑦1, 𝑦2⟩ if either there is an edge from 𝑥1 to 𝑦1 and 𝑥2 = 𝑦2, or
if 𝑥1 = 𝑦1 and there is an edge from 𝑥2 to 𝑦2. Then the interpretation of a
directed path is a directed grid, see Figure VII.11.

An interpretation is said to be injective if the equality formula is the proper
tuple-equality. Note that each interpretation ℐ can be transformed into an
injective interpretation 𝒥 s.t. for any totally ordered structure 𝐀—meaning
that there is a binary predicate in the signature that is interpreted as a total
order in 𝐀, then ℐ(𝐀) and 𝒥(𝐀) are isomorphic: for this, it suffices to encode
any equivalence class in 𝐀 by its minimal element—for more details, see
Proposition VII.3.2.

We say that 𝐀 is first-order interpretable in 𝐁 if there exists a first-order
interpretation ℐ s.t. ℐ(𝐀) is isomorphic to 𝐁. We say that two structures are
first-order equivalent if they are first-order interpretable in one another. Two
structures that are isomorphic are clearly first-order equivalent. Moreover,
if a 𝑘-ary relation ℛ is first-order definable in a 𝜎-structure 𝐀, then 𝐀 is
first-order equivalent to the structure 𝐀 to which we add a new 𝑘-ary predi-
cate interpreted as ℛ. For instance, ⟨ℕ, +⟩ and ⟨ℕ, +, <, 0, 1⟩ are first-order
equivalent.

VII.2.2 First-Order Reduction and First-Order Model Checking

As we have seen, first-order interpretations preserve logical properties of
classes of structures. In this part, we show that most complexity classes are
closed under this construction.

We define a first-order reductions to be an injective first-order interpreta-
tion.51 Complexity classes are defined in terms of decision problems, namely 51 The terminology “FO-

interpretations” is usually employed
in automata theory and graph
theory, while “FO-reduction” is
used in complexity theory—see e.g.
[Imm98, Definition 2.11 & Definition
1.26]—however there is no good
reason to distinguish these two
notions.

languages 𝐿 ⊆ 𝟚∗, rather than as classes of structures. However, it is known
that:
• any language 𝐿 ⊆ 𝟚∗ can be seen as a class of structures over the signature

of binary strings;
• for any relational signature 𝜎, there is an encoding of finite 𝜎-structures as

a language 𝐿 ⊆ 𝟚∗, i.e. as a class of structure over the signature of binary
strings—see e.g. [Imm98, § 2.2].

Importantly, these encodings between 𝜎-structures and structures over the
signature of binary strings are both first-order reductions. It follows that
there is a first-order reduction between two classes of structures iff there is a
first-order reduction between their encodings as languages. Overall, it implies
that first-order reductions are proper reductions in the complexity-theoretic
sense. We will see that first-order logic actually lives in the lowest levels of
the hierarchy of complexity classes.

We denote by FOfin the class of all problems over finite structures that are
first-order definable.52 52 We can either assume the signa-

ture to be fixed, or to be part of the
input.Proposition VII.2.3 (Folklore). FOfin ⊆ L.

217

vii. finite-word relations and automatic structures

Proof sketch. The naive recursive algorithm, recursing over the first-order
formula, works in logarithmic space: it suffices to keep one pointer to the
structure for every variable of the formula, but since this formula is fixed, we
only require a constant number of pointers.

Moreover, L-hardness is usually defined using first-order reductions. When
the signature is sufficiently expressive, namely when it is able to express basic
arithmetic [Imm98, Proviso 1.14], Immerman showed that FOfin corresponds
to the circuit-class AC0, and also to the whole logarithmic-time hierarchy
[Imm98, Corollary 5.32].

VII.2.3 A Model-Theoretic Perspective on Automatic Relations

Given an alphabet Σ, we define on Σ ∗:
• a unary relation 𝑙𝑎 indicating that the last letter of a word is 𝑎,
• a binary relation ≈len indicating that two words have the same length,
• a binary relation ≼pref indicating that a word is a prefix of another.
We denote by 𝜎syncΣ the signature ⟨⟨𝑙𝑎⟩𝑎∈Σ, ≈len, ≼pref⟩53 and by 𝚺∗ the 𝜎syncΣ - 53 For the sake of simplicity, we abu-

sively use the same notations for the
predicates and their interpretations
in the signature.

structure over Σ ∗ where the predicates are interpreted as above.54

54 This model is also denoted 𝐒len in
[BLSS03]. In this model 𝑙𝑎 is not a
unary predicate but a function that
adds an ‘𝑎’ to the end of the word: of
course this makes no difference what-
soever since both models are first-
order equivalent.

Proposition VII.2.4 ([EES69, Theorems 1 & 2]). If Σ has at least two letters,
then a relation over Σ ∗ is automatic iff it is first-order definable in 𝚺∗.55

55 When Σ has a single letter, then
the right-to-left implication holds,
but not the converse one. For in-
stance, it can be shown that (𝑎𝑎)∗
is not first-order definable in {𝐚}∗
[EES69, § 9].

Proof. X From logic to automata. This implication is easy: it suffices to
observe first that each relation 𝑙𝑎, ≈len and ≼pref is automatic, and then to use
the fact that automatic relations are closed under Boolean operations and
quantification. This last point can be proven using a powerset construction
on the automaton.

X From automata to logic. The converse implication is less straightforward.
It was originally proven by Eilenberg, Elgot and Shepherdson starting from a
rational expression, making the proof somewhat tedious. In [Cho06, § “1969”],
Choffrut notes that “mimicking the automaton yields a much more intuitive
proof and can be reconstructed by a good PhD student”: we present here this
proof.

We start with an example: we want to build a first-order formula 𝜙 over
𝜎sync𝟚 for the language (00)∗, in the sense that for all 𝑢 ∈ 𝟚∗,

⟨𝟚∗, 𝑢⟩ ⊨ 𝜙(𝑥) iff 𝑢 ∈ (00)∗.

For this, it suffices to guess a word 𝑣 of the same length as 𝑢, which alternates
zeroes and ones, and then to check that the first letter 𝑣 is distinct from its
last letter.

Given a synchronous automaton 𝒜 recognizing ℛ ⊆ (Σ ∗)𝑘, we want to
build a first-order formula 𝜙𝒜 over 𝜎syncΣ s.t. for all ⟨𝑢1, … , 𝑢𝑘⟩ ∈ (Σ ∗)𝑘:

⟨𝑢1, … , 𝑢𝑘⟩ ∈ ℛ iff ⟨𝚺∗, 𝑢1, … , 𝑢𝑘⟩ ⊨ 𝜙𝒜(𝑥1, … , 𝑥𝑘).

218

https://complexityzoo.net/Complexity_Zoo:A#ac0

vii.2. a logical excursion

The formula 𝜙𝒜 is built as follows:
• for each state 𝑞 of 𝒜, we guess a word 𝑣𝑞 ∈ 𝟚∗ s.t. the length of 𝑣𝑞 is the

maximal length of a word 𝑢𝑖 (𝑖 ∈ ⟦1, 𝑘⟧), i.e. |𝑢1 ⊗⋯⊗𝑢𝑘|,
• we check that for each position 𝑖, there is exactly one state 𝑞 s.t. the 𝑖-th

letter of (𝑣𝑞) is 1,
• this way, the tuple of words ⟨𝑣𝑞⟩𝑞 represents a potential run of 𝒜 over 𝒜:
we then check that this indeed defines an accepting run of the automaton.

It is routine to check that all these properties can be written in first-order
logic using the predicates 𝑙𝑎, ≈len and ≼pref. Note in particular that this proof
crucially relies on the fact that we can guess words in 𝟚∗, which is allowed
by the assumption that Σ has size at least 2.56 Also, the formula 𝜙𝒜 is of 56 Indeed, we can then assume w.l.o.g.

that 𝟚 ⊆ Σ, and then check in first-
order logic that a word 𝑣𝑞 ∈ Σ∗ actu-
ally belongs to 𝟚∗.

polynomial size in the size of 𝒜.

We want to highlight that Proposition VII.2.4 can be extended for 𝑘 = 0,
since the 0-ary relations are the subsets of ∅∗ = {𝜀}, and so there is exactly
two relations: {•} (identified with “true”) and ∅ (identified with “false”). Both
are first-order definable, and automatic: observe that synchronous automata
over ∅ either return “true” if they have an initial state that is accepting, and
otherwise they return “false”. 0-ary relations naturally arise because they
correspond to Boolean queries. For instance, assume that 𝜙(𝑥1, 𝑥2, 𝑥3) is
a first-order formula over 𝜎syncΣ : then ∀𝑥1. ∃𝑥2. ∀𝑥3. 𝜙(𝑥1, 𝑥2, 𝑥3) is a first-
order sentence over 𝜎syncΣ . The proof of Proposition VII.2.4 builds from a
synchronous (3-ary) automaton for 𝜙(𝑥1, 𝑥2, 𝑥3) a triple-exponential-sized
synchronous (0-ary) automaton for ∀𝑥1. ∃𝑥2. ∀𝑥3. 𝜙(𝑥1, 𝑥2, 𝑥3).

Let us point out that the formula built from the automaton is of the form
∃ ∗∀ ∗∃ ∗ followed by a quantifier-free formula. It shows that first-order logic
over 𝚺∗ collapses to the Σ3 level. Figueira, Ramanathan and Weil proved that
this hierarchy does not collapse to a lower level [FRW19, Theorem 3], and
provide effective characterization of these lower levels [FRW19, Theorem 9].

Example VII.2.5. Given an ordered alphabet Σ = {𝑎1, … , 𝑎𝑛} with 𝑎1 < … <
𝑎𝑛, we define the lexicographic order by 𝑢 ≼lex 𝑣 iff when there is a prefix
𝑤 both of 𝑢 and of 𝑣, s.t. either 𝑤 has the same length as 𝑢, or the letter
following 𝑤 in 𝑢 is strictly smaller than the letter following 𝑤 in 𝑣.

Note that this can be defined by a first-order formula over 𝜎syncΣ since saying
that the letter following 𝑤 in 𝑢 is 𝑎 amounts to guessing the smallest prefix
𝑤′ of 𝑢 that must strictly contain 𝑤 as a prefix, and checking that 𝑤′ ends
with letter 𝑎. From Proposition VII.2.4, it follows that the lexicographic order
is an automatic relation.

Remark VII.2.6. We want to highlight that, in the case of unary relations,
Proposition VII.2.4 shows that regular languages are exactly the first-order
definable sets of 𝚺∗ (if Σ has at least two letters). This result contradicts in
no way the fact that regular languages exactly those definable in monadic
second-order logic, nor does it imply that monadic second-order logic col-
lapses to first-order logic. Indeed, in this last characterization, the models

219

vii. finite-word relations and automatic structures

are finite words, and its first-class citizens57 are the positions in these words. 57 By “first-class citizens” we mean
the objects over which we can do
first-order quantification.

In the case of Proposition VII.2.4, the model is fixed (namely 𝚺∗), and its
first-class citizens are the finite words. In some sense, this logic is external to
finite words—the logic does not have access to the “inner workings” of the
words—, while monadic second-logic is internal as traditionally used. Overall,
Proposition VII.2.4 can be rephrased as the equivalence between external
first-order logic and internal monadic second-order logic.58 Said otherwise, 58 We thank Géraud Sénizergues for

suggesting this terminology to us.when going from FO over the structure 𝚺∗ to MSO over the structure of a
finite word, we gain one level of quantification via the logic, but we lose one
level of quantification via the change of model.

VII.2.4 Logical Characterization of Other Classes of Relations

Benedikt, Libkin, Schwentick and Segoufin studied submodels of

𝚺∗ = ⟨Σ ∗, ⟨𝑙𝑎⟩𝑎∈Σ, ≈len, ≼pref⟩

in [BLSS03]. For instance, they show that by removing ≈len, the definable
sets are exactly the star-free regular languages [BLSS03, Corollary 3.7].

Adding a binary predicate for each regular language 𝐿, interpreted as
{⟨𝑢, 𝑢𝑣⟩ ∣ 𝑢, 𝑣 ∈ Σ ∗, 𝑣 ∈ 𝐿}, yields a logic called 𝐒reg, whose definable relations
are exactly the “regular prefix relations”, also called “special relations” [BLSS03,
Corollary 3.22]. This class lives between recognizable relations and automatic
relations, see [Cho06, § “1984”].

VII.3 Automatic Structures

VII.3.1 Definitions

Automatic structures are a subclass of all relational structures. While some of
them can be infinite, they are all finitely describable, by automata. We will
see that, this way, some problems on finite structures remain decidable on
this larger class of automatic structures.

This notion has a remarkably eventful history: it was introduced by Hodg-
son in his Ph.D. thesis in 1976 [Hod76]59, but the notion went largely un-

59 Unfortunately the manuscript is
not available online. See [Hod83] for
the related journal article.

noticed. The notion was rediscovered for groups in the late 1980s [Eps92].
Independently, Shapiro in 1992 [Sha92], Khoussainov and Nerode in 1995
[KN95] and Pélecq in his Ph.D. thesis from 1997 [Pel97, § 3.1.3, p. 91] reintro-
duced the notion of automatic structures.60

60 What we call automatic structures
correspond to “synchronous auto-
matic structures” and “structures au-
tomatiques synchrones” in Shapiro’s
paper and Pélecq’s thesis, respec-
tively. Pélecq gives credit for the def-
inition to his advisor Géraud Séniz-
ergues. All three work by Shapiro,
Khoussainov & Nerode and Pélecq
claim to generalize the notion of au-
tomatic groups from [Eps92].

We fix a finite relational signature 𝜎. An automatic presentation 𝒜 of a
𝜎-structure consists of:
• an alphabet Σ,
• a regular language dom𝒜 ⊆ Σ ∗,
• for every relation ℛ(𝑘) ∈ 𝜎, an automatic relation ℛ𝒜 ⊆ (Σ ∗)𝑘, and
• an automatic relation=𝒜 ⊆ Σ ∗ ×Σ ∗ that must be an equivalence relation.61

61 Some readers already familiar with
the notion of automatic structures
might be somewhat surprised by the
inclusion of this equality relation:
we will soon see (Proposition VII.3.2)
that in this specific setting, we do not
need it. This is not true in general,
see Footnote 65.

220

vii.3. automatic structures

The structure represented 𝐀 by an automatic presentation 𝒜 has dom𝒜/=𝒜
as its domain, and the predicate ℛ(𝑘) ∈ 𝜎 is interpreted in such a way that
a tuple ⟨𝑋1, … , 𝑋𝑘⟩ of equivalence classes belongs to ℛ(𝐀) if, and only if,
there exists ⟨𝑢𝑖⟩1≤𝑖≤𝑘 ∈ ⟨𝑋𝑖⟩1≤𝑖≤𝑘 s.t. ⟨𝑢1, … , 𝑢𝑘⟩ ∈ ℛ𝒜. Given 𝑢 ∈ dom𝒜, we
denote by 𝒜(𝑠) the element of 𝐀 it represents, namely the equivalence class
of 𝑢 under =𝒜.

We say that a 𝜎-structure is automatic if it is represented by an automatic
presentation.62 For instance, ⟨𝚺∗, ⟨𝑙𝑎⟩𝑎∈Σ, ≈len, ≼pref⟩ is an automatic struc- 62 Note that we can always assume

w.l.o.g. that ℛ𝒜 ⊆ (dom𝒜)𝑘 since
(dom𝒜)𝑘 is automatic by Proposi-
tion VII.1.7 and automatic relations
are closed under intersection.

ture.
Furthermore, the infinite binary tree can be represented by the automatic

presentation ℬ with domℬ = 𝟚∗,

ℰℬ = {⟨𝑢, 𝑢0⟩ ∣ 𝑢 ∈ 𝟚∗} ∪ {⟨𝑢, 𝑢1⟩ ∣ 𝑢 ∈ 𝟚∗},

and =ℬ is equality, see Figure VII.12.

𝜀

0 1

00 01 10 11

Figure VII.12: An automatic presen-
tation of the infinite binary tree.

Presentations such as this one, where =ℬ is the equality relation, are called
injective presentations.

Example VII.3.1. The structure ⟨ℕ, +⟩ is automatic.63 We build an auto- 63 We see + as a ternary relation,
given by {⟨𝑥, 𝑦, 𝑥 + 𝑦⟩ ∣ 𝑥, 𝑦 ∈ ℕ}.matic presentation 𝒩 by using a binary encoding dom𝒩 = 𝟚∗. A word

𝑤 ∈ 𝟚∗ will represent the number∑|𝑤|−1
𝑖=0 𝑤𝑖 ⋅ 2𝑖−1—notice that we write num-

bers with their least significant bit first. Naturally, it follows that =𝒩 puts
two words 𝑢 and 𝑣 in relation if they are equal after removing the trailing
zeroes. We then need to describe +𝒩: the idea is to simulate addition, reading
words from left to right, by using two states (0 and 1) to remember the carry.

0 1

�
0
0
0
�, � 01

1
�, � 10

1
�

� 11
0
�

� 01
0
�, � 10

0
�, � 11

1
�

� 00
1
�

Figure VII.13: Synchronous automa-
ton describing the addition of natural
numbers. For the sake of readabil-
ity, transitions involving the padding
symbol are not represented: is
treated as a zero.

For instance, the transition 0 ⟨0, 1, 1⟩−−−−−→ 0 can be understood as “when adding
0 and 1, with current carry 0, the results equals 1, with a carry of 0 for the
next bit”. In general, we have a transition

𝑝 ⟨𝑥, 𝑦, 𝑧⟩−−−−−→ 𝑞 iff 𝑥 + 𝑦 + 𝑝 = 𝑧 + 2𝑞

for all 𝑝, 𝑞 ∈ 𝟚 and ⟨𝑥, 𝑦, 𝑧⟩ ∈ 𝟚⊗𝟚⊗𝟚.64 This gives the automaton of figure 64 Of course, we identify with 0.
Figure VII.13. By construction, 𝒩 represents ⟨ℕ, +⟩.

Recall that, using Proposition VII.2.4, a relation is automatic if and only if
it is first-order definable over 𝜎syncΣ . This means that we can alternatively see
automatic presentations as a collection of first-order formulas—one for the
domain, one for equality, and one for each predicate. In turn, this view helps
us prove the following result.

Proposition VII.3.2.65 Every automatic structure admits an injective pre- 65 This proposition is not true on the
more general class of 𝜔-automatic
structures [HKMN08, Theorem 6.6].

sentation.

Proof. We prove this property using logic. Let 𝒜 be an arbitrary automatic
presentation that represents 𝐀. The idea to build an injective automatic
presentation 𝒜′ of 𝐀 is to represent an equivalence class [𝑢]=𝒜 ⊆ dom𝒜
by its length-lexicographic-minimal element, where the length-lexicographic

221

vii. finite-word relations and automatic structures

order is defined by first comparing the length of the word, and in case they
have the same length, using the lexicographic order to compare them: this
order is a well-founded total order.

Concretely, 𝒜′ has the same alphabet as 𝒜. Then, we define dom𝒜′ as
the set of minimal elements under the length-lexicographic order of [𝑢]=𝒜

(𝑢 ∈ dom𝒜). This can be described by a first-order formula since 𝒜 is assumed
to be automatic, and since ≼lex (and hence the length-lexicographic order) is
automatic by Example VII.2.5. Equality is interpreted as proper equality, and
then

ℛ𝒜′(𝑥1, … , 𝑥𝑘) =̂ ∃𝑦1. …∃𝑦𝑘. �
𝑘
�
𝑖=1
𝑥𝑖 =𝒜 𝑦𝑖� ∧ℛ𝒜(𝑦1, … , 𝑦𝑘),

for any predicate ℛ(𝑘) ∈ 𝜎. Overall, 𝒜′ is an injective presentation that
represents exactly the same structure as 𝒜.

Proposition VII.3.3. Any automatic structures admits a presentation with
an alphabet of size 2.

Proof. The idea is to encode each letter of Σ = {𝑎1, … , 𝑎𝑛} over 𝟚 in such a
way that each letter 𝑎𝑖 is encoded over a word �𝑎𝑖 ∈ 𝟚∗ s.t. all �𝑎𝑖’s have the
same length—this is necessary to preserve automaticity. For instance, take �𝑎𝑖
to be the binary encoding of 𝑖 over 𝑘 bits, for some fixed value of 𝑘 ≳ log2(𝑛).
Then, by Proposition VII.1.11, the relations we obtain are still automatic.

Putting Propositions VII.3.2 and VII.3.3 together, we get the following result,
that says that 𝟐∗ is “universal”, in the sense that it is not only automatic, but
it “contains” all automatic structures.

Proposition VII.3.4. Let 𝐀 be a 𝜎-structure. The following are equivalent:
1. 𝐀 is automatic,
2. 𝐀 is an injective one-dimensional first-order interpretation of 𝟐∗,
3. 𝐀 is a first-order interpretation of 𝟐∗.

Recall that 𝟐∗ is the structure 𝟚∗ equipped with 𝑙0, 𝑙1, ≈len and ≼pref: it can
be seen as the infinite binary tree, with unary relation saying if a node is a left
or right child, and two binary relations saying if two nodes are at the same
depth, and if one is an ancestor of the other.

Proof. (1) ⇒ (2) follows from Propositions VII.3.2 and VII.3.3. (2) ⇒ (3) is
trivial. To prove (3) ⇒ (1), consider a 𝑑-dimensional interpretation. An
element of the domain of this interpretation is a set of 𝑑-tuples of words of
𝟚∗. The idea is to encode a 𝑑-tuple of words of 𝟚∗ as a word over the alphabet

𝟚⊗⋯⊗𝟚�������������
𝑑 times

by transforming the tuple ⟨𝑢1, … , 𝑢𝑑⟩ into 𝑢1 ⊗…⊗𝑢𝑑. Formulas for equality
and relations can be derived easily. We obtain an automatic presentation over

222

vii.3. automatic structures

the alphabet 𝟚⊗⋯⊗𝟚.

In the statement of Proposition VII.3.4, 𝟐∗ can be replaced by any automatic
structure𝐔 s.t. there is an injective one-dimensional first-order interpretation
of 𝟐∗ in 𝐔. Another example of “universal” structure consists of the finite
subsets of ℕ equipped with inclusion and the preorder ⪯ defined by 𝑋 ⪯ 𝑌
iff 𝑋 and 𝑌 are singletons, say {𝑥} and {𝑦}, respectively, and 𝑥 ≤ 𝑦, see [Blu24,
Theorem XII.2.3].

Remark VII.3.5. In light of Figure VII.8, automatic relations and right-
automatic relations emerge as the two maximal classes of relations that admit
both closure under Boolean operations and the decidability of its “basic” de-
cision problems. While these two classes are orthogonal, it should be noted
that “right-automatic structures” and automatic structures are equally ex-
pressive: this can be shown by renaming any word 𝑢1…𝑢𝑛 to its reversal
𝑢𝑛…𝑢1. Hence, automatic structures are maximal in this sense: substituting
“automatic relations” for a notion of rationality of Section VII.1 either gives
a less expressive class (recognizable relations), an equally expressive class
(right-automatic relations), or a class that is too expressive leading, both to a
lack of closure properties and undecidability (all other cases).

However, it should be noted that the notion of automatic structures can be
generalized by substituting finite words for more complex models. It leads to
the notions of
• 𝜔-automatic structures by taking 𝜔-words,
• tree-automatic structures by taking finite trees,
• 𝜔-tree-automatic structures by taking 𝜔-trees,
together with suitable notions of automata for these objects. We refer the
reader to e.g. [Blu24, § XII] for more details.

Hypothesis. In light of Proposition VII.3.2, we will always assume
the automatic presentations to be injective, unless specified otherwise.

VII.3.2 Model-Checking

One of the key interest of automatic structures is that, while they are infinite,
their model checking problem remains decidable.

First-Order Model Checking of Automatic 𝜎-Structures
Input : A first-order sentence 𝜙 over 𝜎 and an automatic presen-

tation 𝒜 of an automatic 𝜎-structure 𝐀.
Question: Does 𝐀 ⊨ 𝜙?

The data complexity of this problem refers to the complexity of the problem
for a fixed 𝜙. More precisely, we say that it is 𝒞-complete for a class 𝒞 when:
• for every 𝜙, the problem over fixed 𝜙 is in 𝒞, and

223

vii. finite-word relations and automatic structures

• there is at least one 𝜙 for which it is 𝒞-hard.

Proposition VII.3.6 (Hodgson’s theorem).66 First-order model checking
66 Decidability was originally proven
in [Hod83, Théorème 3.5]. A slightly
weaker form was independently re-
proved by Pélecq in his thesis [Pel97,
Théorème 61, p. 107].

of automatic structures is decidable, and in fact is Tower-complete under
polynomial-time reductions.

Propositions VII.2.1 and VII.2.4 prove this problem to be polynomial-time
equivalent to its restriction to the structure 𝟐∗.67 67 However, this does not work for

data complexity since, when reduc-
ing 𝐀 ⊨? 𝜙 to 𝟐∗ ⊨? 𝜙𝒜, the formula
𝜙𝒜 depends on 𝒜.

Proof sketch. X Tower upper bound. The construction is similar to the easy
implication of Proposition VII.2.4: for any automatic presentation 𝒜, we build
by induction on 𝜙(𝑥1, … , 𝑥𝑘) a synchronous (𝑘-ary) automaton ℬ𝜙 s.t. for all
𝑢1, … , 𝑢𝑘 ∈ Σ ∗

ℬ𝜙 accepts 𝑢1 ⊗…⊗ 𝑢𝑘 iff ⟨𝐀, 𝑢1, … , 𝑢𝑘⟩ ⊨ 𝜙(𝑥1, … , 𝑥𝑘).

In the end, we get a synchronous (0-ary) automaton ℬ𝜙 that accepts iff 𝐀 ⊨ 𝜙.
Notice that each quantifier alternation and negation implies to complement
an automaton, i.e. to do a powerset construction, and so the size of ℬ𝜙 is a
tower of exponentials in the number of quantifier alternations and nested
negations in 𝜙. Hence, we get a Tower algorithm.

X Tower lower bound. 68 In 1990, Compton and Henson proved that there 68 We often found this result to be
incorrectly credited to various papers
in the literature.

exists a constant 𝑐 > 0 s.t. first-order model-checking restricted to the
structure 𝟐∗ admits 𝑛 ↦ tower(𝑐𝑛) as a lower bound on the running time of a
non-deterministic Turing machine solving the problem [CH90, Example 8.3].
In fact, applying [CH90, Theorem 6.1.(iv)] shows the problem to be hard under
polynomial-time reductions for the class of problems which can be solved in
non-deterministic time at most tower(𝑛𝑐) for some 𝑐 > 0. This corresponds
to the class Tower, and hence the problem is Tower-hard.

Proposition VII.3.7 (Folklore). The data complexity of the restriction of
first-ordermodel checking of automatic structures to primitive-positive
sentences is NL-complete.

Proof. Let again𝒜 be an automatic presentation and𝜙 be a first-order formula,
but we now assume that 𝜙 is of the form

∃𝑥1. …∃𝑥𝑘. 𝜓(𝑥1, … , 𝑥𝑘),

where 𝜓 is a positive quantifier-free formula, the size of the automaton for 𝜓
is of the order |𝒜||𝜓|: conjunctions and disjunctions only require products but
no powerset construction. Now instead of explicitly building an automaton
for ∃𝑥1. …∃𝑥𝑘. 𝜓(𝑥1, … , 𝑥𝑘), we test if the automaton for 𝜓 accepts any word.
The answer is “yes” iff 𝐀 ⊨ 𝜙. Testing non-emptiness of the automaton
amounts to checking if an accepting state can be reached from an initial state,
which is NL. Since 𝜙 is fixed, the automaton in question is of polynomial size.
To argue that we can effectively obtain an NL algorithm, it suffices to notice
that we do not have to explicitly build the automaton for 𝜓, but it suffices to

224

vii.3. automatic structures

work with pointers to the automata for 𝒜. The number of pointers required
only depends on 𝜓.

Lastly, the NL lower bound can be proven by a reduction from NFA non-
emptiness, which is itselfNL-hard by reduction from the finite graph reach-
ability problem.

Recall that since NL is closed under complementation—see e.g. [Imm98,
Corollary 9.23]—, we obtain the same complexity for negations of primitive-
positive sentences.

We refer the reader to [BG00, § 3] for the detailed complexity of other
variations of Hodgson’s theorem. For instance, the data complexity of its
restriction to existential sentences (here negation is allowed) is NP-complete
[BG00, Theorem 3.7].

Proposition VII.3.8 (Folklore). The image of an automatic structure by a
first-order reduction is still an automatic structure.

Proof. This follows e.g. from Proposition VII.2.4.

We define FOaut to be the class of all problems over automatic structures
which are first-order definable. By Proposition VII.3.8, this class is closed
under first-order reductions. Moreover, by Proposition VII.3.6, we obtain an
upper bound.

Corollary VII.3.9.69 FOaut ⊆ Tower. 69 Recall on the other hand that FOfin

⊆ L (Proposition VII.2.3).
The goal of the corollary above is to highlight the difference with Propo-

sition VII.2.3: first-order definable problems on automatic structures, while
decidable, are not necessarily in L.

Remark VII.3.10 (Presburger arithmetic). Presburger arithmetic is the first-
order theory (over the signature ⟨+, 0, 1⟩) derived from the following axioms:
• ∀𝑥. 0 ≠ 𝑥 + 1;
• ∀𝑥. ∀𝑦. 𝑥 + 1 = 𝑦 + 1 ⇒ 𝑥 = 𝑦;
• ∀𝑥. 𝑥 + 0 = 𝑥;
• ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧;
• (𝜙(0) ∧ (∀𝑥. 𝜙(𝑥) ⇒ 𝜙(𝑥 + 1))) ⇒ (∀𝑥. 𝜙(𝑥)), where 𝜙(𝑥) ranges over all

first-order formulas.
Note that ⟨ℕ, +, 0, 1⟩ is a model of this theory, which is moreover complete
(see [Sta84]) and so, for a first-order sentence 𝜙, the following are equivalent:
• 𝜙 belongs to the theory, i.e. it is a logical consequence of the axioms above,
• 𝜙 holds in all models satisfying the axioms above, and
• ⟨ℕ, +, 0, 1⟩ ⊨ 𝜙.
Since ⟨ℕ, +, 0, 1⟩ is first-order equivalent to ⟨ℕ, +⟩, which is automatic by
Example VII.3.1, it follows that we can decide Presburger arithmetic.

The decidability result of Proposition VII.3.6 can be extended to 𝜔-tree-
automatic structures. In fact it can even be extended to so-called higher-order
automatic structures, see [Blu24, last remark of § XII.2]. Note that while

225

vii. finite-word relations and automatic structures

automatic structures are always countable, higher-order automatic structures
have at most the cardinality of the continuum. From this it follows that there
exist structures with a decidable first-order model-checking that are not
automatic, and not even higher-order automatic. It suffices for instance to
take any non-standard model of Presburger arithmetic of cardinality strictly
bigger than the continuum, which must exist by upward Löwenheim–Skolem
theorem.70 The same argument works to show that “elementary equivalence” 70 These models form a supclass of

the non-standard models of Peano’s
arithmetic, see [Hod93, Ex. 2, p. 36 &
§ 11.4].

does not preserve the notion of automaticity.

Order-Invariant First-Order Logic. An order-invariant first-order formula71 71 This is a standard notion in model
theory, see e.g. [Grä07, Exer-
cise 3.1.12].

over 𝜎 is any first-order formula72 𝜙 over the signature 𝜎 ⊔ {≤} s.t. for any

72 For the sake of simplicity we give
all definitions for sentences, but they
easily be generalized to handle free
varirables.

𝜎-structure 𝐀, for any total orders ≤1, ≤2 over 𝐴, we have ⟨𝐀, ≤1⟩ ⊨ 𝜙 iff
⟨𝐀, ≤2⟩ ⊨ 𝜙. In this case, we say that 𝐀 models 𝜙. Similarly, we define
𝜔-order-invariant first-order formulas [Rub08, § 3.2] by restricting the total
orders to have order-type 𝜔—i.e. to be isomorphic to ⟨ℕ, ≤⟩—or |𝐴| when |𝐴|
is finite.

For instance, the formula

∀𝑥. ∃𝑦. 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦

is 𝜔-order-invariant: it expresses the fact that the model is infinite. However,
it is not order-invariant.73 A priori, it is non-trivial to check if an order- 73 Indeed, ⟨ℕ, ≤⟩ satisfies the for-

mula but not ⟨ℕ, ≥⟩.invariant first-order formula (resp. 𝜔-order-invariant first-order formula)
holds in an automatic 𝜎-structure: how should this order be interpreted? By
order-invariance, any total order will do, and moreover by Example VII.2.5,
the length-lexicographic order is always automatic, and has the required
order-type!

Proposition VII.3.11 ([Rub08, § 3.2]). Model-checking of order-invariant
first-order formulas (resp. 𝜔-order-invariant first-order formulas) over auto-
matic structures is decidable.

A restricted form of this result was originally proved by Blumensath and
Grädel [BG04, Corollary 5.4] for the extension of first-order logic with the
quantifier “there are infinitely many”. Similarly, one can add counting quanti-
fiers of the form “the number of 𝑥’s s.t. 𝜙(𝑥) holds is congruent to 𝑘 mod 𝑛”
[Rub08, § 3.2] while preserving decidability.

Note however that it is undecidable whether a first-order formula is order-
invariant or 𝜔-order-invariant, be it on finite structures or on all structures.
This follows from the undecidability of first-order logic, see e.g. [Grä07,
Exercise 3.1.12].74 74 Hence, Proposition VII.3.11 should

be understood as a promise prob-
lem: we can decide the problem if
we are given the promise that the in-
put is order-invariant (resp. 𝜔-order-
invariant).

Interpretations. One way of rephrasing—and proving—Hodgson’s theorem
would be to first observe that 𝟐∗ has decidability first-order theory, and then
than this property is preserved under first-order interpretations. The result
would follow since all automatic structures are first-order interpretations

226

https://en.wikipedia.org/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem
https://en.wikipedia.org/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem

vii.3. automatic structures

of 𝟐∗ by Proposition VII.3.4. Colcombet and Löding proposed in [CL07] an
alternative vision by showing that:
• ⟨ℕ, succ⟩ has a decidable weak monadic second-order logic, where succ

denotes the successor relation,75

75 This is the classical result of au-
tomata theory and the motivation
for studying𝜔-automata. Recall that
weak monadic second-order logic
consists of monadic second-order
logic where monadic quantifiers are
restricted to finite sets.

• if a structure 𝐔 has a decidable weak monadic second-order theory, then
any structure 𝐀 that admits a “weak monadic second-order interpreta-
tion”76 from 𝐔 has a decidable first-order theory [CL07, Corollary 2.5];

76 This is the equivalent of FO-
interpretation for weak monadic
second-order logic. In particular, fi-
nite subsets elements of the domain
of 𝐔 are interpreted as elements of
the new structure. See [CL07, § 2.3]
for a formal definition.

• automatic structures are exactly the structures that can be obtained from
⟨ℕ, succ⟩ using WMSO-interpretations [CL07, Proposition 3.1].

VII.3.3 Problems on Automatic Structures

From the notion of automaticity two questions naturally arise:
1. What are the structural properties of automatic structures? For instance,

we have seen that all automatic structures are countable. This question
has been somewhat extensively studied for algebraic structures.

2. Given a decidable decision problem on finite structures, is its generalization
to automatic structures still decidable?

Isomorphism Problem for Automatic Structures
Input : Two automatic presentations 𝒜 and ℬ.

Question: Is 𝐀 isomorphic to 𝐁?

Blumensath and Grädel proved this problem to be undecidable [BG04, Theo-
rem 5.15]. The problem was later shown to be complete for the first level of
the analytical hierarchy [KNRS07, Theorem 5.9].

Automatic Ordinals. Automatic ordinals are quite simple: using e.g. Cantor’s
normal form, it is straightforward to prove that any ordinal strictly smaller
than 𝜔𝜔 is automatic.77 Delhommé proved the converse property to be true: 77 We see an ordinal as a structure

with a binary relation describing its
order.

an ordinal is automatic iff it is strictly smaller than 𝜔𝜔 [Del04, Corollaire 2.2].
Using again Cantor’s normal form, Khoussainov, Rubin & Stephan proved
that the isomorphism problem is decidable for automatic ordinals [KRS05,
Theorem 5.3]. These results have been generalized first to 𝜔-tree-automatic
ordinals by Finkel and Todorčević [FT13] and then to tree-automatic ordinals
which are moreover equipped with addition, by Jain, Khoussainov, Schlicht
and Stephan [JKSS19].

Automatic Boolean Algebras. Recall that a Boolean algebra can be either seen
as a partially ordered set following a set of axioms ensuring among other
the existence of a join, a meet and a negation, or a set equipped these three
operations, together with a minimal and maximal element. Both definitions
are actually first-order equivalent and so considering one or the other does
not change the notion of automaticity.

The isomorphism problem for automatic Boolean algebras is decidable
[KNRS07, Corollary 3.5] essentially because there are very few automatic

227

vii. finite-word relations and automatic structures

Boolean algebras [KNRS07, Theorem 3.4]. However, when going to 𝜔-tree-
automaticity, not only is the isomorphism problem undecidable, but Finkel
and Todorčević exhibited two somewhat simple-looking 𝜔-tree-automatic
Boolean algebras for which whether they were isomorphic is independent
from ZFC [FT10, Theorem 6.1].

Automatic Groups. The literature on automatic groups is remarkably ex-
tensive. Their study was introduced in the late 1980s, by showing that they
have a solvable word problem [Eps92, Theorem 2.1.9].78 Typical examples of 78 Actually this last result is proved

on the slightly bigger class of “regu-
larly generated groups”.

infinite automatic group are the braid group [Eps92, Theorem 9.3.1] and the
finitely-generated free groups. We refer the reader to [Ree22] for a recent and
detailed account on the history of the development of the theory of automatic
groups. Remarkably, despite being a very active research area, the decidability
of the isomorphism problem remains open.

Open Problem VII.3.12. Is the isomorphism problem decidable for auto-
matic groups?

Automatic Semigroups. Following the success of automatic groups, automatic
semigroups have been studied by Campbell, Robertson, Ruškuc and Thomas,
who showed that any finitely generated subsemigroup of a free semigroup is
automatic [CRRT01, Theorem 8.1].

Automatic Rings and Fields. Richer algebraic structures, like rings or fields
actually often fail to be captured by the notion of automaticity. For instance,
⟨ℕ, +, ⋅, 0, 1⟩ (Peano’s arithmetic) is not automatic. This essentially follows
from Proposition VII.1.8, applied to multiplication, together with a count-
ing argument, see [Blu24, Corollary XII.8.11]. Khoussainov, Nies, Rubin &
Stephan moreover proved that no infinite field79 can be automatic [JKSS19, 79 In fact their result also holds for

integral domains.Theorem 3.10 & Corollary 3.11].80
80 Note that this contrasts with
Tarski’s result that the first-order the-
ory of ⟨ℝ, +, ⋅, 0, 1⟩, and more gener-
ally of any real closed fields is decid-
able since it admits quantifier elimi-
nation [Hod93, Theorem 8.4.4].

VII.3.4 Automatic Graphs

Chapter VIII will mostly focus on automatic graphs, in which wewill study the
question of colourability and the homomorphism problem. One interesting
source of undecidability for automatic graphs comes from the following
construction.

Example VII.3.13. Consider a Turing machine 𝒯 = ⟨𝑄, Γ, 𝛿, 𝑞0,Acc⟩, where
𝑄 is the set of states, Γ is tape alphabet,

𝛿∶ (𝑄 ⧵Acc) × Γ → 𝔓(𝑄 × Γ × {←, ↓,→})

is the transition relation, Γ =̂ Γ ⊔ { }, and 𝑞0 and Acc are the initial and set
of final states, respectively. We represent a configuration ⟨𝑢, 𝑞, 𝑣⟩ by the word
𝑢𝑞𝑣 ∈ Γ ∗𝑄Γ ∗: in light of this, we will henceforth denote by “configuration”

228

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

vii.3. automatic structures

any string from the set Conf𝒯 =̂ Γ ∗𝑄Γ ∗.81 The configuration graph of 𝒯 is 81 We will often write 𝑢𝑞𝑣 as the con-
catenation 𝑢 ⋅ 𝑞 ⋅ 𝑣 to emphasize the
separation between all three words.

the infinite graph 𝒞𝑜𝑛𝑓𝒯 having Conf𝒯 as set of vertices and an edge from 𝛾
to 𝛾′, denoted 𝛾 → 𝛾′ if there is a one-step transition from 𝛾 to 𝛾′ in 𝒯. The
configuration graph 𝒞𝑜𝑛𝑓𝒯 of any Turing machine 𝒯 is an effective automatic
graph.

As a consequence, by reduction from the halting problem of a universal
Turing machine, we obtain the following result.

Proposition VII.3.14. There exists a fixed automatic graph 𝐆 over the al-
phabet 𝟚 s.t. the problem of whether, given two words 𝑢 and 𝑣 ∈ 𝟚∗, there is
a path from 𝑢 to 𝑣 in 𝐆 is undecidable.

Problems on automatic graphs have been mainly studied by Kuske and
Lohrey, who studied the following problems over automatic graphs.
• Highly undecidable problems: the existence of a Hamiltonian path is unde-

cidable, in fact it is complete for the first level of the analytical hierarchy

[KL10, Theorem 3.2]; the existence of an infinite path in directed trees
shares the same complexity [KL10, Theorem 3.6]; and so does the isomor-
phism problem [KNRS07, Theorem 5.9].

• Moderately undecidable problems: the existence of an Eulerian path is
undecidable, but is only complete for the second level of the arithmetical

hierarchy Π0
2 [KL10, Theorem 4.13].

However, as a consequence of Proposition VII.3.11, the fact that the graph
contains infinitely many edges—or isolated vertices, or any first-order defin-
able property—, is decidable over automatic graphs as it can be expressed by
an 𝜔-order-invariant property.

Some slightly more involved arguments, involving “Ramsey quantifiers”,
can show that whether the graph contains an infinite clique (or transitive tour-
nament) is decidable [KL10, Corollary 5.5], see also [Rub08, Theorem 3.20].

PropositionVII.3.15 ([Köc14, Proposition 6.5]). Whether an automatic graph
is 2-colourable, or equivalently bipartite, is undecidable. More precisely it is
coRE-complete.

For another survey on automatic structures, see [Grä20]. Lastly, we want
to note that recursive structures have been extensively studied since the late
XXth century: they are defined analogously to automatic structures, but
synchronous automata are replaced by Turing machines. Unsurprisingly, all
non-trivial problems are undecidable: hence, from a computability perspective,
the main question is to characterize the Turing degree of these problems. The
extent of the literature on this topic is too vast to be summarized here: we
refer the reader to the two-volume handbook [EGNRM98a; EGNRM98b].

229

Chapter VIII
A Dichotomy Theorem for Automatic Structures

Abstract

We study the separation problem of automatic relations, a.k.a. automatic relations,
by recognizable relations—namely finite unions of Cartesian products of regular
languages. We prove it to be computationally equivalent to the finite regular
colourability of automatic graphs, that takes an automatic presentation of a
graph as input, and asks whether it admits a regular colouring—meaning that for
each colour, the set of words representing the elements having this colour is a regular
language—with finitely many colours.
While the decidability of this problem remains open, we first show that, if the number
of colours is fixed to be any natural number 𝑘 ≥ 2, then this problem is undecidable.
This implies the undecidability of the separation problem of automatic relations by
recognizable relations where the number of unions allowed is bounded.
We then generalize this result, and prove a dichotomy theorem for automatic struc-
tures: for any finite relational structure 𝐁, the problem of whether an automatic
structure admits a homomorphism to 𝐁 is either decidable in NL, or is undecidable.
We extend these results to regular homomorphisms, for which we require the ho-
momorphisms to be regular, in the sense that every preimage of any element of the
target structure 𝐁 must be a regular language. In both cases, structures for which
the problem is decidable exactly correspond to those with “finite duality”.

Acknowledgements

Section VIII.3 corresponds to [BFM23, §§ 3–6], which has been published at MFCS
’23, and is a joint work with Pablo Barceló and Diego Figueira. Parts of Section VIII.1
also come from [BFM23].
Part of the dichotomy theorem, corresponding to Sections VIII.4.1, VIII.4.2 and VIII.5.2
and parts of Section VIII.5.3, was proven by Antoine Cuvelier during an internship I
supervised in summer 2024.
We thank Joanna Fijalkow for helpful discussions on constraint satisfaction problems,
and Edgar Baucher for pointing us to Mycielski’s construction.

231

Contents

VIII.1 Introduction 233

VIII.1.1 Classes of Relations 233

VIII.1.2 Constraint Satisfaction Problems 234

VIII.1.3 Contributions & Organization 235

VIII.2 Preliminaries 237

VIII.2.1 Regular Homomorphisms 237

VIII.2.2 Constructions on Structures 239

VIII.2.3 Constructions on Automatic Presentations 239

VIII.2.4 Idempotent Core 240

VIII.2.5 De Bruijn–Erdős Theorem 242

VIII.2.6 Obstructions and Finite Duality 242

VIII.2.7 Trees and Tree Duality 244

VIII.3 From Separation to Colouring of Automatic Graphs 246

VIII.3.1 Separability is Equivalent to Regular Colourability 246

VIII.3.2 Regular 𝑘-Colourability Problem 248

VIII.3.3 Bounded Recognizable Relations 252

VIII.4 Undecidability of the Homomorphism Problems 256

VIII.4.1 Overview & Easy Implications of the Dichotomy Theorem 256

VIII.4.2 Undecidability of ℋ𝑜𝑚(Aut, 𝐁) 258

VIII.4.3 Undecidability of ℋ𝑜𝑚reg(Aut, 𝐁) 262

VIII.5 Decidability of the Regular Homomorphism Problem 264

VIII.5.1 Uniformly First-Order Definable Homomorphisms 264

VIII.5.2 Hyperedge Consistency for Finite Structures 267

VIII.5.3 Hyperedge Consistency for Automatic Structures 270

VIII.6 Discussion 276

VIII.6.1 Undecidability of Finite Regular Colourability 276

VIII.6.2 Invariance under Graph Isomorphisms 277

VIII.6.3 Obstacles to Finite Colourability 277

VIII.6.4 Beyond Finite Duality 280

232

viii.1. introduction

VIII.1 Introduction

VIII.1.1 Classes of Relations

The complex landscape of rationality for finite-word relations described in
Section VII.1 yields a natural question of effectivity: given a relation in some
class, can we decide if it belongs to a given subclass?

Prior work has focused on the Rec-membership problem, which takes
as input an 𝑛-ary rational relation ℛ and asks whether it is equivalent to
a recognizable relation ⋃𝑖 𝐿𝑖,1 ×⋯× 𝐿𝑖,𝑛, where each 𝐿𝑖,𝑗 is a regular lan-
guage. Intuitively, the problem asks whether the different components of
the rational relation ℛ are almost independent of one another. The study of
Rec-membership is relevant since relations enjoying this property are often
amenable to some analysis including, e.g., abstract interpretations in program
verification, variable elimination in constraint logic programming, and query
processing over constraint databases—see [BHLLN19, Introduction] for a
more thorough discussion on this topic.

As mentioned in Section VII.1.5, in general, Rec-membership of rational
relations is undecidable [Ber79, § III, Theorem 8.4], but it becomes decidable
for the subclass of deterministic rational relations, which extends the class
of automatic relations. For automatic relations, the decidability of Rec-
membership can be obtained by a simple reduction to the problem of checking
whether a finite automaton recognizes an infinite language [LS19]—which is
decidable via a standard reachability argument. The precise complexity of the
problem, however, was only recently pinned down. By applying techniques
based on Ramsey Theorem over infinite graphs, it was shown that Rec-
membership of automatic relations is PSpace-complete when relations are
specified by non-deterministic automata [BHLLN19, Theorem 1] [BGLZ22,
Corollary 2.9].

A natural generalization of this question is the Rat/Rec-separability
problem, which takes two 𝑛-ary rational relations ℛ,ℛ′ ⊆ Σ ∗ × Σ ∗ and
checks whether there is a recognizable relation 𝒮 = ⋃𝑖 𝐿𝑖,1 ×⋯× 𝐿𝑖,𝑛 that
separates ℛ from ℛ′, meaning that ℛ ⊆ 𝒮 and ℛ′ ∩𝒮 = ∅, in which case we
say that ℛ and ℛ′ are separable by a recognizable relation. In other words, this
problem asks whether we can overapproximate ℛ with a recognizable relation
𝒮 that is constrained not to intersect with ℛ′. Separability problems of this
kind abound in theoretical computer science, in particular in formal language
theory where they have gained a lot of attention over the last few years, in a
large variety of settings—see e.g. [PZ16] for first-order definable languages
over finite and 𝜔-words, [CGM22] for their extension to countable ordinals,
[CMRZZ17] for piecewise languages, [Kop16] for separability question over
pushdown languages, or [CCLP17] for Parikh automata.

In this chapter, we focus on the following problem:

233

viii. a dichotomy theorem for automatic structures

Aut/Rec-separability problem
Input : Two automatic relations ℛ and ℛ′.

Question: Does there exist a recognizable relation 𝒮 s.t. ℛ ⊆ 𝒮 and
ℛ′ ∩ 𝒮 = ∅?

Notice that when ℛ′ is the complement of ℛ this problem boils down to Rec-
membership on automatic relations—which is decidable. However, Aut/Rec-
separability is more general than this problem, and to this day it is unknown
whether it is decidable.

VIII.1.2 Constraint Satisfaction Problems

Our work on the Aut/Rec-separability problem will eventually lead up to
the study of homomorphism problems where the target structure is fixed.
These problems are the central topic in the domain of constraint satisfaction
problems (CSPs).1 When the target structure is finite, the homomorphism 1 A typical example of such a prob-

lem is to work on the graph signa-
ture, and to fix the target structure to
be the 𝑘-clique (𝑘 ∈ ℕ>0): it exactly
corresponds to the 𝑘-colourability
problem.

problem is known to be decidable in NP. The precise complexity of the
problem, however, depends on the structure of the target, and is tightly
connected to the algebraic properties of the algebra associated to the structure.

A central result in the domain, originally conjectured by Feder and Vardi,
and known as the “dichotomy theorem” (formerly “dichotomy conjecture”),
states that any CSP whose target structure is finite is either in P or NP-
complete [FV98, § 2, “Dichotomy question”],2 and the characterization of 2 In other words, there is no NP-

intermediate problem amongst these
problems.

structures for which the problem was in P is precisely formulated in algebraic
terms.3 This conjecture extended a result of Schaefer, who proved two decades

3 Structures that admit a CSP prob-
lem in P are exactly those whose alge-
bra admits a “weak near-unanimity
operation”—see e.g. [Zhu20, § 1, p. 3].

earlier that CSPs over the Boolean domain4 was either P or NP-complete

4 Meaning that the target structure
can have only two elements—but re-
call that the signature 𝜎 can be arbi-
trary complex.

[Sch78, Theorem 2.1]. Twenty-four years later, this conjecture was proven
independently by Bulatov [Bul17, Theorem 1] and Zhuk [Zhu20, Theorem
1.4]. This algebraic approach is particularly fruitful but lies beyond the scope
of this thesis: we refer the reader to [BKW17; Lar17] for surveys on the topic.

Figure VIII.1: The 2-transitive tour-
nament 𝐓2 (left-hand side) and the
2-path 𝐏2 (right-hand side).

Beyond P and NP, the complexity of the homomorphism problem can
reach some surprisingly low complexities. Even for Boolean CSPs5, Allender,

5 Meaning again that the target struc-
ture has only two elements

Bauland, Immerman, Schnoor and Vollmer extended Schaefer’s theorem to
prove that every not-so-easy problem—meaning that it is not solvable in
coNLogTime—is complete for one class among NP, P, ⊕L, NL or L under
AC0-reductions [ABISV09, Theorem 3.1].

For non-Boolean CSPs, the landscape becomes even more complex. For
instance, given 𝑘 ∈ ℕ, we define the 𝑘-transitive tournament, denoted by 𝐓𝑘
and illustrated on Figure VIII.1, to be the directed graph with vertices 0, 1, … ,
𝑘, and with an edge from 𝑖 to 𝑗 iff 𝑖 < 𝑗. Similarly, the 𝑘-path 𝐏𝑘 has ⟦0, 𝑘⟧ as
its set of vertices, with an edge from 𝑖 to 𝑗 iff 𝑗 = 𝑖 + 1—see Figure VIII.1.

Then, a graph 𝐆 admits a homomorphism to 𝐓𝑘 iff it has no directed path
of size 𝑘 + 1, in the sense that this is no homomorphism from 𝐏𝑘+1 to 𝐆.
Symbolically:

∀𝐆, 𝐏𝑘+1 ���hom−−−→ 𝐆 iff 𝐆 hom−−−→ 𝐓𝑘.

234

https://complexityzoo.net/Complexity_Zoo\protect \protect \leavevmode@ifvmode \kern +.2222em\relax Symbols#%E2%8A%95P:_Parity_P
https://complexityzoo.net/Complexity_Zoo:A#ac0

viii.1. introduction

As a result, to decide if, for a finite graph𝐆, we have𝐆 hom−−−→ 𝐓𝑘, it suffices to
test if 𝐏𝑘+1 ���hom−−−→ 𝐆, which can be done in FOfin!

Structures sharing the same property as 𝐓𝑘, meaning that the existence of
a homomorphism to them amounts to not containing any obstructions among
a fixed finite set of obstructions are said to have finite duality. Like 𝐓𝑘, their
constraint satisfaction problem is in FOfin.6 Atserias proved the converse 6 Recall that FOfin ⊆ L, see Proposi-

tion VII.2.3.implication to this result [Ats08, Corollary 4].7
7 This result was followed in the same
year by Rossman’s theorem, that sub-
sumes it.

Proposition VIII.1.1 (Atserias’ theorem). Let 𝐁 be a finite 𝜎-structure. Then
𝐁 has finite duality if, and only if, ℋ𝑜𝑚(All, 𝐁) is first-order definable.

Moreover, Larose and Tesson proved a dichotomy theorem for CSPs with
small complexity.

Proposition VIII.1.2 (Larose-Tesson theorem). Let 𝐁 be a finite 𝜎-structure. If
𝐁 does not have finite duality, then ℋ𝑜𝑚(Fin, 𝐁) is L-hard under first-order
reductions.

Observe that this last proposition only allows for finite structures on
the source side of the problem. This chapter will generalize some results—
including the latter—on the homomorphism problem from finite structures
to automatic structures. The study of CSPs beyond finite structures is far
from a new topic, and has been the subject of many works in the past decade:
see for instance [KKOT15] for CSPs over “nominal structures”, i.e. structures
with “atoms”, or [KLOT16] for CSPs over 𝜎-structures which are first-order
definable over ⟨ℕ, =⟩.

VIII.1.3 Contributions & Organization

In Section VIII.3, we start by rephrasing the Aut/Rec-separability problem
in graph-theoretic terms.

Finite Regular Colourability of Automatic Graphs
Input : A presentation 𝒢 of an automatic graph 𝐆.

Question: Does 𝒢 admit a regular colouring with finitely many
colours?

A regular colouring with finitely many colours (resp. a regular 𝑘-colouring) is
a partition of the vertices of 𝒢 into finitely many (resp. 𝑘) regular languages
s.t. adjacent vertices cannot belong to the same set. Similarly, the regular
𝑘-colourability problem asks instead if 𝒢 admits a regular 𝑘-colouring, in
which case we say that 𝒢 is regularly 𝑘-colourable.

Theorem VIII.3.2. There are polynomial-time reductions:
1. from Aut/Rec-separability to finite regular colourability,
2. from finite regular colourability to Aut/Rec-separability, and
3. from regular 𝑘-colourability to Aut/𝑘-Rec-separability, for every
𝑘 > 0.

Further, the last two reductions are so that the second relation in the instance

235

viii. a dichotomy theorem for automatic structures

of the separability problem is the identity ℐ𝑑.

While we do not know how to solve the finite regular colourability,
we prove the problem to be undecidable if the number of colours is fixed.

Theorem VIII.3.7. The regular 𝑘-colourability problem on automatic
graphs is undecidable for every 𝑘 ≥ 2. More precisely, the problem is RE-
complete. This holds also for connected automatic graphs.

Then, in Section VIII.3.3, we build on this result to prove the undecidability
of some separability problems for automatic relations (Corollary VIII.3.10
and Proposition VIII.3.15).

Figure VIII.2: The 3-clique 𝐊3.
(Replica of Figure I.19.)

Figure VIII.3: A 3-colouring of some
beetle-shaped graph. (Replica of Fig-
ure I.20.)

Observing that regular 𝑘-colourability can be rephrased as the existence of
a regular homomorphism—meaning, in this context, a homomorphism whose
preimages are all regular languages—to the 𝑘-clique,8 this motivates us to

8 See Figures VIII.2 and VIII.3.

study the homomorphism problem and regular homomorphism problem
for automatic structures in Sections VIII.4 and VIII.5. Our main result is a
dichotomy theorem for automatic structures.9

9 Note that while for finite struc-
tures the dichotomy theorems either
separate FOfin from L—in the case
of Larose and Tesson—, or P from
NP—for Bulatov and Zhuk—, in our
case the dichotomy is between NL
and… undecidability!

Theorem VIII.4.1 (Dichotomy Theorem for Automatic Structures). Let 𝐁 be
a finite 𝜎-structure. The following are equivalent:
(DT)fin-dual. 𝐁 has finite duality;
(DT)hom-dec. ℋ𝑜𝑚(Aut, 𝐁) is decidable;
(DT)hom-reg-dec. ℋ𝑜𝑚reg(Aut, 𝐁) is decidable;
(DT)equal. ℋ𝑜𝑚(Aut, 𝐁) = ℋ𝑜𝑚reg(Aut, 𝐁), i.e. for any automatic presenta-

tion 𝒜 of a 𝜎-structure 𝐀, there is a homomorphism from 𝐀 to 𝐁 iff there
is a regular homomorphism from 𝒜 to 𝐁;

(DT)first-order. ℋ𝑜𝑚(All, 𝐁) has uniformly first-order definable homomor-
phisms.10 10 The notion of uniformly first-order

definable homomorphisms is defined
in Section VIII.5.1.

Moreover, when ℋ𝑜𝑚(Aut, 𝐁) and ℋ𝑜𝑚reg(Aut, 𝐁) are undecidable, they are
coRE-complete and RE-complete, respectively. When they are decidable, they
are NL.

The easy implications of this theorem are proven in Section VIII.4.1, and
the undecidability results—one for homomorphisms, and another one for
regular homomorphisms in the rest of Section VIII.4: both reductions for
undecidability generalize Larose and Tesson’s proof. In the case of regular
homomorphisms, the full sequence of reductions to prove undecidability goes
as follows:
• from the halting problem on deterministic reversible Turing machines

to the regular reachability problem for linear Turing machines;
• which is reduced in turn to regular unconnectivity in automatic

graphs;
• and lastly, this latter problem is reduced to ℋ𝑜𝑚reg(Aut, 𝐁) when 𝐁 does

not have finite duality—this reduction is the adaptation of Larose and
Tesson’s proof.

To our knowledge, none of these problems—except the halting problem—
have been studied before. Decidability results are given in Section VIII.5: in

236

viii.2. preliminaries

fact, the decidability of ℋ𝑜𝑚(Aut, 𝐁) when 𝐁 has finite duality is trivial, so
this section is dedicated to the problem ℋ𝑜𝑚reg(Aut, 𝐁). In Section VIII.5.1 we
give a succinct logic-based proof of the decidability of ℋ𝑜𝑚(Aut, 𝐁), however
the proof is somewhat abstract. In Sections VIII.5.2 and VIII.5.3 we give a more
visual solution, known as hyperedge consistency algorithm. It generalizes the
eponymous algorithm for finite structures, that captures the homomorphism
problem when the target structure has tree duality—which is a supclass of
finite duality. However, the proof of correctness of our algorithm is non-trivial
and relies on providing a fine understanding of the behaviour of the algorithm
for finite structures in the special case of target structures that have finite
duality. We conclude in Section VIII.6, by discussing conjectures and related
problems.

VIII.2 Preliminaries

VIII.2.1 Regular Homomorphisms

Given two regular languages 𝐾 and 𝐿,11 a regular function from 𝐾 to 𝐿 is a 11 Note that whether 𝐾 and 𝐿 share
the same alphabet is irrelevant since
we can always work on the union of
their alphabet.

function 𝑓∶ 𝐾 → 𝐿 s.t. the relation

{⟨𝑢, 𝑓(𝑢)⟩ ∣ 𝑢 ∈ 𝐾}

is automatic. A regular homomorphism between two presentations of auto-
matic 𝜎-structures 𝒜 and ℬ is a regular function from dom𝒜 to domℬ that
defines a homomorphism from 𝐀 to 𝐁.12 ,13 ,14 We denote by 𝒜 reg hom−−−−−→ ℬ the 12 We use the terminology “regular”

instead of “automatic” simply be-
cause “automatic homomorphism”
sounds somewhat weird.
13 Note that regular homomorphisms
are to automatic structures what
“definable homomorphisms” are to
“definable structures” in [KLOT16]:
they form a restriction on the notion
of homomorphisms to make then
finitely describable—although the
source structure might be infinite—,
using the same logical framework as
the one used to describe the source
structure.
14 The related notion of “regular iso-
morphism” (under the name “au-
tomatic isomorphism”) was studied
in [KN95, Definition 6.10]. They
showed that for any 𝜎-structure 𝐀,
there are either zero, one, or 𝜔 many
automatic presentations of 𝐀 up to
“regular isomorphism” [KN95, Theo-
rem 6.8].

existence of a regular homomorphism from 𝒜 to ℬ.

Property VIII.2.1. Let 𝑓∶ 𝐾 → 𝐿 be a function, where 𝐿 is finite. Then 𝑓 is a
regular function iff for every 𝑣 ∈ 𝐿, 𝑓−1[𝑣] is a regular language.

Proof. For the left-to-right implication, if 𝑓 is a regular function, then there
exists a first-order formula 𝜙(𝑥, 𝑦) s.t. for all ⟨𝑢, 𝑣⟩ ∈ 𝐾 × 𝐿, then

𝚺∗, 𝑢, 𝑣 ⊨ 𝜙(𝑥, 𝑦) iff 𝑣 = 𝑓(𝑢).

Then given 𝑣 ∈ 𝐿, the formula15

15 “𝑦 = 𝑣” is not properly defined in
the syntax of first-order logic but it
is straightforward to come up with a
formula expressing this property.

∃𝑦, 𝜙(𝑥, 𝑦) ∧ 𝑦 = 𝑣

describes {𝑢 ∈ 𝐾 ∣ 𝑓(𝑢) = 𝑣}, which is hence regular.
Conversely, we consider first-order formulas 𝜙𝑣 describing each set {𝑢 ∈

𝐾 ∣ 𝑓(𝑢) = 𝑣}, with 𝑣 ∈ 𝐿. Then

𝜙(𝑥) =̂ �
𝑣∈𝐿

𝜙𝑏(𝑥) ∧ 𝑦 = 𝑣

is a first-order formula—since 𝐿 is finite—describing 𝑓.

As a consequence, when 𝐁 is finite, the existence of a regular homo-

237

viii. a dichotomy theorem for automatic structures

morphism to 𝐁 is independent of its presentation, and we will hence write
𝒜 reg hom−−−−−→ 𝐁 to mean that 𝒜 reg hom−−−−−→ ℬ. In particular, a regular 𝑘-colouring
of a presentation of an automatic graph 𝒢 is equivalently a regular homo-
morphism from 𝒢 to 𝐊𝑘, or a 𝑘-colouring of 𝐆 s.t. for any colour, the set of
words of dom𝒢 sharing this colour is a regular language. Unsurprisingly, this
property cannot be extended to all automatic structures: for instance letting
𝒜 be the automatic presentation ⟨0∗, {⟨0𝑛, 0𝑛+1 ∣ 𝑛 ∈ ℕ⟩}⟩ of ⟨ℕ, succ⟩, and
letting 𝒜′ be the automatic presentation ⟨(00)∗, {⟨02𝑛, 02𝑛+2 ∣ 𝑛 ∈ ℕ⟩}⟩ of
the same structure, it can be shown that 𝒜 reg hom−−−−−→ 𝒜 but 𝒜 ����reg hom−−−−−→ 𝒜′.

𝑥0𝑦0 𝑥1𝑦0 𝑥2𝑦0 𝑥3𝑦0 𝑥4𝑦0

𝑥0𝑦1 𝑥1𝑦1 𝑥2𝑦1 𝑥3𝑦1 𝑥4𝑦1

𝑥0𝑦2 𝑥1𝑦2 𝑥2𝑦2 𝑥3𝑦2 𝑥4𝑦2

𝑥0𝑦3 𝑥1𝑦3 𝑥2𝑦3 𝑥3𝑦3 𝑥4𝑦3

𝑥0𝑦4 𝑥1𝑦4 𝑥2𝑦4 𝑥3𝑦4 𝑥4𝑦4

Figure VIII.4: A regular 2-colouring
of an automatic presentation of the
infinite quarter-grid.

In Figure VIII.4, we provide an example of a regular 2-colouring: we let
𝒢 = ⟨𝑉,ℰ⟩ be the automatic presentation of the infinite quarter-grid, defined
over the alphabet {𝑥, 𝑦} by 𝑉 =̂ 𝑥∗𝑦∗ and

ℰ = {⟨𝑥𝑝𝑦𝑞, 𝑥𝑝+1𝑦𝑞⟩ ∣ 𝑝, 𝑞 ∈ ℕ} ∪ {⟨𝑥𝑝𝑦𝑞, 𝑥𝑝𝑦𝑞+1⟩ ∣ 𝑝, 𝑞 ∈ ℕ}.

Then the unique 2-colouring of 𝒢 assigns one colour16 to the vertices of the 16 In yellow in Figure VIII.4.

form 𝑥𝑝𝑦𝑞 s.t. 𝑝 − 𝑞 is even. This colouring is of course regular.
Given a fixed signature 𝜎 and a 𝜎-structure 𝐁, we denote by:

• ℋ𝑜𝑚(Fin, 𝐁) (resp. ℋ𝑜𝑚(Aut, 𝐁), resp. ℋ𝑜𝑚(All, 𝐁)) the class of all finite
𝜎-structure (resp. automatic 𝜎-structure, resp. arbitrary 𝜎-structures) that
admit a homomorphism to 𝐁,

• ℋ𝑜𝑚reg(Aut, 𝐁) is the class of all automatic presentations of 𝜎-structures
that admit a regular homomorphism to 𝐁.

Somewhat abusively, we identify these classes with the associated decision
problems—except for ℋ𝑜𝑚(All, 𝐁) since arbitrary 𝜎-structures cannot be
encoded as finite strings. For finite structures, we assume the input to be
given using adjacency lists, and for automatic structures, we assume the input
to be described by an automatic presentation. We call ℋ𝑜𝑚reg(Aut, 𝐁) the
regular homomorphism problem over 𝐁.

238

viii.2. preliminaries

VIII.2.2 Constructions on Structures

Given two structures 𝐀 and 𝐁, we define the structure 𝐁𝐀 as follows:
• its domain are homomorphisms 𝐀 → 𝐁,
• for every predicate ℛ of arity 𝑘, for any homomorphism 𝑓1, … , 𝑓𝑘, we have
⟨𝑓1, … , 𝑓𝑘⟩ ∈ ℛ(𝐁𝐀) when

for every ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀), we have ⟨𝑓1(𝑎1), … , 𝑓𝑘(𝑎𝑘)⟩ ∈ ℛ(𝐁).

Proposition VIII.2.2 (Folklore: Currying Homomorphisms). Given struc-
tures 𝐀, 𝐁 and 𝐂, if 𝑓∶ 𝐀 × 𝐁 → 𝐂 is a homomorphism, then 𝐹∶ 𝐀 → 𝐂𝐁,
defined by 𝑎 ↦ (𝑏 ↦ 𝑓(𝑎, 𝑏)), is a homomorphism. In fact, this mapping
𝑓 ↦ 𝐹 is a bijection between homomorphisms 𝐀×𝐁 → 𝐂 and homomor-
phisms 𝐀 → 𝐂𝐁.

Proof. Let ℛ be a predicate of arity 𝑘, and let ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀). We want
to show that ⟨𝐹(𝑎1), … , 𝐹(𝑎𝑘)⟩ ∈ ℛ(𝐂𝐁): for any ⟨𝑏1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁), we have

⟨𝐹(𝑎1)(𝑏1), … , 𝐹(𝑎𝑘)(𝑏𝑘)⟩ = ⟨𝑓(𝑎1, 𝑏1), … , 𝑓(𝑎𝑘, 𝑏𝑘)⟩ ∈ ℛ(𝐂)

since 𝑓 is a homomorphism from 𝐀×𝐁 to 𝐂. Hence, 𝐹 is indeed a homomor-
phism from 𝐀 to 𝐂𝐁.

Dually, if 𝐹 is a homomorphism from𝐀 to 𝐂𝐁, we define 𝑓∶ 𝐀×𝐁 → 𝐂 by
⟨𝑎, 𝑏⟩ ↦ 𝐹(𝑎)(𝑏), and claim that 𝑓 is a homomorphism. Indeed, if ℛ be a pred-
icate of arity 𝑘, for any ⟨𝑎1, … , 𝑎𝑘⟩ ∈ ℛ(𝐀) and ⟨𝑏1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁), we have
⟨𝑓(𝑎1, 𝑏1), … , 𝑓(𝑎𝑘, 𝑏𝑘)⟩ = ⟨𝐹(𝑎1)(𝑏1), … , 𝐹(𝑎𝑘)(𝑏𝑘)⟩. Since ⟨𝐹(𝑎1), … , 𝐹(𝑎𝑘)⟩ ∈
ℛ(𝐂𝐁) and ⟨𝑏1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁) it follows that ⟨𝐹(𝑎1)(𝑏1), … , 𝐹(𝑎𝑘)(𝑏𝑘)⟩ ∈
ℛ(𝐂). Therefore, 𝑓 is a homomorphism from 𝐀×𝐁 to 𝐂.

It is then routine to check that the maps 𝑓 ↦ 𝐹 and 𝐹 ↦ 𝑓 defined in the
two previous paragraphs are mutually inverse bijections.

VIII.2.3 Constructions on Automatic Presentations

Let 𝒜 and ℬ be automatic presentations of some 𝜎-structures 𝐀 and 𝐁, over
alphabets Σ and Γ, respectively. We define 𝒜×ℬ to be the presentation over
the alphabet (Σ × Γ) ⊔ (Σ × { }) ⊔ ({ } × Γ) s.t.:

dom𝒜×ℬ =̂ {𝑢 ⊗ 𝑣 ∣ 𝑢 ∈ dom𝒜 ∧ 𝑣 ∈ domℬ}

ℛ𝒜×ℬ =̂ {⟨𝑢1 ⊗ 𝑣1, … , 𝑢𝑘 ⊗ 𝑣𝑘⟩ ∣ ⟨𝑢1, … , 𝑢𝑘⟩ ∈ ℛ𝒜 ∧ ⟨𝑣1, … , 𝑣𝑘⟩ ∈ ℛℬ}

for each predicate ℛ of arity 𝑘 in 𝜎. It is an automatic presentation of 𝐀×
𝐁. Indeed, given a first-order formula 𝜙(𝑥1, … , 𝑥𝑘) over 𝜎syncΣ , describing
ℛ𝒜, and a first-order formula 𝜓(𝑥1, … , 𝑥𝑘) over 𝜎syncΣ , describing ℛℬ, we
let 𝜙∗ (resp. 𝜓∗) be the formula obtained from 𝜙 (resp. 𝜓) by substituting
𝑙𝑎(𝑥) for ⋁𝑏∈Γ⊔{ } 𝑙⟨𝑎,𝑏⟩(𝑥) (resp. ⋁𝑏∈Σ⊔{ } 𝑙⟨𝑏,𝑎⟩(𝑥)). Then 𝜙∗ ∧ 𝜓∗ is a first-
order formula, over the product alphabet, that describes ℛ𝒜×ℬ. The same
construction works for dom𝒜×ℬ. This shows that if 𝐀 and 𝐁 are automatic

239

viii. a dichotomy theorem for automatic structures

𝜎-structures, then so is 𝐀×𝐁.17

17 Note that the block product is also
automatic. For instance, the infinite
quarter-grid of Figure VIII.4 can also
be constructed as the block product
of ⟨ℕ, +1⟩ with itself.

Proposition VIII.2.3. Let 𝐀, 𝐁 and 𝐂 be automatic 𝜎-structures, such that
𝐁 and 𝐂 are finite. Let 𝒜 (resp. ℬ and ℬ′, resp. 𝒞 and 𝒞′) be an automatic
presentation of𝐀 (resp. 𝐁, resp. 𝐂). Then 𝒜×ℬ reg hom−−−−−→ 𝒞 iff 𝒜×ℬ′ reg hom−−−−−→
𝒞′.

Proof. The proof follows from the following claim, which can be proven
exactly in the same fashion as Property VIII.2.1.

Claim VIII.2.4. Assuming again that𝐁 and𝐂 are finite, a function 𝑓∶ 𝒜×ℬ →
𝒞 is a regular homomorphism iff for every 𝑏 ∈ domℬ, for every 𝑐 ∈ dom𝒞,
{𝑎 ∈ dom𝒜 ∣ 𝑓(𝑎, 𝑏) = 𝑐} is a regular language.

In other words, the existence of a regular homomorphism does not depend
on the automatic presentation of the finite structures that are involved, but
only on the structure they represent. As a consequence of Proposition VIII.2.3,
we write 𝒜×𝐁 reg hom−−−−−→ 𝐂 as a synonym for 𝒜×ℬ reg hom−−−−−→ 𝒞.

Corollary VIII.2.5 (Currying). Let 𝐀, 𝐁 and 𝐂 be automatic 𝜎-structures,
and let 𝒜 be an automatic presentation of 𝐀. Then 𝒜 × 𝐁 reg hom−−−−−→ 𝐂 iff
𝒜 reg hom−−−−−→ 𝐂𝐁.

Proof. This also follows from Claim VIII.2.4.

VIII.2.4 Idempotent Core

Figure VIII.5: Reduction from
ℋ𝑜𝑚(All, 𝐁†) to ℋ𝑜𝑚(All, 𝐁)
when 𝐁 is the 2-transitive
tournament: we depict on the
left-hand side, the 𝜎𝐁-structure
𝐀 ∉ ℋ𝑜𝑚(All, 𝐓2†), and on the
right-hand side, the 𝜎-structure
Φ(𝐀) ∉ ℋ𝑜𝑚(All, 𝐓2) to which it is
reduced. The interpretation of unary
predicates in 𝐀 are described using
colours.

We fix a purely relational signature 𝜎. Given a 𝜎-structure 𝐁, we denote
by 𝜎𝐁 the signature obtained from 𝜎 by adding a unary predicate 𝑃𝑏 for each
𝑏 ∈ 𝐵. The marked structure 𝐁† of 𝐁 is the 𝜎𝐁-structure obtained from 𝐁 by
interpreting each predicate 𝑃𝑏 as the singleton {𝑏}.

Proposition VIII.2.6 (Folklore).18 ,19 If 𝐁 is a finite core, then the problems 18 This reduction is folklore, see e.g.
[LT09, Lemma 2.5]. We provide here
a self-contained proof.
19 The marked structure �̌�† of
the core of 𝐁 is usually called
the idempotent core of 𝐁. From
this proposition, we get that
ℋ𝑜𝑚(Fin, 𝐁) and ℋ𝑜𝑚(Fin, �̌�†)
are first-order equivalent. This
reduction is a central tool in the
algebraic approach to understand
constraint satisfaction problem since
the algebra associated to the CSP
over an idempotent core only has
idempotent operations, making it
much easier to work with.

ℋ𝑜𝑚(All, 𝐁†) and ℋ𝑜𝑚(All, 𝐁) are first-order equivalent. Moreover, this
equivalence preserves finiteness, in the sense that finite structures are mapped
to finite structures. Hence, by restricting this equivalence, we also obtain that
ℋ𝑜𝑚(Fin, 𝐁†) and ℋ𝑜𝑚(Fin, 𝐁) are first-order equivalent.

The non-easy part is to reduce ℋ𝑜𝑚(Fin, 𝐁†) to ℋ𝑜𝑚(Fin, 𝐁): only this
reduction requires the assumption that 𝐁 is a core.

Proof of Proposition VIII.2.6. X Reduction from ℋ𝑜𝑚(All, 𝐁) to ℋ𝑜𝑚(All, 𝐁†).
We reduce a 𝜎-structure 𝐀 to the 𝜎𝐁-structure 𝐀′ obtained from 𝐀 by inter-

240

viii.2. preliminaries

preting each predicate 𝑃𝑏 as the empty set. Clearly, a function from 𝐴 to 𝐵
is a homomorphism from 𝐀 to 𝐁 iff it is a homomorphism from 𝐀′ to 𝐁†,
proving the correctness of the reduction. It is, by definition, first-order.

X Reduction from ℋ𝑜𝑚(All, 𝐁†) to ℋ𝑜𝑚(All, 𝐁). We first define the
reduction Φ and show its correctness; the fact that it is a first-order reduction
is straightforward. We reduce a 𝜎𝐁-structure 𝐀 to the 𝜎-structure Φ(𝐀)
illustrated on Figure VIII.5 and defined as follows:
• its underlying universe is the disjoint union 𝐴⊔𝐵,
• given a predicate ℛ of arity 𝑘, its hyperedges are:

– all ℛ-tuple of 𝐀,
– all ℛ-tuple of 𝐁, and
– all ℛ-tuple ⟨𝑏1, … , 𝑏𝑖−1, 𝑎𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩ s.t. there exists 𝑏𝑖 for which the

ℛ-hyperedge ⟨𝑏1, … , 𝑏𝑖−1, 𝑏𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩ is in ℛ(𝐁), and 𝑎𝑖 belongs to
the interpretation of 𝑃𝑏𝑖 in 𝐀.

Note that by construction, the adjacency of 𝑎 ∈ 𝐴 in Φ(𝐀) is the union of
its adjacency in 𝐀, and the union of the adjacencies of 𝑏 in 𝐁 for all 𝑏 s.t.
𝑎 ∈ 𝑃𝑏(𝐀).

We show that 𝐀 ∈ ℋ𝑜𝑚(All, 𝐁†) iff Φ(𝐀) ∈ ℋ𝑜𝑚(All, 𝐁). So, assume
that there exists a homomorphism 𝑓∶ 𝐀 → 𝐁†. Then we let 𝑓′ ∶ 𝐴 ⊔ 𝐵 → 𝐵
be defined by 𝑓′(𝑎) = 𝑓(𝑎) for all 𝑎 ∈ 𝐴 and 𝑓′(𝑏) = 𝑏 for all 𝑏 ∈ 𝐵. We claim
that 𝑓′ is a homomorphism from Φ(𝐀) to 𝐁. Indeed, consider a hyperedge of
Φ(𝐀):
• if it is a hyperedge of 𝐀, its image by 𝑓′ is still a hyperedge of 𝐁 since 𝑓 is

a homomorphism from 𝐀 to 𝐁†;
• if it is a hyperedge of 𝐁, then its image by 𝑓′ is itself, and is hence a

hyperedge of 𝐁;
• otherwise, it must be of the form

⟨𝑏1, … , 𝑏𝑖−1, 𝑎𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩

s.t. there exists 𝑏𝑖 for which ⟨𝑏1, … , 𝑏𝑖−1, 𝑏𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁) and 𝑎𝑖 ∈
𝑃𝑏𝑖(𝐀): in this case, its image by 𝑓′ is

𝑓′(⟨𝑏1, … , 𝑏𝑖−1, 𝑎𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩) = ⟨𝑏1, … , 𝑏𝑖−1, 𝑏𝑖, 𝑏𝑖+1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁)

since 𝑓′(𝑏) = 𝑏 for all 𝑏 ∈ 𝐵 and 𝑓′(𝑎𝑖) = 𝑓(𝑎𝑖) = 𝑏𝑖 since 𝑎𝑖 ∈ 𝑃𝑏𝑖(𝐀) and
𝑓 is a homomorphism from 𝐀 to 𝐁†.

And hence, Φ(𝐀) hom−−−→ 𝐁.
Conversely, now let 𝑔∶ Φ(𝐀) → 𝐁 be a homomorphism. Its restriction to

𝐁, namely 𝑔|𝐵 is a homomorphism from 𝐁 to itself, and since 𝐁 is a core, it
must be an automorphism over 𝐁 by Proposition II.2.2. We then define a map
𝑔′ ∶ 𝐴 → 𝐵 by sending 𝑎 to (𝑔|𝐵)−1 ∘ 𝑔(𝑎), and claim that it is a homomorphism
from 𝐀 to 𝐁†. As a matter of fact, it clearly preserves ℛ-tuple for any ℛ in 𝜎,
since 𝑔 and (𝑔|𝐵)−1 are homomorphisms. We must then show that it preserves
all unary predicates 𝑃𝑏, with 𝑏 ∈ 𝐵: let 𝑎 ∈ 𝐴 s.t. 𝑃𝑏 holds, i.e. 𝑎 ∈ 𝑃𝑏(𝐀).

241

viii. a dichotomy theorem for automatic structures

Now, by construction of Φ(𝐀), the adjacency of 𝑔(𝑎) in 𝐁 and the adjacency
of 𝑔(𝑏) in 𝐁 are equal. Since 𝐁 is a core, it follows by Proposition II.2.4 that
𝑔(𝑎) = 𝑔(𝑏). By definition of 𝑔′, this rewrites as 𝑔′(𝑎) = 𝑏, i.e. 𝑔′(𝑎) = 𝑃𝑏(𝐁†).
Therefore, we have built a homomorphism from 𝐀 to 𝐁†.

Overall, this proves that Φ is correct. It is trivially a first-order reduction
and moreover, it preserves finiteness since 𝐁 is finite.

VIII.2.5 De Bruijn–Erdős Theorem

Proposition VIII.2.7 (De Bruijn–Erdős Theorem).20 Let 𝐀 be an arbitrary 20 It is straightforward to note that
one can replace “every finite substruc-
ture” by “every finite induced sub-
structure” in the statement of the the-
orem. The original theorem is about
graph colouring, but the generaliza-
tion is straightforward.

𝜎-structure and 𝐁 a finite 𝜎-structure. There is a homomorphism from 𝐀 to
𝐁 iff for every finite substructure 𝐀′ of 𝐀, there is a homomorphism from 𝐀
to 𝐁.

Proof. The left-to-right implication is direct. We prove the converse by using
the Tychonoff’s compactness theorem.21 So, assume that for every finite 21 This is a direct adaptation from

[Wik24, § “Proof”].substructure 𝐀′ of 𝐀, there is a homomorphism from 𝐀 to 𝐁. Consider the
topological space 𝐵𝐴, consisting of all functions from 𝐴 to 𝐵, together with
the product topology.22 By Tychonoff’s compactness theorem, 𝐵𝐴 is compact. 22 We equip 𝐵with the discrete topol-

ogy, making it compact since 𝐵 is fi-
nite.

For each finite subset 𝑋 of 𝐴, let 𝐻𝑋 denote the set of all 𝑓 ∈ 𝐵𝐴 s.t. 𝑓|𝑋
is a homomorphism from the substructure of 𝐀 induced by 𝑋 to 𝐁. Then,
each 𝐻𝑋 is closed—indeed, whether 𝑓 ∈ 𝐵𝐴 belongs to 𝐻𝑋 only depends on
finitely many 𝑓(𝑥)’s—, and moreover the intersection of finitely many 𝐻𝑋’s,
say 𝐻𝑋1 ∩⋯∩𝐻𝑋𝑛 , is non-empty since 𝐻𝑋1 ∩⋯∩𝐻𝑋𝑛 ⊇ 𝐻𝑋1∪…∪𝑋𝑛 and
by assumption 𝐻𝑋1∪…∪𝑋𝑛 is non-empty since 𝑋1 ∪⋯∪𝑋𝑛 is finite. Hence,
by compactness of 𝐵𝐴 and the finite intersection property, it follows that
⋂
𝑋𝐻𝑋 is non-empty, which means that there is a homomorphism from 𝐀 to

𝐁.

Corollary VIII.2.8.23 Given arbitrary 𝜎-structures 𝐁1 and 𝐁2, the following 23 Another important consequence of
the De Bruijn–Erdős Theorem is that,
for instance, the notion of dual does
not depend onwhether we are consid-
ering finite or arbitrary 𝜎-structures.

are equivalent:
1. for every finite 𝜎-structure 𝐀, we have 𝐀 hom−−−→ 𝐁1 iff 𝐀 hom−−−→ 𝐁2;
2. for every arbitrary 𝜎-structure 𝐀, we have 𝐀 hom−−−→ 𝐁1 iff 𝐀 hom−−−→ 𝐁2;
3. 𝐁1 and 𝐁2 are homomorphically equivalent.

Proof. (2) ⇒ (3) and (3) ⇒ (1) are trivial. For (1) ⇒ (2), we assume w.l.o.g.
by contradiction that there is an arbitrary 𝜎-structure 𝐀 s.t. 𝐀 hom−−−→ 𝐁1 but
𝐀���hom−−−→ 𝐁2. Then by Proposition VIII.2.7, there exists a finite substructure 𝐀0
of 𝐀 s.t. 𝐀0 �

��hom−−−→ 𝐁2. But then 𝐀0
hom−−−→ 𝐀 hom−−−→ 𝐁1, which contradicts (1).

VIII.2.6 Obstructions and Finite Duality

Let 𝐁 and 𝐃 be finite 𝜎-structures. We say that 𝐃 is an obstruction of 𝐁
when 𝐃���hom−−−→ 𝐁. In this case, note that finding 𝐃 inside 𝐀—in the sense that
𝐃 hom−−−→ 𝐀—implies that 𝐀 cannot have a homomorphism to 𝐁: in this sense,
the presence of𝐃 in an obstruction to the existence of a homomorphism to 𝐁.

242

https://en.wikipedia.org/wiki/Tychonoff%27s_theorem
https://en.wikipedia.org/wiki/Tychonoff%27s_theorem
https://en.wikipedia.org/wiki/Finite_intersection_property

viii.2. preliminaries

A dual of 𝐁 is any arbitrary set 𝒟 of finite 𝜎-structures s.t. for any finite
𝜎-structure 𝐀:

𝐀 hom−−−→ 𝐁 iff ∀𝐃 ∈ 𝒟, 𝐃���hom−−−→ 𝐀.

Note that any dual must only contain obstructions of 𝐁.24 The set of all

24 The notion of dual was implicitly
introduced byNešetřil and Pultr, who
proved that for undirected graph, no
non-trivial finite duality existed, in
the sense that the only cores 𝐁 hav-
ing a finite dual where the empty
graph, and the graph having a single
vertex and no edge [NP78, Corollary
4.1].

obstructions of 𝐁 is a dual of 𝐁.

Example VIII.2.9. Let 𝑘 ∈ ℕ. The set {𝐏𝑘+1} is a dual of the 𝑘-transitive
tournament 𝐓𝑘—see Figure VIII.1.

Indeed, 𝐏𝑘+1 ���hom−−−→ 𝐓𝑘. Dually, if 𝐆 if a finite graph s.t. 𝐆 hom−−−→ 𝐓𝑘 then
letting 𝑓 be a homomorphism from 𝐆 to 𝐓𝑘, we have that any edge from
𝑢 ∈ 𝐺 to 𝑣 ∈ 𝐺, we must have 𝑓(𝑢) < 𝑓(𝑣), and so 𝐏𝑘 ���hom−−−→ 𝐆.

Moreover, if 𝒟 and 𝒟′ are sets of obstructions of 𝐁 and 𝒟 ⊆ 𝒟′, then if 𝒟
is a dual, so is 𝒟′: hence, the goal is to find small duals. For this reason, duals
are also called complete sets of obstructions. We say that 𝐁 has finite duality if
is admits a finite dual, i.e. consisting of finitely many structures. For instance,
𝐓𝑘 has finite duality.

An obstruction 𝐃 of 𝐁 is critical25 when for every proper substructure 𝐃′
25 We borrow the terminology from
[LLT07].of 𝐃, we have 𝐃′ hom−−−→ 𝐁. Clearly, every critical obstruction must be a core.

Note first that the set of all critical obstructions of 𝐁 is a dual of 𝐁. In-
deed, if 𝐀 ���hom−−−→ 𝐁, then 𝐀 is an obstruction and so it must contain—by
well-foundedness of ℕ—a critical obstruction 𝐃 as a substructure.

Proposition VIII.2.10. Let 𝐁 be a finite 𝜎-structure. 𝐁 has finite duality iff
it has finitely many critical obstructions.

Proof. The right-to-left implication is trivial. For the converse one, let 𝒟 =
{𝐷1, … ,𝐷𝑚} be a finite dual of 𝐁. If 𝐂 is a critical obstruction of 𝐁 then in
particular𝐂���hom−−−→ 𝐁 and so there exists 𝑖 ∈ ⟦1,𝑚⟧ s.t. there is a homomorphism
𝑓 from𝐃𝑖 to 𝐂. Now the image of 𝑓 is again an obstruction of 𝐁, and since
𝐂 is critical, it follows that it must be 𝐂 itself. In other words, 𝑓 is strong
onto. In particular, we obtain that 𝐂 is a quotient of𝐃𝑖. Hence, there are only
finitely many critical obstructions of 𝐁.

One of the key interest of Proposition VIII.2.10 is to prove that some
structures don’t have finite duality.

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

𝑎′0

𝑏′5

𝒪(𝑛) nodes
Figure VIII.6: The zigzag graph 𝐙(5)2 .

Example VIII.2.11 (Example VIII.2.9, continued.). Let 𝑛 ∈ 𝐍. We define

the zigzag graph 𝐙(𝑛)2 of width 𝑛 and length 2 to be graph whose vertices
are 𝑎0, … , 𝑎𝑛, 𝑏0, … , 𝑏𝑛, 𝑎′0 and 𝑏′𝑛, with edges from 𝑎𝑖 to 𝑏𝑖−1 and to 𝑏𝑖 (for
𝑖 ∈ ⟦0, 𝑛⟧, whenever the nodes exist), and with an edge from 𝑎′0 to 𝑎0 and
from 𝑏𝑛 to 𝑏′𝑛. See Figure VIII.6 for an illustration.

243

viii. a dichotomy theorem for automatic structures

Note that 𝐙(𝑛)2 does not admit a homomorphism to the 2-path—indeed, such
a homomorphism should send 𝑎′0, 𝑎0 and 𝑏0 onto 0, 1, and 2, respectively, and
so all 𝑎𝑖’s (resp. 𝑏𝑖’s) must be sent onto 1 (resp. 2), but then 𝑏′𝑛 cannot be
mapped anywhere.

We claim that each 𝐙(𝑛)2 (𝑛 ∈ ℕ) is a critical obstruction of 𝐏2. We have
already seen that 𝐙(𝑛)2 is an obstruction of 𝐏2. But then notice that to obtain a
proper substructure of 𝐙(𝑛)2 , we must either:
• remove the edge from 𝑎′0 to 𝑎0 or the edge from 𝑏𝑛 to 𝑏′𝑛, in which case it

admits a homomorphism to 𝐏2, or
• remove any other edge, in which case the resulting substructure is not

connected, and both parts admit a homomorphism to 𝐏2.
And hence, by Proposition VIII.2.10, it follows that 𝐏2 does not have finite
duality.

On the other hand, each 𝐙(𝑛)2 with 𝑛 ∈ ℕ>0 admits a homomorphism to
the 2-transitive tournament, as witnessed by Figure VIII.7.26 In fact, this

26 However, observe that 𝐙(0)2 = 𝐏3 is
an obstruction of 𝐓2.

homomorphism is far from being unique: each vertex 𝑎1, 𝑎2, … , 𝑎𝑛−1 can be
sent on either 0 or 1 (the red and yellow vertices), and similarly, each vertex
𝑏1, 𝑏2, … , 𝑏𝑛−1 can be sent on either 1 or 2 (the yellow and blue vertices).27

27 Note that it is straightforward to
extend the fact that

𝐙(𝑛)2
hom−−−−→ 𝐓2 and 𝐙(𝑛)2 ���hom−−−−→ 𝐏2

to arbitrary values of 𝑘 ∈ ℕ, in the
sense that

𝐙(𝑛)𝑘
hom−−−−→ 𝐓𝑘 and 𝐙(𝑛)𝑘 ���hom−−−−→ 𝐏𝑘,

by letting 𝐙(𝑛)𝑘 be the graph obtained

from 𝐙(𝑛)2 by replacing the path lead-
ing to 𝑎0 by a path of length 𝑘 − 1.

Figure VIII.7: A homomorphism from
the zigzag graph (left-hand side) to
the 2-transitive tournament (right-
hand side).

While 𝐏𝑘 and 𝐓𝑘 are similar structures, one has finite duality and the other
does not.

Recall that by Atserias’ theorem, this implies that ℋ𝑜𝑚(Fin, 𝐓𝑘) is first-
order definable28 but ℋ𝑜𝑚(Fin, 𝐏𝑘) is not.29 28 By the formula saying that there

are no variables 𝑥0, … , 𝑥𝑘+1 s.t. for
all 𝑖 there is an edge from 𝑥𝑖 to 𝑥𝑖+1.
29 This can also be proven by hand:
for instance we let �̃�(𝑛)2 be defined

analogously to 𝐙(𝑛)2 except that we
remove the edge from 𝑎𝑘 to 𝑏𝑘 for
𝑘 = ⌈ 𝑛2 ⌉. Then for a well-chosen
single-exponential function 𝑓∶ ℕ →
ℕ, for 𝑛 ∈ ℕ, we have that Dupli-
cator wins the Ehrenfeucht-Fraïssé
game on 𝐙(𝑓(𝑛))2 and �̃�(𝑓(𝑛))2 . Since

𝐙(𝑓(𝑛))2 ���hom−−−−→ 𝐏2 but �̃�(𝑛)2
hom−−−−→

𝐏2, this implies that ℋ𝑜𝑚(Fin, 𝐏2)
is not first-order definable. See
e.g. [Kol07, § 3] for details on
Ehrenfeucht-Fraïssé games.

Remark VIII.2.12 (From finite to infinite structures). In the property

𝐀 hom−−−→ 𝐁 iff ∀𝐃 ∈ 𝒟, 𝐃���hom−−−→ 𝐀

defining a dual, we quantified 𝐀 over finite 𝜎-structures. We could equally
quantify over all 𝜎-structures without changing the notion of dual by De
Bruijn-Erdős theorem.

We say that a 𝜎-structure is rigid if its only automorphism is the identity.

Proposition VIII.2.13 ([LLT07, Lemma 4.1]).30 If a finite core has finite

30 In fact only assumes that 𝐁 has
tree duality: as we will see in Propo-
sition VIII.2.14, this is a weaker con-
dition than having finite duality.

duality, then it is rigid.

VIII.2.7 Trees and Tree Duality

A 𝜎-structure is strongly acyclic if its incidence graph is acyclic. A 𝜎-tree is
a 𝜎-structure that is both connected and strongly acyclic. Do not confuse

244

viii.2. preliminaries

this notion with the classical notion of directed trees: every directed tree is a
𝜎-tree for the graph signature 𝜎, but 𝐙(𝑛)2 —see Figure VIII.6—is a 𝜎-tree while
it is not a directed tree.

Given a 𝜎-tree 𝐓 and a vertex 𝑡 ∈ 𝑇, the height of 𝐓 when rooted at 𝑡 is the
maximal distance between 𝑡 and any other vertex of 𝐓.

We say that a finite 𝜎-structure 𝐁 has tree duality if it admits a (potentially
infinite) dual consisting only of 𝜎-trees. Somewhat surprisingly, Nešetřil and
Tardif showed that this notion generalizes finite duality.

Proposition VIII.2.14 ([NT00, Theorem 3.1]).31 If a finite 𝜎-structure 𝐁 has 31 The statement of [NT00, Theo-
rem 3.1] is somewhat cryptic: the
relationship with duals is given by
[NT00, Lemma 2.5]. We refer the
reader to Foniok’s Ph.D. for state-
ments that use a terminology closer
to ours: [Fon07, Theorem 2.1.12]
shows that if {𝐀} is a dual of 𝐁, then
𝐀 is homomorphically equivalent to
a tree, i.e. if a structure has “singleton
duality”, then it has tree duality. The
generalization to finite duality then
follows from [Fon07, Theorem 2.4.4].

finite duality, then it has tree duality.

The converse does not hold.

Proposition VIII.2.15. The 2-path 𝐏2 has tree duality.

Proof sketch. It can be shown that {𝐙(𝑛)∣ 𝑛 ∈ ℕ} is a dual of 𝐏2. Moreover,

each 𝐙(𝑛)2 (𝑛 ∈ ℕ) is a 𝜎-tree.

Feder and Vardi introduced a construction to decide if a finite structure
has tree duality: given a 𝜎-structure 𝐁, we let 𝔘(𝐁) be the 𝜎-structure whose
domain is 𝔓+(𝐵), and for every ℛ(𝑘) ∈ 𝜎, we have ⟨𝑌1, … , 𝑌𝑘⟩ ∈ ℛ(𝔘(𝐁))
(with𝑌1, … , 𝑌𝑘 ∈ 𝔓+(𝐵)) precisely when for every 𝑖 ∈ ⟦1, 𝑘⟧, for every 𝑏𝑖 ∈ 𝑌𝑖,
there exists 𝑏𝑗 ∈ 𝑌𝑗 for every 𝑗 ≠ 𝑖 s.t. ⟨𝑦1, … , 𝑦𝑘⟩ ∈ ℛ(𝐁).32 In the case of 32 In fact 𝔘(−) can easily be extended

to be a functor in the category of 𝜎-
structures, see e.g. [NO12a, § 9.2.2].

graphs, the nodes of 𝔘(𝐇) are non-empty subsets of vertices of 𝐇, and there
is an edge from 𝑋 to 𝑌 when:
• for every 𝑥 ∈ 𝑋, there exists 𝑦 ∈ 𝑌 s.t. ⟨𝑥, 𝑦⟩ is an edge of 𝐇, and
• for every 𝑦 ∈ 𝑌, there exists 𝑥 ∈ 𝑋 s.t. ⟨𝑥, 𝑦⟩ is an edge of 𝐇.

By construction, note that 𝑏 ↦ {𝐵} defines a homomorphism from 𝐁 to
𝔘(𝐁).

Proposition VIII.2.16 ([FV98, Theorem 21]). A finite 𝜎-structure 𝐁 has tree
duality if, and only if, 𝔘(𝐁) hom−−−→ 𝐁, or, equivalently, if 𝐁 and 𝔘(𝐁) are homo-
morphically equivalent.

Note that 𝔘(𝔘(𝐁)) is always homomorphically equivalent to 𝔘(𝐁)—see e.g.
[NO12a, § 9.2.2, Proposition 9.1]— and so 𝔘(𝐁) always has tree duality, no
matter if 𝐁 has this property.

ExampleVIII.2.17 (Example VIII.2.11, continued). Using Proposition VIII.2.16,
we can prove for instance that if a graph𝐆 has tree duality, then either it is a
DAG, or 𝐆 contains a self-loop.

Indeed, let 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑚 be a directed cycle in 𝐆, with 𝑣0 = 𝑣𝑚.
Then in 𝔘(𝐆), there is an edge from {𝑣0, 𝑣1, … , 𝑣𝑚} to itself. Since𝐆 has tree
duality, it follows by Proposition VIII.2.16 that 𝔘(𝐆) hom−−−→ 𝐆 and hence 𝐆
also contains a self-loop.

Note that, if 𝐆 contains a self-loop, then actually it is homomorphically
equivalent to the graph consisting of a single self-loop—that admits ∅ as a
dual and hence has tree duality. In other words, what we showed can be

245

viii. a dichotomy theorem for automatic structures

rephrased as: any non-trivial graph with tree duality is a DAG. For instance,
this implies that 𝐊2 does not have tree duality.

Figure VIII.8: The Feder-Vardi con-
struction 𝔘(𝐏2) on the 2-path.

On the other hand, we saw in Example VIII.2.11 that 𝐏2 does not have finite
duality. However, it has tree duality: indeed, see Figure VIII.8 and observe
that 𝔘(𝐏2)

hom−−−→ 𝐏2.

VIII.3 From Separation to Colouring of Automatic Graphs

VIII.3.1 Separability is Equivalent to Regular Colourability

We start by showing that the Rec-separability problem is equivalent, under
polynomial time reductions, to the regular colourability problem. To
make our statement precise, we need some terminology.

Let 𝑘-Rec be the class of languages expressed by unions of products of 𝑘
regular languages which form a partition: in the binary case, this corresponds
to relations of the form (𝐿𝑖1 × 𝐿𝑗1) ∪ ⋯ ∪ (𝐿𝑖ℓ × 𝐿𝑗ℓ), with 𝑖1, 𝑗1, … , 𝑖ℓ, 𝑗ℓ ∈
⟦1, 𝑘⟧, for some regular partition33 𝐿1, … , 𝐿𝑘 of Σ ∗ and ℓ ∈ ℕ. Note that 33 By “regular partition”, we mean

that 𝐿1, … , 𝐿𝑘 is a partition ofΣ∗, and
that moreover each 𝐿𝑖 is a regular lan-
guage.

Rec = ⋃𝑘 𝑘-Rec.

Example VIII.3.1. For instance, (𝑎𝑎)∗ × (𝑎𝑎𝑎)∗ belongs to 4-Rec but not to
3-Rec since, for any 𝑘 ∈ ℕ, we have that (𝑎𝑎)∗ × (𝑎𝑎𝑎)∗ ∈ 𝑘-Rec iff there
exists a regular partition of 𝑎∗ into 𝑘 languages s.t. both (𝑎𝑎)∗ and (𝑎𝑎𝑎)∗

can be expressed as the union of some of these languages. To get the upper
bound 𝑘 = 4, consider the partition ⟨𝐿6, 𝐿3, 𝐿2, 𝐿⊥⟩ where 𝐿6 = (𝑎6)∗, 𝐿3 =
(𝑎3)∗ ∖𝐿6, 𝐿2 = (𝑎2)∗ ∖𝐿6 and 𝐿⊥ = 𝑎∗ ∖ (𝐿2 ∪ 𝐿3 ∪ 𝐿6).

Theorem VIII.3.2. There are polynomial-time reductions:
1. from Aut/Rec-separability to finite regular colourability,
2. from finite regular colourability to Aut/Rec-separability, and
3. from regular 𝑘-colourability to Aut/𝑘-Rec-separability, for every
𝑘 > 0.

Further, the last two reductions are so that the second relation in the instance
of the separability problem is the identity ℐ𝑑.

Proof of (2) and (3). We start with the last two reductions. Given an auto-
matic graph ⟨𝑉,ℰ⟩ over an alphabet Σ, consider the instance ⟨ℛ1,ℛ2⟩ for
the Rec-separability problem, where ℛ1 = ℰ and ℛ2 = ℐ𝑑. If ⟨𝑉,ℰ⟩ is
regularly 𝑘-colourable via the colouring 𝑉1, … , 𝑉𝑘 then the 𝑘-Rec relation
⋃
𝑖≠𝑗 𝑉𝑖 × 𝑉𝑗 separates ℛ1 = ℰ and ℛ2 = ℐ𝑑. Conversely, if a 𝑘-Rec rela-

tion ℛ ⊆ Σ ∗ ×Σ ∗ on the regular partition 𝑉1 ⊔⋯⊔𝑉𝑘 = Σ ∗ separates ℛ1
and ℛ2, then ⋃𝑖≠𝑗 𝑉𝑖 × 𝑉𝑗 also separates ℛ1 and ℛ2, and this implies that
𝑉1, … , 𝑉𝑘 is a 𝑘-colouring for ⟨Σ ∗,ℰ⟩, and in particular for ⟨𝑉,ℰ⟩.

For the first reduction, let us introduce some terminology. Given two
relations ℛ1, ℛ2 over Σ ∗, say that 𝑢 ∈ Σ ∗ is compatible with 𝑢′ ∈ Σ ∗ when
for all words 𝑣 ∈ Σ ∗:

246

viii.3. from separation to colouring of automatic graphs

(compℓ): ⟨𝑢, 𝑣⟩ ∈ ℛ1 ⇒ ⟨𝑢′, 𝑣⟩ ∉ ℛ2, (compr): ⟨𝑣, 𝑢⟩ ∈ ℛ1 ⇒ ⟨𝑣, 𝑢′⟩ ∉ ℛ2,
(comp′ℓ): ⟨𝑢′, 𝑣⟩ ∈ ℛ1 ⇒ ⟨𝑢, 𝑣⟩ ∉ ℛ2 & (comp′r): ⟨𝑣, 𝑢′⟩ ∈ ℛ1 ⇒ ⟨𝑣, 𝑢⟩ ∉ ℛ2.

Define the incompatibility graph ℐ𝑛𝑐ℛ1,ℛ2
as the graph whose vertices are all

words of Σ ∗, and with an edge from 𝑢 to 𝑣 whenever 𝑢 is not compatible with
𝑣. Note that ℐ𝑛𝑐ℛ,ℐ𝑑 is exactly the graph ⟨Σ ∗,ℛ⟩.

Example VIII.3.3. Let Σ = {𝑎, 𝑏}, ℛ1 be the equal-length relation, and

ℛ2 = {⟨𝑢, 𝑢𝑎⟩ ∣ 𝑢 ∈ Σ ∗} ∪ {⟨𝑢, 𝑢𝑏⟩ ∣ 𝑢 ∈ Σ ∗},

that we depict in Figure VIII.9. Then, 𝑢 is incompatible with 𝑢′ if |𝑢| = |𝑢′| + 1
(this is given by (compℓ) or (compr)), or if |𝑢′| = |𝑢| + 1 (this is given by
(comp′ℓ) or (comp′r)). This gives rise to the incompatibility graph of Fig-
ure VIII.10.

𝜀

𝑎

𝑎𝑎 𝑎𝑏

𝑏

𝑏𝑎 𝑏𝑏

Figure VIII.9: The relation ℛ2 of Ex-
ample VIII.3.3, restricted to words of
length at most 2.

𝜀

𝑎

𝑎𝑎 𝑎𝑏

𝑏

𝑏𝑎 𝑏𝑏

Figure VIII.10: Incompatibility graph
ℐ𝑛𝑐ℛ1,ℛ2

and its regular 2-colouring.

Note that while neither ℛ1 nor ℛ2 are recognizable, they are separable by
the recognizable relation 𝒮 consisting of all pairs ⟨𝑢, 𝑣⟩ such that |𝑢| and |𝑣|
have the same parity. Moreover, ℐ𝑛𝑐ℛ1,ℛ2

is regularly 2-colourable, the two
colours being the words of even and odd length.

Proposition VIII.3.4. If ℛ1 and ℛ2 are automatic, then so is ℐ𝑛𝑐ℛ1,ℛ2
.

Moreover, we can build an automaton for ℐ𝑛𝑐ℛ1,ℛ2
in polynomial time in the

size of the automata for ℛ1 and ℛ2.

Proof. By definition, the incompatibility relation ℐ𝑛𝑐ℛ1,ℛ2
can be written as

ℛ¬(compℓ) ∪ℛ¬(comp′ℓ)
∪ℛ¬(compr) ∪ℛ¬(comp′r)

, where:

ℛ¬(compℓ) =̂ �⟨𝑢, 𝑢
′⟩ ∈ Σ ∗ ×Σ ∗ � ∃𝑣 ∈ Σ ∗, ⟨𝑢, 𝑣⟩ ∈ ℛ1 ∧ ⟨𝑢′, 𝑣⟩ ∈ ℛ2�,

ℛ¬(comp′ℓ)
=̂ �⟨𝑢, 𝑢′⟩ ∈ Σ ∗ ×Σ ∗ � ∃𝑣 ∈ Σ ∗, ⟨𝑢′, 𝑣⟩ ∈ ℛ1 ∧ ⟨𝑢, 𝑣⟩ ∈ ℛ2�,

ℛ¬(compr) =̂ �⟨𝑢, 𝑢
′⟩ ∈ Σ ∗ ×Σ ∗ � ∃𝑣 ∈ Σ ∗, ⟨𝑣, 𝑢⟩ ∈ ℛ1 ∧ ⟨𝑣, 𝑢′⟩ ∈ ℛ2�, and

ℛ¬(comp′r)
=̂ �⟨𝑢, 𝑢′⟩ ∈ Σ ∗ ×Σ ∗ � ∃𝑣 ∈ Σ ∗, ⟨𝑣, 𝑢′⟩ ∈ ℛ1 ∧ ⟨𝑣, 𝑢⟩ ∈ ℛ2�

Observe that starting from automata for ℛ1 and ℛ2, then for each of the
relation ℛ¬(compℓ), ℛ¬(comp′ℓ)

, ℛ¬(compr) or ℛ¬(comp′r)
, we can build an

automaton recognizing them using a product construction, which can be
implemented in polynomial time.34 It then follows that we can build a 34 More precisely, in this product

construction the states are 𝑄1 ×𝑄2
where 𝑄𝑖 is the set of states of an au-
tomaton 𝒜𝑖 for ℛ𝑖. Then, for each
transition

𝑞𝑖
⟨𝑎, 𝑏⟩−−−−→ 𝑞′𝑖

in 𝒜𝑖 (𝑖 ∈ {1, 2}), we put a transition

⟨𝑞1, 𝑞2⟩
⟨𝑎, 𝑐⟩−−−−→ ⟨𝑞′1, 𝑞

′
2⟩,

with 𝑎, 𝑏, 𝑐 ∈ Σ ⊔ {⊥}. Potentially,
this can produce transitions labelled
by ⟨⊥,⊥⟩: we can get rid of those
using the standard elimination of 𝜀-
transitions. Finally, a state ⟨𝑞1, 𝑞2⟩ is
accepting if 𝑞1 and 𝑞2 are accepting
in 𝒜1 and 𝒜2, respectively.

polynomial-size automaton recognizing ℐ𝑛𝑐𝑅1,𝑅2 in polynomial time.

We can now finish the proof of Theorem VIII.3.2.

Proof of (1). Given an instance ⟨ℛ1,ℛ2⟩ of the Rec-separability problem,
we reduce it to the regular colourability problem on its incompatibility
graph ℐ𝑛𝑐ℛ1,ℛ2

.
X Left-to-right implication. Assume that there exists 𝒮 in 𝑘-Rec that

separates ℛ1 from ℛ2. Then 𝒮 can be written as (𝐿𝑖1 × 𝐿𝑗1) ∪⋯∪ (𝐿𝑖ℓ × 𝐿𝑗ℓ),
where (𝐿1, … , 𝐿𝑘) is a partition of Σ ∗ in 𝑘 regular languages. We define the

247

viii. a dichotomy theorem for automatic structures

colour of a word 𝑢 ∈ Σ ∗ as the unique 𝑖 ∈ ⟦1, 𝑘⟧ s.t. 𝑢 ∈ 𝐿𝑖. In other words,
the colouring is simply ⟨𝐿1, … , 𝐿𝑘⟩.

This is indeed a proper colouring: if 𝑢 and 𝑢′ have the same colour, we
claim that ⟨𝑢, 𝑢′⟩ ∉ ℐ𝑛𝑐ℛ1,ℛ2

, i.e. that 𝑢 is compatible with 𝑢′. Indeed, take
any 𝑣 ∈ Σ ∗: if ⟨𝑢, 𝑣⟩ ∈ ℛ1, then ⟨𝑢, 𝑣⟩ ∈ 𝒮, so ⟨𝑢, 𝑣⟩ ∈ 𝐿𝑖𝑚 × 𝐿𝑗𝑚 for some
𝑚 ∈ ⟦1, ℓ⟧. But since 𝑢 has the same colour as 𝑢′, the fact that 𝑢 ∈ 𝐿𝑖𝑚 implies
𝑢′ ∈ 𝐿𝑖𝑚 , and hence ⟨𝑢′, 𝑣⟩ ∈ 𝐿𝑖𝑚 ×𝐿𝑗𝑚 ⊆ 𝒮. But 𝒮 separates ℛ1 from ℛ2, and
therefore ⟨𝑢′, 𝑣⟩ ∉ ℛ2. This tells us that (compℓ) holds. The other conditions
hold by symmetry. We conclude that ⟨𝐿1, … , 𝐿𝑘⟩ defines a proper 𝑘-colouring
of ℐ𝑛𝑐ℛ1,ℛ2

, that is regular since the 𝐿𝑖’s are regular languages by definition.
X Right-to-left implication. Assume that ℐ𝑛𝑐ℛ1,ℛ2

is finitely regularly
colourable, say by ⟨𝐿1, … , 𝐿𝑘⟩. Then let 𝒮 be the union of all 𝒮𝑖’s (𝑖 ∈ ⟦1, 𝑘⟧)
where

𝒮𝑖 =̂ {⟨𝑢, 𝑣⟩ ∣ 𝑢 ∈ 𝐿𝑖 and ⟨𝑢′, 𝑣⟩ ∈ ℛ1 for some 𝑢′ ∈ 𝐿𝑖}

∪ {⟨𝑢, 𝑣⟩ ∣ 𝑣 ∈ 𝐿𝑖 and ⟨𝑢, 𝑣′⟩ ∈ ℛ1 for some 𝑣′ ∈ 𝐿𝑖}.

Since ⋃𝑖 𝐿𝑖 = Σ ∗, we get ℛ1 ⊆ 𝒮. Moreover, we claim that ℛ2 ∩ 𝒮 = ∅.
Indeed, if ⟨𝑢, 𝑣⟩ ∈ 𝒮, then ⟨𝑢, 𝑣⟩ ∈ 𝒮𝑖 for some 𝑖 ∈ ⟦1, 𝑘⟧. It either means that
(1) 𝑢 ∈ 𝐿𝑖 and ⟨𝑢′, 𝑣⟩ ∈ ℛ1 for some 𝑢′ ∈ 𝐿𝑖, or (2) 𝑣 ∈ 𝐿𝑖 and ⟨𝑢, 𝑣′⟩ ∈ ℛ2 for
some 𝑣′ ∈ 𝐿𝑖. In case (1), 𝑢 and 𝑢′ have the same colour, and since ⟨𝐿1, … , 𝐿𝑘⟩
is a colouring of ℐ𝑛𝑐ℛ1,ℛ2

, 𝑢 must be compatible with 𝑢′. The assumption
⟨𝑢′, 𝑣⟩ ∈ ℛ1 together with (comp′ℓ) then yields that ⟨𝑢, 𝑣⟩ ∉ ℛ2. The other
case is symmetric. Therefore, ⟨𝑢, 𝑣⟩ ∉ ℛ2, and thus 𝒮 separates ℛ1 from ℛ2.

Finally, we show that 𝒮 is recognizable. In fact,

𝒮 =
𝑘
�
𝑖=1
�𝐿𝑖 ×ℛ1[𝐿𝑖]� ∪ �ℛ−1

1 [𝐿𝑖] × 𝐿𝑖�,

where for any set 𝑋 ⊆ Σ ∗ we define ℛ1[𝑋] (resp. ℛ−1
1 [𝑋]) to be the set of

𝑣 ∈ Σ ∗ (resp. 𝑢 ∈ Σ ∗) such that ⟨𝑢, 𝑣⟩ ∈ ℛ1 for some 𝑢 ∈ 𝑋 (resp. 𝑣 ∈ 𝑋).
Hence, ℛ1 and ℛ2 are Rec-separable.35 35 Note however that 𝒮 does not nec-

essarily belong to 𝑘-Rec, but a pri-
ori to 8𝑘-Rec: indeed, from the 𝐿𝑖’s,
ℛ1[𝐿𝑖]’s and ℛ−1

1 [𝐿𝑖]’s, one can pro-
duce using a powerset construction
a partition of Σ∗ in 23𝑘 = 8𝑘 regular
languages s.t. any 𝐿𝑖 (resp. ℛ1[𝐿𝑖],
resp. ℛ−1

1 [𝐿𝑖]) can be written as the
union of some of these languages.

Motivated by these reductions, we focus our attention to regular colourings
of automatic graphs, eventually proving that both the regular 𝑘-colourability
and regular colourability problems are undecidable.

VIII.3.2 Regular 𝑘-Colourability Problem

We show that the regular 𝑘-colourability problem is undecidable for
𝑘 ≥ 2.36 This is proven by a reduction from a suitable problem on reversible 36 Using this, we obtain in the next

subsection the undecidability for the
separability problem on two natural
classes of recognizable relations.

Turing machines with certain restrictions, which we call “well-founded”.

Regularity of Reachability for Turing Machines. We say that a Turing machine
𝒯 is reversible, if every node of 𝒞𝑜𝑛𝑓𝒯 has in-degree at most 1, in other words
if the machine is co-deterministic.37 ,38 We say that a Turing machine 𝒯 is 37 The proof of undecidability of the

isomorphism problem for automatic
structures [KNRS07, § 5] also relies
on the use of reversible Turing ma-
chines.
38 Formore details and pointers on re-
versible Turing machines, see [Mor17,
Chapter 5].

248

viii.3. from separation to colouring of automatic graphs

well-founded if its configuration graph is such that:
1. the initial configuration has in-degree zero, and
2. there are no infinite backward paths 𝛾0 ← 𝛾1 ←⋯ in 𝒞𝑜𝑛𝑓𝒯.

We say that a Turing machine is linear if it is well-founded, deterministic
and reversible. By construction, a Turing machine is linear iff (1) its configu-
ration graph consists of a possibly infinite disjoint union of directed paths,
which are all finite, or isomorphic to ⟨ℕ, succ⟩ and (2) the initial configuration
has in-degree zero. Such a configuration graph is depicted on Figure VIII.13.39 39 Note that it is decidable whether

a Turing machine is linear. In fact,
condition (1) can be expressed in first-
order logic over 𝚺∗.

The regular reachability problem is the problem of, given a Turing
machine 𝒯, to decide whether its set of reachable configurations Reach𝒯 is a
regular language. To show that is it undecidable, we exhibit a reduction from
the halting problem on deterministic reversible Turing machines.

Proposition VIII.3.5 ([Lec63, Theorem 1]). The halting problem on deter-
ministic reversible Turing machines is RE-complete.

Lemma VIII.3.6. The regular reachability problem is RE-complete, even
if restricted to linear Turing machines.

Proof sketch. The upper bound is trivial. For the converse one, we reduce the
halting problem on deterministic reversible Turing machines, in such a way
that the reachable configurations whose state 𝑞 coincide with the state of the
original machine are of the form 𝑢 ⋅ 𝑞 ⋅ 𝑣▷𝑛 ◁𝑛 where 𝑢 ⋅ 𝑞 ⋅ 𝑣 is a configuration
of the original machine, ▷ and ◁ are new symbols, and 𝑛 ∈ ℕ. Transitions
are defined in such a way that the new machine is linear: this is implemented
by having, for every transition 𝑢 ⋅ 𝑞 ⋅ 𝑣 → 𝑢′ ⋅ 𝑞′ ⋅ 𝑣′ of the original machine
and every 𝑛,𝑚 ∈ ℕ, a multistep transition

𝑢 ⋅ 𝑞 ⋅ 𝑣 ▷𝑛 ◁𝑚 →∗ 𝑢′ ⋅ 𝑞′ ⋅ 𝑣′ ▷𝑛+1 ◁𝑚+1.

The construction is illustrated in Figure VIII.11.

0 0 1 0 1 ▷ ▷ ▷ ◁ ◁ ◁

𝑝

0 0 1 0 1 1 ▷ ▷ ◁ ◁ ◁

0 0 1 0 1 1 ▷ ▷ ▷ ▷ ◁

0 0 1 0 1 1 ▷ ▷ ▷ ▷ ◁ ◁ ◁ ◁

0 0 1 0 1 1 ▷ ▷ ▷ ▷ ◁ ◁ ◁ ◁

𝑞

simulate 𝑇

overwrite the first two ◁’s
with 𝑎’s

append three ◁’s

go back to the new posi-
tion, in the new state

Figure VIII.11: Encoding of a single
transition of the form “when reading
a blank in state 𝑝, write a 1, go in
state 𝑞 and move right” of the ma-
chine 𝒯 in the machine 𝒯′ in the
proof of Lemma VIII.3.6. Red unla-
belled states represent states of 𝒯′

that are not originally present in 𝒯.

249

viii. a dichotomy theorem for automatic structures

Moreover:
• if the original machine was halting, then the reachable configurations of

the new one are finite and hence regular;
• otherwise, the set of reachable configurations is not regular, which follows

from the non-regularity of any infinite subset of {▷𝑛◁𝑛 ∣ 𝑛 ∈ ℕ}.

Some proof details. Letting 𝒯 denote the instance of the halting problem,
which runs on the empty word, we denote by 𝒯′ the instance of the regular
reachability problem to which it is reduced.

The Turingmachine 𝒯′ is defined as follows: every time there is a transition
𝑢 ⋅ 𝑝 ⋅ 𝑣 → 𝑢′ ⋅ 𝑞 ⋅ 𝑣′ in 𝒯, we simulate this transition in 𝑇′: to achieve this, ‘▷’
and ‘◁’s should be treated as blank symbols, and then we rewrite ▷𝑛◁𝑚 into
▷𝑛+1◁𝑚+1. When 𝒯 writes on a blank symbol that was actually an ‘▷’ in 𝒯′,
we must also add an extra ▷ (to account for the one that was overwritten):
this case is depicted in Figure VIII.11. Moreover, when 𝒯 deletes a symbol
at the end of the tape, we must shift the ▷𝑛◁𝑚 suffix. This can be done by
replacing the blank with an ‘▷’, the last ‘▷’ with a ‘◁’, and deleting the last
‘◁’.

We now prove that 𝒯′ is linear:
1. it is deterministic and reversible:

• every configuration inside a path

𝑢 ⋅ 𝑞 ⋅ 𝑣 ▷𝑛 ◁𝑚 →∗ 𝑢′ ⋅ 𝑞′ ⋅ 𝑣′ ▷𝑛+1 ◁𝑚+1

has, by definition, exactly in- and out-degree one;
• every configuration of the form 𝑢 ⋅ 𝑞 ⋅ 𝑣𝑎𝑛𝑏𝑚 has as many predecessors

(resp. successors) in 𝒯′ as 𝑢 ⋅ 𝑞 ⋅ 𝑣 in 𝒯, namely one since 𝒯 was assumed
to be deterministic and reversible;

2. the initial configuration ⋅ 𝑞0 ⋅ has no predecessor;
3. it has no infinite backward path since ℕ is well-founded,
Moreover, 𝒯′ has no cycle,40 and so if 𝒯 is halting on an empty input, then

40 Indeed, we encoded a strictly in-
creasing counter inside the configu-
rations of 𝒯′.

the set of reachable configurations of 𝒯′ is finite, and thus regular. If 𝒯 is not
halting, the set of reachable configurations of 𝒯′ is infinite and its projection
onto {▷, ◁} is an infinite set of words of the form 𝑎𝑛𝑏𝑚 where 𝑛 − 2 ≤ 𝑚 ≤
𝑛+ 2. Hence, since regular languages are closed under homomorphic images,
the reachable configurations of 𝒯′ cannot be regular.

Undecidability of the regular 𝑘-colourability Problem. We can now show
undecidability for the regular 𝑘-colourability problem by reduction from
the regular reachability problem restricted to linear Turing machines.

Figure VIII.12: Allégorie pour le mois
de Germinal, Louis Lafitte.

A configuration of a Turing machine—or more generally the node of an
automatic graph—is said to be germinal if it has in-degree 0.41

41 A natural terminology would be
“initial” but it clashes with the well-
established notion of initial configu-
ration.

Theorem VIII.3.7. The regular 𝑘-colourability problem on automatic
graphs is undecidable for every 𝑘 ≥ 2. More precisely, the problem is RE-
complete. This holds also for connected automatic graphs.

250

viii.3. from separation to colouring of automatic graphs

Proof. X Lower bound. By reduction from the regular reachability prob-
lem for linear Turing machines (Lemma VIII.3.6). We first show it for 𝑘 = 2.

Given a linear Turing machine 𝒯, observe that the set Germ𝒯 of all germi-
nal configurations of 𝒞𝑜𝑛𝑓𝒯.

Claim VIII.3.8. Germ𝒯 is effectively a regular language.

Observe moreover that, by definition of linear Turing machines, the initial
configuration ⋅ 𝑞0 ⋅ is germinal. Let 𝑏 and 𝑟 be fresh symbols. Consider the
automatic graph ⟨𝑉,ℰ⟩ for 𝑉 =̂ Conf𝒯 ⋅ (𝑏 + 𝑟), having an edge from 𝛾 ⋅ 𝑐 to
𝛾′ ⋅ 𝑐 if either
1. ⟨𝑐, 𝑐′⟩ = ⟨𝑏, 𝑟⟩ and 𝛾 = 𝛾′;
2. ⟨𝑐, 𝑐′⟩ = ⟨𝑟, 𝑏⟩ and there is an edge from 𝛾 to 𝛾′ in 𝒞𝑜𝑛𝑓𝒯; or
3. ⟨𝑐, 𝑐′⟩ = ⟨𝑏, 𝑏⟩, 𝛾 is the initial configuration, and 𝛾′ ≠ 𝛾 is germinal.

⋯

Germ𝒯

Reach𝒯

Figure VIII.13: Configuration graph
of a linear Turing machine.

⋯

nodes originating from Germ𝒯

nodes originating from Reach𝒯

Figure VIII.14: The automatic graph
to which the configuration graph of
Figure VIII.13 is reduced.

Symbols 𝑏 and 𝑟 are utilized to represent two versions of each configuration.
This graph is depicted in Figure VIII.14. Note that ⟨𝑉,ℰ⟩ is connected and
2-colourable: in fact, it is a directed tree whose root is ⋅ 𝑞0 ⋅ ⋅ 𝑏.

We claim that ⟨𝑉,ℰ⟩ is regularly 2-colourable if, and only if, the set of
reachable configurations of 𝑇 is a regular language. In fact, up to permuting
the two-colours, ⟨𝑉,ℰ⟩ admits a unique 2-colouring ⟨𝐶1, 𝐶2⟩, defined by:

𝐶1 =̂ Reach𝒯 ⋅ 𝑏 ∪ (Conf𝒯 ⧵ Reach𝒯) ⋅ 𝑟

and 𝐶2 is the complement of 𝐶1. If Reach𝒯 is regular, then so is 𝐶1. Dually,
if 𝐶1 is regular, then Reach𝒯 is exactly the set of configurations 𝛾 such that
𝛾 ⋅ 𝑏 ∈ 𝐶1 and hence is regular. It follows that ⟨𝑉,ℰ⟩ is regularly 2-colourable
if and only if the reachable configurations of 𝒯 are regular, which concludes
the proof for 𝑘 = 2.

To prove the statement for any 𝑘 > 2, we define ⟨𝑉,ℰ𝑘⟩ as the result of
adding a (𝑘 − 2)-clique to ⟨𝑉,ℰ⟩ and adding an edge from every vertex of the
clique to every vertex incident to an edge of ℰ. This forces the clique to use
𝑘 − 2 colours that cannot be used in the remaining part of the graph and the
proof is then analogous.

X Upper-bound. We show that the problem is RE. Let us define a 𝑘-coloured
automaton like a regular (complete) DFA, except that instead of having a set
of final states, it has a partition ⟨𝐶1, … , 𝐶𝑘⟩ of its states. Such an automaton
recognizes a regular colouring Σ ∗ → ⟦1, 𝑘⟧. Given an automatic graph
𝒢 = ⟨𝑉,ℰ⟩—whose edge relations is given by a synchronous automaton
ℰ𝒢—and a 𝑘-coloured automaton ℬ, we can build, by a product construction,
an automaton 𝒜′ which accepts all 𝑢 ⊗ 𝑣 ∈ 𝑅⊗ such that the colour of 𝑢 is
distinct from the colour of 𝑣. Then, 𝒜′ is equivalent to ℰ𝒢 if, and only if, ℬ
describes a proper 𝑘-colouring of ⟨𝑉,ℰ⟩. The RE upper-bound of the regular
𝑘-colourability problem follows: it suffices to enumerate all 𝑘-coloured
automata and check for equivalence.

Note that this reduction provides an easy way of building graphs in the

251

viii. a dichotomy theorem for automatic structures

shape of Figure VIII.14 that are 2-colourable (in fact, they are trees) but
not regularly 2-colourable. In fact, we can provide a slightly more direct
construction.

𝜀 𝑎𝑏 𝑎2𝑏2 𝑎3𝑏3

𝑎 𝑎𝑎𝑏 𝑎3𝑏2 𝑎4𝑏3

𝑏 𝑎𝑏𝑏 𝑎2𝑏3 𝑎3𝑏4

𝑎𝑎 𝑎3𝑏 𝑎4𝑏2 𝑎5𝑏3

𝐶 𝑉 ⧵ 𝐶

Figure VIII.15: The automatic tree
𝒯 of Example VIII.3.9, and its unique
2-colouring (𝐶, 𝑉 ⧵ 𝐶), which is not
regular.

Example VIII.3.9. On the alphabet Σ = {𝑎, 𝑏}, the tree 𝒯 depicted in Fig-
ure VIII.15 whose set of vertices is 𝑉 = 𝑎∗𝑏∗ and whose set of edges is
ℰ = ℰincr ∪ ℰinit, with

ℰincr = {(𝑎𝑝𝑏𝑞, 𝑎𝑝+1𝑏𝑞+1) ∣ 𝑝, 𝑞 ∈ ℕ}

ℰinit = {(𝜀, 𝑎𝑝) ∣ 𝑝 ∈ ℕ} ∪ {(𝜀, 𝑏𝑞) ∣ 𝑞 ∈ ℕ},

is automatic but not regularly 2-colourable. Indeed, its only 2-colouring
consists in partitioning the vertices of 𝒯 into

𝐶 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ 2ℕ}

∪ {𝑎𝑝𝑏𝑞 ∣ 𝑝 > 𝑞 and 𝑞 is odd}

∪ {𝑎𝑝𝑏𝑞 ∣ 𝑝 < 𝑞 and 𝑝 is odd}

and its complement 𝑉 ⧵ 𝐶. Let 𝑃 = {𝑎𝑝𝑏𝑞 ∣ 𝑝, 𝑞 ∈ 2ℕ} = (𝑎𝑎)∗(𝑏𝑏)∗: 𝑃 is
regular, yet 𝐶∩𝑃 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ∈ 2ℕ} is not. Hence, 𝐶 is not regular, and thus
𝒯 is not regularly 2-colourable.

VIII.3.3 Bounded Recognizable Relations

Separability for Bounded Recognizable Relations. In this part, we capitalize
on the undecidability result of Section VIII.3.2, showing how this implies the
undecidability for the separability problem on two natural classes of bounded
recognizable relations, namely 𝑘-Rec and 𝑘-Prod. For any 𝑘, 𝑘-Prod is
the subclass of Rec consisting of unions of 𝑘 Cartesian products of regular
languages (which is a subclass of 22𝑘-Rec).

First, observe that the 1-Rec-separability problem is trivially decidable,
since the only possible separator is Σ ∗ ×Σ ∗. However, for any other 𝑘 > 1,
the problem is undecidable.

Corollary VIII.3.10. The 𝑘-Rec-separability problem is undecidable, for
every 𝑘 > 1.

Proof. This is a consequence of the reduction from the regular 𝑘-colourability
problem of Theorem VIII.3.2, combined with the undecidability of the latter

252

viii.3. from separation to colouring of automatic graphs

for every 𝑘 > 1 (Theorem VIII.3.7).

On the 𝑘-Prod hierarchy we will find the same phenomenon. In particular
the case 𝑘 = 1 is also trivially decidable.

Proposition VIII.3.11. The 1-Prod-separability problem is decidable.

Proof. Given two automatic relations ℛ1,ℛ2, there exists 𝑆 ∈ 1-Prod that
separates ℛ1 from ℛ2 if and only if 𝜋1(ℛ1) × 𝜋2(ℛ1) separates ℛ1 from
ℛ2.

42 42 Here, 𝜋1(ℛ1) =̂ {𝑢 ∈ Σ∗ ∣
∃𝑣 ∈ Σ∗, ⟨𝑢, 𝑣⟩ ∈ ℛ1}, and simi-
larly, 𝜋2(ℛ1) =̂ {𝑣 ∈ Σ∗ ∣ ∃𝑢 ∈
Σ∗, ⟨𝑢, 𝑣⟩ ∈ ℛ1}.Both languages can
be effectively computed from ℛ1.

As soon as 𝑘 > 1, the 𝑘-Prod-separability problem becomes undecidable.

Lemma VIII.3.12. A symmetric automatic relation ℛ and the identity ℐ𝑑
are separable by a relation in 2-Prod iff they have a separator of the form
(𝐴 × 𝐵) ∪ (𝐵 ×𝐴).

Proof. Assume that 𝒮 ∈ 2-Prod separates ℛ from ℐ𝑑. Then ℛ ⊆ 𝒮, but since
ℛ is symmetric, ℛ = ℛ−1 ⊆ 𝑆−1, and so ℛ ⊆ 𝒮 ∩ 𝒮−1. Moreover, since 𝒮
has empty intersection with ℐ𝑑, so does 𝒮∩ 𝒮−1. Hence, 𝒮∩ 𝒮−1 separates
ℛ from ℐ𝑑.

Since 𝒮 ∈ 2-Prod, there exists 𝐴1, 𝐴2, 𝐵1, 𝐵2 ⊆ Σ ∗ such that 𝒮 = 𝐴1 ×
𝐵1 ∪ 𝐵2 ×𝐴2. Note that 𝒮 ∩ ℐ𝑑 = ∅ yields 𝐴𝑖 ∩ 𝐵𝑖 = ∅ for each 𝑖 ∈ {1, 2}.
Finally:

𝒮∩ 𝒮−1 = �𝐴1 × 𝐵1 ∪𝐵2 ×𝐴2� ∩ �𝐵1 ×𝐴1 ∪𝐴2 × 𝐵2�

= �(𝐴1 × 𝐵1) ∩ (𝐵1 ×𝐴1)� ∪ �(𝐴1 × 𝐵1) ∩ (𝐴2 × 𝐵2)�

∪ �(𝐵2 ×𝐴2) ∩ (𝐵1 ×𝐴1)� ∪ �(𝐵2 ×𝐴2) ∩ (𝐴2 × 𝐵2)�

= �
=∅

�����������������������������(𝐴1 ∩𝐵1) × (𝐴1 ∩𝐵1)� ∪ �(𝐴1 ∩𝐴2) × (𝐵1 ∩𝐵2)�

∪ �(𝐵1 ∩𝐵2) × (𝐴1 ∩𝐴2)� ∪ �(𝐴2 ∩𝐵2) × (𝐴2 ∩𝐵2)�����������������������������
=∅

�

= �(𝐴1 ∩𝐴2) × (𝐵1 ∩𝐵2)� ∪ �(𝐵1 ∩𝐵2) × (𝐴1 ∩𝐴2)�.

Therefore, 𝒮∩ 𝒮−1 is a separator of ℛ and ℐ𝑑 of the desired shape.

Corollary VIII.3.13. A symmetric automatic relation ℛ and ℐ𝑑 are separable
by a relation in 2-Prod iff ⟨Σ ∗,ℛ⟩ is regularly 2-colourable.

Proof. By observing that for any symmetric relation ℛ ⊆ Σ ∗ ×Σ ∗, we have
that 𝐴,𝐵 ⊆ Σ ∗ is a colouring of ⟨Σ ∗,ℛ⟩ if, and only if, (𝐴 × 𝐵) ∪ (𝐵 × 𝐴)
separates ℛ from ℐ𝑑.

We can now easily show undecidability for the 2-Prod-separability
problem by reduction from the regular 2-colourability problem.

Lemma VIII.3.14. The 2-Prod-separability problem is undecidable.

253

viii. a dichotomy theorem for automatic structures

Proof. By reduction from the regular 2-colourability problem on auto-
matic graphs, which is undecidable by Theorem VIII.3.7. Let ⟨𝑉,ℰ⟩ be an
automatic graph and ⟨𝑉,ℰ′⟩ the symmetric closure of ⟨𝑉,ℰ⟩. It follows that
⟨𝑉,ℰ′⟩ is still automatic and that there is a regular 2-colouring for ⟨𝑉,ℰ′⟩
iff there is a regular 2-colouring for ⟨𝑉,ℰ⟩—take the same colouring. Thus,
by Corollary VIII.3.13, ⟨𝑉,ℰ⟩ is regularly 2-colourable iff there is a 2-Prod
relation that separates ℰ′ from ℐ𝑑.

Further, this implies undecidability for every larger 𝑘.

Proposition VIII.3.15. The 𝑘-Prod-separability problem is undecidable,
for every 𝑘 ≥ 2.

ℛ2

ℛ1

𝒮 𝒮′ ⧵ 𝒮

𝑎0

𝑏0

𝑎1

𝑏1

𝑎2

𝑏2

𝑣 ∈ Σ ∗

𝑢 ∈ Σ ∗

Figure VIII.16: Construction in the
proof of Proposition VIII.3.15 for 𝑘 =
5. 𝒮 is depicted as the union of two
grey rectangles since 𝒮 ∈ 2-Prod.
The relation ℛ′

1 is obtained from ℛ1
(blue shape) by adding all blue edges,
namely 𝑎𝑖 → 𝑏𝑖 for 𝑖 ∈ ⟦1, 𝑘 − 2⟧.
The relation ℛ′

2 is obtained from
ℛ2 (red shape) by adding all red
edges, namely every other non-self-
loop edge involving a vertex 𝑎𝑖 or 𝑏𝑖.
Finally, 𝒮′ (𝒮 plus three grey rectan-
gles) is obtained from 𝑆 by adding
each {𝑎𝑖} × {𝑏𝑖}.

Proof. The case 𝑘 = 2 is shown in Lemma VIII.3.14, so suppose 𝑘 > 2. The
proof goes by reduction from the 2-Prod-separability problem. Let ℛ1,ℛ2
be a pair of automatic relations over an alphabet Σ. Consider the alphabet
extended with 2(𝑘 − 2) fresh symbols Σ ′ = Σ ⊔ {𝑎1,⋯ , 𝑎𝑘−2, 𝑏1,⋯ , 𝑏𝑘−2}.
We build automatic relations ℛ′

1,ℛ′
2 over Σ ′ such that ⟨ℛ1,ℛ2⟩ are 2-Prod

separable over Σ iff ⟨ℛ′
1,ℛ′

2⟩ are 𝑘-Prod separable over Σ ′.
Let ℛ′

1 =̂ ℛ1 ⊔ {⟨𝑎𝑖, 𝑏𝑖⟩ ∶ 1 ≤ 𝑖 ≤ 𝑘 − 2} and

ℛ′
2 = ℛ2 ⊔ {⟨𝑎𝑖, 𝑣⟩ ∣ 𝑣 ∈ Σ ∗, 𝑖 ∈ ⟦1, 𝑘 − 2⟧}

⊔ {⟨𝑢, 𝑏𝑖⟩ ∣ 𝑢 ∈ Σ ∗, 𝑖 ∈ ⟦1, 𝑘 − 2⟧}

⊔ {⟨𝑎𝑖, 𝑏𝑗⟩ ∣ 𝑖, 𝑗 ∈ ⟦1, 𝑘 − 2⟧ and 𝑖 ≠ 𝑗}

⊔ {⟨𝑏𝑖, 𝑎𝑗⟩ ∣ 𝑖, 𝑗 ∈ ⟦1, 𝑘 − 2⟧}

If ℛ1 and ℛ2 have a 2-Prod separator 𝒮, then 𝒮⊔ {⟨𝑎𝑖, 𝑏𝑖⟩ ∣ 𝑖 ∈ ⟦1, 𝑘 − 2⟧}
is a 𝑘-Prod separator of ℛ′

1 and ℛ′
2.

Conversely, if 𝒮′ = (𝐴1 × 𝐵1) ∪⋯∪ (𝐴𝑘 × 𝐵𝑘) is a 𝑘-Prod separator of
ℛ′
1 and ℛ′

2, then for every 𝑖 there must be some 𝑗𝑖 such that 𝐴𝑗𝑖 ×𝐵𝑗𝑖 contains
(𝑎𝑖, 𝑏𝑖). From 𝒮′ ∩ℛ′

2 = ∅, we get:
• 𝐴𝑗𝑖 ∪𝐵𝑗𝑖 cannot contain any 𝑎𝑖′ or 𝑏𝑖′ for 𝑖′ ≠ 𝑖, and
• 𝐴𝑗𝑖 ∪𝐵𝑗𝑖 cannot contain any 𝑤 ∈ Σ ∗;
since otherwise we would have (𝐴𝑗𝑖 × 𝐵𝑗𝑖) ∩ℛ′

2 ≠ ∅. Hence, {𝑖 ↦ 𝑗𝑖}𝑖 is
injective, and thus 𝒮′ is of the form 𝒮′ = (𝐴1 × 𝐵1) ∪ (𝐴2 × 𝐵2) ∪ ({𝑎1} ×
{𝑏1}) ∪⋯∪ ({𝑎𝑘−2} × {𝑏𝑘−2}). We can further assume that 𝐴1, 𝐵1, 𝐴2, 𝐵2 do

254

viii.3. from separation to colouring of automatic graphs

not contain any 𝑎𝑖 or 𝑏𝑖 since otherwise we can remove them preserving
the property of being a 𝑘-Prod separator of ℛ′

1 and ℛ′
2. Hence, 𝒮 =̂ (𝐴1 ×

𝐵1) ∪ (𝐴2 × 𝐵2) must cover ℛ1 and be disjoint from ℛ2, obtaining that 𝒮 is a
2-Prod separator of ℛ1 and ℛ2.

Membership for Bounded Recognizable Relations. Up until now, we have exam-
ined two hierarchies of bounded recognizable relations, namely 𝑘-Prod and
𝑘-Rec. Our previous analysis demonstrated that, for any element in these hier-
archies (where 𝑘 > 1), their separability problem is undecidable. Nevertheless,
we will now establish that their membership problem are decidable.

Given an automatic relation ℛ ⊆ Σ ∗ ×Σ ∗, consider the automatic equiv-
alence relation ∼ℛ ⊆ Σ ∗ × Σ ∗, defined as 𝑤 ∼ℛ 𝑤′ if for every 𝑣 ∈ Σ ∗ we
have
1. (𝑤, 𝑣) ∈ ℛ iff (𝑤′, 𝑣) ∈ ℛ, and
2. (𝑣, 𝑤) ∈ ℛ iff (𝑣, 𝑤′) ∈ ℛ.

It turns out that equivalence classes of ∼ℛ define the coarsest partition
onto which ℛ can be recognized in terms of 𝑘-Rec.

Lemma VIII.3.16. For every automatic ℛ ⊆ Σ ∗ ×Σ ∗, ∼ℛ has index at most
𝑘 if, and only if, ℛ is in 𝑘-Rec.43 43 Recall that the index of an equiva-

lence relation is its number of equiv-
alence classes.Proof. X Left-to-right. Assume that∼ℛ has the equivalence classes𝐶1,⋯ ,𝐶𝑘.

Consider the set 𝑃 ⊆ ⟦1, 𝑘⟧2 of all pairs ⟨𝑖, 𝑗⟩ such that there are 𝑢𝑖 ∈ 𝐶𝑖 and
𝑢𝑗 ∈ 𝐶𝑗 with ⟨𝑢𝑖, 𝑢𝑗⟩ ∈ ℛ. Define the 𝑘-Rec relation ℛ′ = ⋃(𝑖,𝑗)∈𝑃 𝐶𝑖 ×𝐶𝑗. We
claim that ℛ = ℛ′. In fact, by definition of ∼ℛ, note that if there are 𝑢𝑖 ∈ 𝐶𝑖
and 𝑢𝑗 ∈ 𝐶𝑗 with ⟨𝑢𝑖, 𝑢𝑗⟩ ∈ ℛ, then 𝐶𝑖 × 𝐶𝑗 ⊆ ℛ. Hence, ℛ′ ⊆ ℛ. On the
other hand, for every pair ⟨𝑢, 𝑣⟩ ∈ ℛ there exists ⟨𝑖, 𝑗⟩ ∈ 𝑃 such that 𝑢 ∈ 𝐶𝑖,
𝑣 ∈ 𝐶𝑗 implying ⟨𝑢, 𝑣⟩ ∈ ℛ′. Hence, ℛ ⊆ ℛ′.

X Right-to-left. If ℛ is a union of products of sets from the partition
𝐶1 ⊔…⊔𝐶𝑘 = Σ ∗, then every two elements of each 𝐶𝑖 are ∼ℛ-related, and
thus ∼ℛ has index at most 𝑘.

We can then conclude that the membership problem for 𝑘-Rec is decidable.

Corollary VIII.3.17. The 𝑘-Rec-membership problem is decidable, for every
𝑘 ∈ ℕ>0.

Proof. An automatic relation ℛ is in 𝑘-Rec iff ∼ℛ has at most 𝑘 equivalence
classes by Lemma VIII.3.16. In other words, an automatic relation ℛ is not
in 𝑘-Rec iff the complement of ∼ℛ contains a (𝑘 + 1)-clique, which can be
easily tested.

The relation ∼ℛ can also be used to characterize which automatic relations
are definable in the class 𝑘-Prod.

Proposition VIII.3.18. An automatic relation ℛ is in 𝑘-Prod if, and only if,
ℛ = (𝐴1 ×𝐵1)∪…∪ (𝐴𝑘 ×𝐵𝑘)where each𝐴𝑖 and 𝐵𝑖 is a union of equivalence
classes of ∼ℛ.

255

viii. a dichotomy theorem for automatic structures

Proof. The right-to-left implication is trivial. For the converse implication,
assume that ℛ is in 𝑘-Prod, say

ℛ = (𝐴1 × 𝐵1) ∪ …∪ (𝐴𝑘 × 𝐵𝑘)

for some arbitrary regular languages 𝐴1, … ,𝐴𝑘 and 𝐵1, … , 𝐵𝑘. By definition
of ∼ℛ, we also have

ℛ = ([𝐴1]∼ℛ × [𝐵1]∼ℛ) ∪ …∪ ([𝐴𝑘]∼ℛ × [𝐵𝑘]∼ℛ).

Again, this characterization allows us to show that membership in the class
𝑘-Prod is decidable.

Corollary VIII.3.19. The 𝑘-Prod-membership problem is decidable, for
every 𝑘 > 0.

Proof. By brute force testing whether the automatic relation ℛ is equivalent
to (𝐴1 × 𝐵1) ∪ … ∪ (𝐴𝑘 × 𝐵𝑘) for every possible 𝐴𝑖, 𝐵𝑖 which is a union of
equivalence classes of ∼ℛ.

VIII.4 Undecidability of the Homomorphism Problems

Recall that Theorem VIII.3.7 show that the regular 𝑘-colourability prob-
lem is undecidable for all automatic graphs. This problem can be rephrased
in terms of homomorphisms, and naturally leads us to conjecture that for
most target structure 𝐁, the problem of given an automatic presentation 𝒜,
to decide if there is a regular homomorphism from 𝒜 to 𝐁 is undecidable.
This is formalized in Theorem VIII.4.1, and we devote the rest of this chapter
to proving it.

VIII.4.1 Overview & Easy Implications of the Dichotomy Theorem

Theorem VIII.4.1 (Dichotomy Theorem for Automatic Structures). Let 𝐁 be a
finite 𝜎-structure. The following are equivalent:
(DT)fin-dual. 𝐁 has finite duality;
(DT)hom-dec. ℋ𝑜𝑚(Aut, 𝐁) is decidable;
(DT)hom-reg-dec. ℋ𝑜𝑚reg(Aut, 𝐁) is decidable;
(DT)equal. ℋ𝑜𝑚(Aut, 𝐁) = ℋ𝑜𝑚reg(Aut, 𝐁), i.e. for any automatic presenta-

tion 𝒜 of a 𝜎-structure 𝐀, there is a homomorphism from 𝐀 to 𝐁 iff there
is a regular homomorphism from 𝒜 to 𝐁;

(DT)first-order. ℋ𝑜𝑚(All, 𝐁) has uniformly first-order definable homomor-
phisms.44 44 The notion of uniformly first-order

definable homomorphisms is defined
in Section VIII.5.1.

Moreover, when ℋ𝑜𝑚(Aut, 𝐁) and ℋ𝑜𝑚reg(Aut, 𝐁) are undecidable, they are
coRE-complete and RE-complete, respectively. When they are decidable, they
are NL.

Remark VIII.4.2 (Beyond automatic relations). In the statement of Theo-

256

viii.4. undecidability of the homomorphism problems

rem VIII.4.1, automatic structures can be replaced by 𝜔-tree-automatic struc-
tures, or even higher-order automatic structures and the statement of the
theorem would remain true. The undecidability results obviously remain
true when defined on a larger class. Moreover, to prove decidability, notice
that the key lemma of Section VIII.5.1, namely Lemma VIII.5.2, actually deals
with ℋ𝑜𝑚(All, 𝐁) and not ℋ𝑜𝑚(Aut, 𝐁). The decidability follows from the
fact that the first-order theory of any higher-order automatic structure is
decidable.

(DT)fin-dual

(DT)first-order

(DT)equal

(DT)hom-reg-dec (DT)hom-dec

Figure VIII.17: Implications shown
in the chapter to prove Theo-
rem VIII.4.1.

We prove Theorem VIII.4.1 by showing the implications depicted in Fig-
ure VIII.17. The most difficult implications are (DT)fin-dual ⇒ (DT)first-order,
whichwe prove in Section VIII.5, and the implications (DT)hom-dec ⇒ (DT)fin-dual
and (DT)hom-reg-dec ⇒ (DT)fin-dual, which we prove by contraposition in Sec-
tions VIII.4.2 and VIII.4.3.

On the other hand, the implications (DT)first-order ⇒ (DT)equal, (DT)equal ⇒
(DT)hom-reg-dec and (DT)equal ⇒ (DT)hom-dec are straightforward: we prove
the first one in Section VIII.5, and the last two in this section. Before showing
these implications, we start by proving (DT)fin-dual ⇒ (DT)hom-dec.

45 45 While it is redundant with the
implications of Figure VIII.17, we
prove this implication since not only
is it straightforward, but it is also
the implication which, together with
the fact that both ℋ𝑜𝑚(Aut, 𝐊2)
and ℋ𝑜𝑚reg(Aut, 𝐊2) are undecid-
able by [Köc14, Proposition 6.5] and
Theorem VIII.3.7, that lead us to con-
jecture Theorem VIII.4.1.

Decidability of the Homomorphism Problem.

Proposition VIII.4.3.46 Let 𝐁 be a finite 𝜎-structure. If 𝐁 has finite duality,

46 This corresponds to the implica-
tion (DT)fin-dual ⇒ (DT)hom-dec of
Theorem VIII.4.1.

then ℋ𝑜𝑚(Aut, 𝐁) is decidable in NL.

Proof. Given a finite 𝜎-structure 𝐃 with domain {𝑑1, … , 𝑑𝑛}, we build the
first-order sentence

𝜙𝐃 =̂ ∃𝑥1. ⋯∃𝑥𝑛. �
ℛ(𝑘)∈𝜎

�
⟨𝑖1,…,𝑖𝑘⟩∈⟦1,𝑛⟧𝑘

s.t. ⟨𝑑𝑖1 ,…,𝑑𝑖𝑘⟩∈ℛ(𝐃)

ℛ(𝑥𝑖1 , … , 𝑥𝑖𝑘).

By construction, for any arbitrary 𝜎-structure 𝐀, we have 𝐀 ⊨ 𝜙𝐃 iff 𝐃 hom−−−→
𝐀. Then, since 𝐁 has finite duality, it admits a finite dual 𝐃1, … ,𝐃𝑚. Then

𝐀 ⊨
𝑚
�
𝑖=1
¬𝜙𝐃𝑖 iff 𝐀 hom−−−→ 𝐁.

The conclusion follows from the fact that the data complexity of first-order
model checking of automatic structures isNL by Proposition VII.3.6.

Note that Proposition VIII.4.3 still holds when the homomorphism problem
takes as input higher-order automatic structures since such structures have a
decidable first-order theory.

Equality of the Homomorphism Problems Imply their Decidability.

Proposition VIII.4.4.47 Let 𝐁 be a finite 𝜎-structure. If ℋ𝑜𝑚(Aut, 𝐁) = 47 This corresponds to the implica-
tion (DT)equal ⇒ (DT)hom-dec of
Theorem VIII.4.1.

ℋ𝑜𝑚reg(Aut, 𝐁) then ℋ𝑜𝑚(Aut, 𝐁) and ℋ𝑜𝑚reg(Aut, 𝐁) are decidable.

257

viii. a dichotomy theorem for automatic structures

To prove this, we first give an upper bound on the homomorphism problems
independently of any assumption on 𝐁.

Proposition VIII.4.5. Let 𝐁 be a finite 𝜎-structure. Then ℋ𝑜𝑚(Aut, 𝐁) is
coRE and ℋ𝑜𝑚reg(Aut, 𝐁) is RE.

Proof. X ℋ𝑜𝑚(Aut, 𝐁) is coRE. By the De Bruijn–Erdős Theorem, for any
arbitrary 𝜎-structure𝐀, we have𝐀���hom−−−→ 𝐁 iff there exists a finite substructure
𝐀′ of 𝐀 s.t. 𝐀′ ���hom−−−→ 𝐁. Given a finite 𝜎-structure 𝐀′ and an automatic 𝜎-
structure, it is decidable to test whether 𝐀′ is a substructure of 𝐀: indeed, it
suffices to check, using Proposition VII.3.6 if

𝐀 ⊨? �∃𝑥1. ⋯∃𝑥𝑛. �
ℛ(𝑘)∈𝜎

�
⟨𝑖1,…,𝑖𝑘⟩∈⟦1,𝑛⟧𝑘

s.t. ⟨𝑎𝑖1 ,…,𝑎𝑖𝑘⟩∈ℛ(𝐀′)

ℛ(𝑥𝑖1 , … , 𝑥𝑖𝑘)�,

by letting {𝑎1, … , 𝑎𝑛} = 𝐴′. Moreover, whether 𝐀′ ���hom−−−→? 𝐁 is also decidable
in coNP. Overall, this provides a co-semi-algorithm for ℋ𝑜𝑚(Aut, 𝐁): we
enumerate finite 𝜎-structure 𝐀′, and test if (1) 𝐀′ is a substructure of 𝐀 and
if (2) 𝐀′ hom−−−→ 𝐁. And hence ℋ𝑜𝑚(Aut, 𝐁) is coRE.

Xℋ𝑜𝑚reg(Aut, 𝐁) is RE. This is an easy generalization of Theorem VIII.3.7:
instead of having 𝑘-coloured automaton, we define the notion of “𝐁-automata”:
the notion of accepting state is replaced by a partitition ⟨𝐶𝑏⟩𝑏∈𝐵 of the states.
The semantics of such an automaton is a partial function 𝑓∶ Σ ∗ → 𝐵. Given
an automatic structure 𝒜, we can then effectively test if 𝑓 is defined on
dom𝒜, and if 𝑓 defines a homomorphism from 𝐀 to 𝐁—see the proof of Theo-
rem VIII.3.7. If so, 𝒜 reg hom−−−−−→ 𝐁. Dually, any regular homomorphism 𝒜 reg hom−−−−−→
𝐁 can be described by such a 𝐁-automaton. Therefore, ℋ𝑜𝑚reg(Aut, 𝐁) is
RE.

Proof of Proposition VIII.4.4. Ifℋ𝑜𝑚(Aut, 𝐁) = ℋ𝑜𝑚reg(Aut, 𝐁), then by Propo-
sition VIII.4.5, these problems are both RE and coRE, and are hence decid-
able.

VIII.4.2 Undecidability of ℋ𝑜𝑚(Aut, 𝐁)

We now prove the undecidability of ℋ𝑜𝑚(Aut, 𝐁) and ℋ𝑜𝑚reg(Aut, 𝐁) when
𝐁 does not have finite duality. Both reductions are direct adaptations of the
proof that ℋ𝑜𝑚(Fin, 𝐁) is L-hard when 𝐁 does not have finite duality by
Larose and Tesson [LT09, Theorem 3.2]. However, proving the undecidability
of the problem that is reduced to ℋ𝑜𝑚reg(Aut, 𝐁) is not entirely trivial and
requires some work.
• For ℋ𝑜𝑚(Fin, 𝐁), we reduce the complement of Connectivity in auto-

matic graphs, providing a coRE-lowerbound.
• For ℋ𝑜𝑚reg(Aut, 𝐁), we reduce regular unconnectivity in automatic

graphs, which in turn is reduced from the regular reachability prob-
lem.

258

viii.4. undecidability of the homomorphism problems

For 𝑛 ∈ ℕ, we define the 𝑛-link 𝐋𝑛 be the 𝜎-structure48 whose domain 48 From [LLT07, § 2].
is ⟦0, 𝑛⟧, and every predicate ℛ of arity 𝑘, is interpreted as the set of tuples
⟨𝑎1, … , 𝑎𝑘⟩ s.t. |𝑎𝑖 − 𝑎𝑗| ≤ 1 for all 𝑖, 𝑗 ∈ ⟦0, 𝑛⟧. See Figure VIII.18. ⋯

Figure VIII.18: The 𝑛-link 𝐋𝑛 over the
graph signature.

Given a 𝜎-structure 𝐁, say that 𝑏 ∈ 𝐁 and 𝑏′ are 𝑛-linked if there exists a
homomorphism from 𝐋𝑛 to 𝐁 that sends 0 to 𝑏 and 𝑛 to 𝑏′. We say that 𝑏 and
𝑏′ are linked if they are 𝑛-linked for some 𝑛 ∈ ℕ.

Note that the fact that 𝑘 ↦ 𝑛 − 𝑘 defines an automorphism of 𝐋𝑛 implies
that the relation of being 𝑛-linked—and to a greater extent of being linked—is
symmetric. Moreover, being linked is transitive, but not necessarily reflexive.

Proposition VIII.4.6 ([LLT07, Theorem 4.7]).49 An arbitrary 𝜎-structure 𝐁 49 Actually [LLT07, Theorem 4.7] as-
sumes that ℋ𝑜𝑚(Fin, 𝐁) is first-
order definable, but this condition is
equivalent to 𝐁 having finite duality
by Atserias’ result [Ats08, Corollary
4].

has finite duality iff 𝜋1 and 𝜋2 are linked in 𝐁(𝐁2).

Equipped with the previous proposition, we can now show the undecid-
ability of ℋ𝑜𝑚(Aut, 𝐁) by reduction from the following problem.

Connectivity in Automatic Graphs
Input : An automatic presentation 𝒢 of a directed graph, and

two elements 𝑠, 𝑡 ∈ Σ ∗.
Question: Are 𝒢(𝑠) and 𝒢(𝑡) connected in 𝐆?

Property VIII.4.7. Connectivity in automatic graphs is RE-complete.

Proof. This follows from the fact that the configuration graph of a Turing
machine is always automatic by Example VII.3.13. Indeed, a Turing machine
halts on the empty word iff there is, in its configuration graph, a path from
the initial configuration to •, where • is a newly added node, s.t. we add an
edge from any accepting configuration to •.

Lemma VIII.4.8. Assume that 𝜎 contains at least one predicate of arity at
least 2, and let 𝐁 be a finite 𝜎-structure. If 𝐁 does not have finite duality,
then there is a first-order reduction from the complement of connectivity
in automatic graphs to ℋ𝑜𝑚(Aut, 𝐁†).

Figure VIII.19: A graph 𝐆.

Figure VIII.20: The structure 𝐀 de-
fined from𝐆 (in Figure VIII.19), using
the construction done in the proof of
Lemma VIII.4.8, when 𝜎 consists of a
single binary relation.

Proof. Given an instance ⟨𝒢, 𝑠, 𝑡⟩ of connectivity in automatic graphs,
we first define the 𝜎-structure 𝐀 with automatic presentation 𝒜 obtained
by replacing every edge of 𝒢 by a 1-link. Formally, 𝐀 has the same do-
main as 𝐆, and for any predicate ℛ ∈ 𝜎 of arity 𝑘, ⟨𝑔1, … , 𝑔𝑘⟩ ∈ ℛ(𝐀) iff
{𝑔1, … , 𝑔𝑘} = {𝑔, 𝑔′} for some 𝑔, 𝑔′ ∈ 𝐺 s.t. there is an edge from 𝑔 to 𝑔′ in 𝐆.
See Figures VIII.19 and VIII.20.

Claim VIII.4.9. 𝒢(𝑠) and 𝒢(𝑡) are connected iff 𝒜(𝑠) and 𝒜(𝑡) are linked.

For the left-to-right implication: if there is an edge between two elements
in𝐆, then they are 1-linked in𝐀. Since being linked is reflexive and transitive,
the conclusion follows. Conversely, if two elements 𝑎 and 𝑎′ of𝐀 are 1-linked,
then pick a predicate ℛ ∈ 𝜎 of arity at least 2. Then ⟨𝑎, … , 𝑎, 𝑎′⟩ ∈ ℛ(𝐀),
and so by definition of 𝐀 there is either an edge from 𝑎 to 𝑎′ or from 𝑎′ to 𝑎
in 𝐆.50 50 Note that the proof of this claim

is the only part of the proof of
Lemma VIII.4.8 that requires the as-
sumption that 𝜎 contains at least one
predicate of arity at least 2.

259

viii. a dichotomy theorem for automatic structures

We then consider the automatic 𝜎-structure 𝐀 × 𝐁2, and extend it to a
𝜎𝐁-structure (𝐀 × 𝐁2)⋆ in which for each 𝑏0 ∈ 𝐵, we interpret the unary
predicate 𝑃𝑏0 as

�⟨𝒜(𝑠), 𝑏0, 𝑏⟩ � 𝑏 ∈ 𝐵� ∪ �⟨𝒜(𝑡), 𝑏, 𝑏0⟩ � 𝑏 ∈ 𝐵�

To construct an automatic presentation for this structure, see Section VIII.2.3.

Claim VIII.4.10. If there is a homomorphism from (𝐀 × 𝐁2)⋆ to 𝐁†, then 𝒢(𝑠)
and 𝒢(𝑡) are not connected in 𝐆.

Let 𝑓∶ (𝐀 × 𝐁2)⋆ hom−−−→ 𝐁† be a homomorphism.51 It induces a homomor- 51 Recall that both sides are 𝜎𝐁-
structures.phism

̅𝑓 ∶ 𝐀 × 𝐁2 → 𝐁

between 𝜎-structures, and by currying (Proposition VIII.2.2), ̅𝑓 can be seen as
a homomorphism

𝐹∶ 𝐀 → 𝐁(𝐁2).

Note moreover that because ̅𝑓 comes from a homomorphism between 𝜎𝐁-
structures then we must have 𝑓(𝒜(𝑠), 𝑏, 𝑏′) = 𝑏 and 𝑓(𝒜(𝑡), 𝑏, 𝑏′) = 𝑏′ for
all 𝑏, 𝑏′ ∈ 𝐵. This implies that 𝐹(𝒜(𝑠)) = 𝜋1 and 𝐹(𝒜(𝑡)) = 𝜋2.

We now assume by contradiction that 𝒢(𝑠) and 𝒢(𝑡) are connected, and
hence by Claim VIII.4.9 there is some 𝑛 ∈ ℕ s.t. there is a homomorphism
𝑔∶ 𝐋𝑛 → 𝐀 with 𝑔(0) = 𝒜(𝑠) and 𝑔(𝑛) = 𝒜(𝑡). Then by composition, we
obtain a homomorphism

𝐹 ∘ 𝑔 ∶ 𝐋𝑛 → 𝐁(𝐁2),

which sends 0 to 𝐹(𝑔(0)) = 𝐹(𝒜(𝑠)) = 𝜋1 and sends 𝑛 to 𝐹(𝑔(𝑛)) = 𝐹(𝒜(𝑡)) =
𝜋2. So, by Proposition VIII.4.6, 𝐁 would have finite duality, which is a

contradiction. Hence, 𝒜(𝑠) and 𝒜(𝑡) are not linked, and so by Claim VIII.4.9,
𝒢(𝑠) and 𝒢(𝑡) are not connected.

Claim VIII.4.11. If 𝒢(𝑠) and 𝒢(𝑡) are not connected in 𝐆, then there is a
homomorphism from (𝐀 × 𝐁2)⋆ to 𝐁†.

We define a homomorphism 𝑓∶ (𝐀 × 𝐁2)⋆ → 𝐁† by:

𝑓(𝑎, 𝑏, 𝑏′) =̂

⎧⎪⎪⎨
⎪⎪⎩
𝑏 if 𝒜(𝑠) and 𝑎 are linked,

𝑏′ otherwise.

We show that this is indeed a homomorphism: for any predicate ℛ of arity 𝑘
in 𝜎, if

⟨𝑎1, 𝑏1, 𝑏′1⟩, ⟨𝑎2, 𝑏2, 𝑏′2⟩, … , ⟨𝑎𝑘, 𝑏𝑘, 𝑏′𝑘⟩

are all ℛ-tuples of (𝐀 × 𝐁2)⋆, then by definition of 𝐀, we have that either (1)
all 𝑎𝑖’s are equal, or (2) {𝑎1, … , 𝑎𝑘} = 𝑎, 𝑎′ for some 𝑎 ≠ 𝑎′ ∈ 𝐴 and there is
an edge from 𝑎 to 𝑎′ or from 𝑎′ to 𝑎 in 𝐆. In both cases, it follows that 𝒜(𝑠)

260

viii.4. undecidability of the homomorphism problems

and 𝑎𝑖 are linked iff 𝒜(𝑠) and 𝑎𝑗 are linked, for all 𝑖, 𝑗 ∈ ⟦1, 𝑘⟧. Hence, either:
• 𝑓(𝑎𝑖, 𝑏𝑖, 𝑏′𝑖) = 𝑏𝑖 for all 𝑖 ∈ ⟦1, 𝑘⟧ (if all 𝑎𝑖’s are connected to 𝒜(𝑠)), or
• 𝑓(𝑎𝑖, 𝑏𝑖, 𝑏′𝑖) = 𝑏′𝑖 for all 𝑖 ∈ ⟦1, 𝑘⟧ (otherwise).
In both cases, we get that

�𝑓(𝑎1, 𝑏1, 𝑏′1), 𝑓(𝑎2, 𝑏2, 𝑏′2), … , 𝑓(𝑎𝑘, 𝑏𝑘, 𝑏′𝑘)� ∈ ℛ(𝐁).

We also need to show that this map preserves the new unary predicates of 𝜎𝐁:
this follows from—and is in fact equivalent to—the fact that 𝒜(𝑠) and 𝒜(𝑡)
are not linked by Claim VIII.4.9: indeed, the currying of 𝑓 behaves like 𝜋1 on
the connected component of 𝒜(𝑠) and like 𝜋2 on its complement. Overall,
this proves that (𝐀 × 𝐁2)⋆ hom−−−→ 𝐁†.

Putting Claims VIII.4.10 and VIII.4.11 together, we get that the reduction
is correct. Lastly, note that it is a first-order reduction: clearly, one can go
from 𝐆 to 𝐀 via a (one-dimensional) first-order reduction, and then from 𝐀
to 𝐀×𝐁2 via a (multi-dimensional) first-order reduction since 𝐁 is finite, and
lastly (𝐀 × 𝐁2)⋆ can be obtained by a first-order reduction from the latter
structure since first-order logic can test equality with a fixed element.

By Property VIII.4.7, the complement of Connectivity in automatic
graphs is coRE-complete, and assuming that 𝜎 contains at least one predicate
of arity 2, it reduces by Lemma VIII.4.8 to any problem ℋ𝑜𝑚(Aut, 𝐁†)when 𝐁
has finite duality. In turn, by Proposition VIII.2.6, it reduces to ℋ𝑜𝑚(Aut, 𝐁),
which is thus coRE-hard. It remains to deal with signatures consisting of only
unary predicates.52 52 It is not clear to us whether

this case was properly handled in
[LLT07].PropertyVIII.4.12. If 𝜎 only consists of unary predicates, then all 𝜎-structures

have finite duality.

Proof. Fix a 𝜎-structure 𝐁. We define the unary type 𝜇𝐁(𝑏) of 𝑏 ∈ 𝐁 to be the
set of predicates 𝒫 s.t. 𝑏 ∈ 𝒫(𝐁).

Given 𝜏 ⊆ 𝜎, define 𝟏𝜏 to be the 𝜎-structure consisting of a single element
∗, and s.t. ∗ ∈ 𝒫(𝟏𝜏) iff 𝒫 ∈ 𝜏. We say that 𝜏 is obstructing if 𝜏 ⊈ 𝜇𝐁(𝑏) for all
𝑏 ∈ 𝐁.

Claim VIII.4.13. If 𝜏 is obstructing, then 𝟏𝜏 ���hom−−−→ 𝐁.

We prove the result by contraposition. Any homomorphism from 𝟏𝜏 to 𝐁
should send ∗ on some element 𝑏 of 𝐁 s.t. 𝑏 ∈ 𝒫(𝐁) for all 𝒫 ∈ 𝜏, and hence
𝜏 ⊆ 𝜇𝐁(𝑏).

Claim VIII.4.14. If 𝐀 ���hom−−−→ 𝐁 then there exists an obstructing 𝜏 ⊆ 𝜎 s.t.
𝟏𝜏

hom−−−→ 𝐀.

We define a partial homomorphism 𝑓 from 𝐴 to 𝐵, by sending 𝑎 ∈ 𝐴 to
any 𝑏 ∈ 𝐵 s.t. the unary type of 𝑎 is included in the unary type of 𝑏. This is
clearly a (partial) homomorphism, and so since 𝐀���hom−−−→ 𝐁, it follows that it
must be partial, i.e. that some element 𝑎 ∈ 𝐀 s.t. 𝜇𝐀(𝑎) ⊈ 𝜇𝐁(𝑏) for every
𝑏 ∈ 𝐵. It follows that 𝜇𝐀(𝑎) is obstructing. Since 𝟏𝜇𝐀(𝑎)

hom−−−→ 𝐀 via ∗ ↦ 𝑎, the

261

viii. a dichotomy theorem for automatic structures

conclusion follows.
Putting Claims VIII.4.13 and VIII.4.14 together, we get that

� 𝟏𝜏 � 𝜏 ⊆ 𝜎 is obstructing �

is a finite dual for 𝐁.

Corollary VIII.4.15.53 If 𝐁 does not have finite duality, then ℋ𝑜𝑚(Aut, 𝐁)

53 In the case of Larose and Tesson,
they study the problemℋ𝑜𝑚(Fin, −),
and prove in [LT09, Theorem 3.2] that
there is a first-order reduction from
Connectivity in Finite Graphs to
ℋ𝑜𝑚(Fin, 𝐁†) for any 𝐁 that does
not have finite duality. Together with
Proposition VIII.2.6, this shows that
ℋ𝑜𝑚(Fin, 𝐁) is L-hard under first-
order reductions.

is coRE-hard.

Proof. By Property VIII.4.12, since 𝐁 does not have finite duality, then 𝜎
has at least one predicate of arity at least 2. The conclusion follows from
Proposition VIII.2.6, Property VIII.4.7, and Lemma VIII.4.8.

VIII.4.3 Undecidability of ℋ𝑜𝑚reg(Aut, 𝐁)

The reduction to show undecidability of is nearly identical to Lemma VIII.4.8,
but the input problem differs quite a lot.

Regular Unconnectivity in Automatic Graphs
Input : An automatic presentation 𝒢 of a directed graph 𝐆, and

two elements 𝑠, 𝑡 ∈ Σ ∗.
Question: Is there a regular language 𝐿 ⊆ Σ ∗ such that 𝑠 ∈ 𝐿, 𝑡 ∉ 𝐿

and 𝐿 is a union of connected components of 𝒢?54 In
this case we say that 𝑠 and 𝑡 are regularly unconnected.

54 Formally, we mean that 𝐿 =
𝒢−1[𝑈] for some union 𝑈 of con-
nected components of 𝐆.

We will first reduce this problem to ℋ𝑜𝑚reg(Aut, 𝐁), and will later settle
its complexity.

Lemma VIII.4.16. Assume that 𝜎 contains at least one predicate of arity at
least 2. If 𝐁 does not have finite duality, then there is a first-order reduction
from regular unconnectivity in automatic graphs to ℋ𝑜𝑚reg(Aut, 𝐁†).

Proof. Given an instance ⟨𝒢, 𝑠, 𝑡⟩ of regular unconnectivity in automatic
graphs, we first define the 𝜎-structure 𝐀 with automatic presentation 𝒜
obtained by replacing every edge by a 1-link, as in Lemma VIII.4.8.

Claim VIII.4.17.55 𝒢(𝑠) and𝒢(𝑡) are regularly unconnected iff there is a regular 55 While “being linked” is not reflex-
ive in general, it is over the structure
𝐀, by reflexivity of “being connected”
in 𝒢.

language 𝐿 ⊆ Σ ∗ s.t. 𝒜(𝑠) ∈ 𝐿 and 𝑡 ∉ 𝐿, and 𝐿 is a union of equivalences
classes of dom𝒜 under “being linked”.

The proof is similar to Claim VIII.4.17. Then again, we reduce the instance
⟨𝒢, 𝑠, 𝑡⟩ to an automatic presentation of (𝐀 × 𝐁2)⋆, as in Lemma VIII.4.8.

Claim VIII.4.18. If (𝒜 × 𝐁2)⋆ reg hom−−−−−→ 𝐁†, then 𝒢(𝑠) and 𝒢(𝑡) are regularly
unconnected in 𝐆.

Let 𝑓∶ (𝒜 × 𝐁2)⋆ → 𝐁† be a regular homomorphism. By currying—see
Corollary VIII.2.5—of the underlying homomorphism between 𝜎-structures,
we obtain a regular homomorphism

𝐹∶ 𝒜 → 𝐁(𝐁2).

262

viii.4. undecidability of the homomorphism problems

Moreover, using the predicates 𝑃𝑏, 𝑏 ∈ 𝐵, we get that 𝐹(𝒜(𝑠)) = 𝜋1 and
𝐹(𝒜(𝑠)) = 𝜋2.

We then define

𝒳 =̂ {𝑔 ∈ 𝐁(𝐁2) ∣ 𝑔 and 𝜋1 are linked or 𝑔 = 𝜋1}.

We claim that 𝐹−1[𝒳] witnesses the fact that 𝒢(𝑠) and 𝒢(𝑡) are regularly
unconnected. First, 𝜋1 ∈ 𝒳 so 𝒜(𝑠) ∈ 𝐹−1[𝒳]. Since 𝐁 has finite duality, by
Proposition VIII.4.6, 𝜋2 ∉ 𝒳 and so 𝒜(𝑡) ∉ 𝐹−1[𝒳]. Then, 𝐹−1[𝒳] is regular
since 𝐹 is a regular homomorphism. Finally, 𝐹−1[𝒳] is a union of equivalences
classes of dom𝒜 under “being linked”.56 Hence, by Claim VIII.4.17, 𝒢(𝑠) and 56 Indeed, if 𝑐1, 𝑐2 ∈ 𝐂 are linked in

some structure 𝐂 and if 𝑓∶ 𝐂 → 𝐃
is a homomorphism, then 𝑓(𝑐1) and
𝑓(𝑐2) are linked in 𝐃.

𝒢(𝑡) are regularly unconnected.

Claim VIII.4.19. If 𝒢(𝑠) and 𝒢(𝑡) are regularly unconnected in 𝐆, then 𝒜×
𝐁2 reg hom−−−−−→ 𝐁†.

Since 𝒢(𝑠) and 𝒢(𝑡) are regularly unconnected in 𝐆, by Claim VIII.4.17
there is a regular language 𝐿 ⊆ Σ ∗ s.t. 𝒜(𝑠) ∈ 𝐿 and 𝒜(𝑡) ∉ 𝐿, and 𝐿 is a
union of equivalences classes of dom𝒜 under “being linked”. We define a
function 𝑓∶ dom𝒜 × 𝐵2 → 𝐵 by

𝑓(𝑎, 𝑏, 𝑏′) =̂

⎧⎪⎪⎨
⎪⎪⎩
𝑏 if 𝒜(𝑠) ∈ 𝐿,

𝑏′ otherwise,

and we claim that 𝑓 is a regular homomorphism from 𝒜 × 𝐁2 to 𝐁†. The
proof that it is a homomorphism is similar to Claim VIII.4.11: in particular, we
use the fact that 𝒢(𝑠) and 𝒢(𝑡) are not connected in𝐆, which is a consequence
of the fact that they are regularly unconnected. Regularity follows from the
regularity of 𝐿. Hence, 𝒜×𝐁2 reg hom−−−−−→ 𝐁†.

Putting Claims VIII.4.18 and VIII.4.19 together, we get that the reduction is
correct. Lastly, note that this is a first-order reduction for the same reason as
Lemma VIII.4.8.

We then prove a lower bound on the complexity of regular unconnec-
tivity in automatic graphs.

Lemma VIII.4.20. Regular unconnectivity in automatic graphs is
RE-hard.

⋯

Germ𝒯

Reach𝒯

Figure VIII.21: Configuration graph
of a linear Turing machine. (Replica
of Figure VIII.13.)

⋯

𝑠

𝑡

Figure VIII.22: The instance of regu-
lar unconnectivity in automatic
graphs to which the Turing machine
of Figure VIII.21 is reduced. Colours
indicate the different connected com-
ponents.

Proof. We reduce the regular reachability problem on linear Turing ma-
chines, which is RE-hard by Lemma VIII.3.6, to regular unconnectivity in
automatic graphs.

Given a linear Turing machine 𝒯 with configuration graph 𝒞𝑜𝑛𝑓𝒯 = ⟨𝑉,ℰ⟩,
we reduce it to the automatic graph 𝒢 = ⟨𝑉′,ℰ′⟩ where: 𝑉′ =̂ 𝑉 ⊔ {•} and
ℰ′ is the union of ℰ with the clique that puts in relation all vertices that are
either of the form • or that are germinal but not the initial configuration. We
then pick 𝑠 to be the initial configuration, and 𝑡 to be •.

By construction, 𝒢 is automatic and has exactly two connected components:

263

viii. a dichotomy theorem for automatic structures

Reach𝒯 (containing 𝑠) and its complement (containing 𝑡). Hence, the only
union of connected components of 𝒢 that contains 𝑠 but not 𝑡 is Reach𝒯. And
hence, 𝒯 is a positive instance of the regular reachability problem if,
and only if, Reach𝒯 is regular, i.e. ⟨𝒢, 𝑠, 𝑡⟩ is a positive instance of regular
unconnectivity in automatic graphs.

Corollary VIII.4.21. If 𝐁 does not have finite duality, then ℋ𝑜𝑚(Aut, 𝐁) is
RE-hard.

Proof. Recall that ℋ𝑜𝑚(Aut, 𝐁) = ℋ𝑜𝑚(Aut, �̌�), so we assume w.l.o.g. that
𝐁 is a core. By Lemma VIII.4.20, regular unconnectivity in automatic
graphs is RE-hard. Then by Property VIII.4.12, since 𝐁 does not have fi-
nite duality, 𝜎 does not consist only of unary predicates, and hence by
Lemma VIII.4.16, we get a reduction from regular unconnectivity in auto-
matic graphs to ℋ𝑜𝑚reg(Aut, 𝐁†), which in turns reduces to ℋ𝑜𝑚reg(Aut, 𝐁)
by Proposition VIII.2.6 since 𝐁 was assumed to be a core. Indeed, first-order
reductions preserves regularity, by Proposition VII.2.4.

VIII.5 Decidability of the Regular Homomorphism Problem

In this section, we show that if 𝐁 has finite duality, then ℋ𝑜𝑚reg(Aut, 𝐁)
is decidable. We provide two alternative proofs: a logic-based one, and a
graph-based one. In Section VIII.5.1 we provide a logic-based proof that if 𝐁
has finite duality, then ℋ𝑜𝑚reg(Aut, 𝐁) = ℋ𝑜𝑚(Aut, 𝐁). In turns, not only
does this implies by Proposition VIII.4.4 that ℋ𝑜𝑚reg(Aut, 𝐁) is decidable, but
actually that the problem is in NL, by Proposition VIII.4.3. Independently, in
Sections VIII.5.2 and VIII.5.3, we introduce the hyperedge consistency algo-
rithm for automatic structures, which is a variation of the classical hyperedge
consistency algorithm for finite structures. We start by explaining the later
algorithm, which solves ℋ𝑜𝑚(Fin, 𝐁) for some 𝐁’s.57 Then, we will use 57 Wewill see later that the algorithm

is correct for 𝜎-structures with so-
called tree duality, which is a super-
class of the structures with finite du-
ality.

the former algorithm to prove that assuming that 𝐁 has finite duality, then
ℋ𝑜𝑚reg(Aut, 𝐁) is decidable.58

58 Interestingly, this algorithm can-
not solve ℋ𝑜𝑚reg(Aut, 𝐁) when 𝐁
has tree duality but not finite duality.

VIII.5.1 Uniformly First-Order Definable Homomorphisms

We say that ℋ𝑜𝑚(Fin, 𝐁) (resp. ℋ𝑜𝑚(All, 𝐁)) has uniformly first-order defin-
able homomorphisms if there exists first-order formulas ⟨𝜙𝑏(𝑥)⟩𝑏∈𝐵 over 𝜎 s.t.
for any finite (resp. arbitrary) 𝜎-structure 𝐀, for any 𝑎 ∈ 𝐴, there is at most
one 𝑏 ∈ 𝐵, denoted by 𝑏(𝑎) s.t. ⟨𝐀, 𝑎⟩ ⊨ 𝜙𝑏(𝑥), and moreover if 𝐀 hom−−−→ 𝐁 then
𝑎 ↦ 𝑏(𝑎) is a homomorphism from 𝐀 to 𝐁.59 59 The adverb “uniformly” in “uni-

formly first-order definable homo-
morphisms” refers to the fact that
the formulas do not depend on the
source structure.

Example VIII.5.1 (Example VIII.2.11, continued). For instance, ℋ𝑜𝑚(All, 𝐓2)
has uniformly first-order definable homomorphisms, by letting 𝜙0(𝑥) be the
set of vertices with no predecessors, 𝜙2(𝑥) be the set of vertices with no
successor (but at least one predecessor), and 𝜙1(𝑥) be the set of vertices that
satisfy neither 𝜙0 not 𝜙2.

264

viii.5. decidability of the regular homomorphism problem

On the other hand, looking at the zigzag graph of Example VIII.2.11 and
Figure VIII.6 for long enough will convince the reader that no such strategy
can work for 𝐏2.

Lemma VIII.5.2. Let 𝐁 be a finite structure. Then ℋ𝑜𝑚(All, 𝐁) is first-
order definable iff ℋ𝑜𝑚(All, 𝐁) has uniformly first-order definable homo-
morphisms.60 60 The same equivalence holds if

one replaces ℋ𝑜𝑚(All, 𝐁) with
ℋ𝑜𝑚(Fin, 𝐁). In both cases,
these conditions are equivalent,
by Atserias’ theorem, to asking
whether 𝐁 has finite duality. This
corresponds to the implication
(DT)fin-dual ⇒ (DT)first-order of
Theorem VIII.4.1 and its converse
implication.

Before proving this lemma, we show an intermediate result.

Fact VIII.5.3. If 𝐁 is a finite core, then ℋ𝑜𝑚(All, 𝐁) is first-order definable
iff ℋ𝑜𝑚(All, 𝐁†) is first-order definable.

Proof. By Proposition VIII.2.6 the problems are first-order equivalent and so
one is first-order definable iff the other is.

Proof of Lemma VIII.5.2. X Converse implication. Assume that ℋ𝑜𝑚(All, 𝐁)
has uniformly first-order definable homomorphisms, say by ⟨𝜙𝑏(𝑥)⟩𝑏∈𝐵. Then
the conjunctions of the properties “every 𝑥 must satisfy exactly one 𝜙𝑏(𝑥)
(𝑏 ∈ 𝐁)”, and “for every predicate ℛ of arity 𝑘, for any ⟨𝑥1, … , 𝑥𝑘⟩ in ℛ, there
exists ⟨𝑏1, … , 𝑏𝑘⟩ ∈ ℛ(𝐁) s.t. each 𝑥𝑖 satisfies 𝑏𝑖 (𝑖 ∈ ⟦1, 𝑘⟧)” is a first-order
sentence describing all 𝜎-structures of ℋ𝑜𝑚(All, 𝐁).

X Direct implication. Let 𝐁 be such that ℋ𝑜𝑚(All, 𝐁) is first-order defin-
able. Given an arbitrary 𝜎-structure 𝐀, we define a function 𝐹∶ 𝐴 → 𝔓(𝐵)
by mapping each 𝑎 to the set of 𝑏’s (𝑏 ∈ 𝐵) s.t. there is a homomorphism from
𝐀 to 𝐁 that maps 𝑎 to 𝑏.

Claim VIII.5.4. If 𝐀 hom−−−→ 𝐁 then 𝐹 is a homomorphism from 𝐀 to 𝔘(𝐁).

Indeed, since 𝐀 hom−−−→ 𝐁, for each 𝑎 ∈ 𝐴 the set 𝐹(𝑎) is non-empty subset of
𝐵—and hence an element of the domain of 𝔘(𝐁). We then prove that it is a
homomorphism: let ℛ be a predicate of arity 𝑙, and let ⟨𝑎1, … , 𝑎𝑙⟩ ∈ ℛ(𝐀).
Then for each 𝑖 ∈ ⟦1, 𝑙⟧, for every 𝑏𝑖 ∈ 𝐹(𝑎𝑖), there exists a homomorphism
𝑓 from 𝐀 to 𝐁 that sends 𝑎𝑖 to 𝑏𝑖. Then 𝑓(𝑎𝑗) ∈ 𝐹(𝑎𝑗) for every 𝑗 ∈ ⟦1, 𝑙⟧ and
moreover ⟨𝑓(𝑎1), … , 𝑓(𝑎𝑙)⟩ ∈ ℛ(𝐁). Hence, ⟨𝐹(𝑎1), … , 𝐹(𝑎𝑙)⟩ ∈ ℛ(𝔘(𝐁)),
which concludes the proof that 𝐹 is a homomorphism from 𝐀 to 𝔘(𝐁).

By Atserias’ theorem, since ℋ𝑜𝑚(All, 𝐁) is first-order definable, then 𝐁
has finite duality, and in particular it has tree duality (by Proposition VIII.2.14)
and so by Proposition VIII.2.16, there exists a homomorphism 𝑔∶ 𝔘(𝐁) → 𝐁.
We will now produce first-order formulas to describe 𝑔 ∘ 𝐹.

Ifℋ𝑜𝑚(All, 𝐁) is first-order definable, then so isℋ𝑜𝑚(All, 𝐁†) by Fact VIII.5.3.
So, let 𝜙 be a first-order formula over 𝜎𝐁 that describes ℋ𝑜𝑚(All, 𝐁†). We let
𝐵 = {𝑏1, … , 𝑏𝑘}. We define a first-order formula 𝜙∗𝑖 (𝑥𝑖) over 𝜎, by substituting
each occurrence of 𝑃𝑏𝑖(𝑦) in 𝜙 for 𝑦 = 𝑥𝑖, and 𝑃𝑏𝑗(𝑦) (𝑗 ≠ 𝑖) for ⊥. Let 𝐀 be a
finite 𝜎-structure, 𝑎 ∈ 𝐴 and 𝑖 ∈ ⟦1, 𝑘⟧ and 𝐀𝑎,𝑖 be the 𝜎𝐁-structure obtained
by letting 𝑃𝑏𝑖(𝐀𝑎,𝑖) =̂ {𝑎} and 𝑃𝑏𝑗(𝐀𝑎,𝑖) =̂ ∅ for all 𝑗 ≠ 𝑖.

Claim VIII.5.5. 𝐀𝑎,𝑖 ⊨ 𝜙 iff ⟨𝐀, 𝑎⟩ ⊨ 𝜙∗𝑖 (𝑥𝑖).

265

viii. a dichotomy theorem for automatic structures

We prove it by induction on formulas 𝜓(�̄�) that ⟨𝐀𝑎,𝑖, �̄�⟩ ⊨ 𝜓 iff ⟨𝐀, �̄�, 𝑎⟩ ⊨
𝜓∗𝑖 (𝑥𝑖). The base case 𝑃𝑏𝑖(𝑦) is trivial since ⟨𝐀𝑎,𝑖, 𝑎′⟩ ⊨ 𝑃𝑏𝑖(𝑦) iff 𝑎′ = 𝑎 i.e.
⟨𝐀, 𝑎′, 𝑎⟩ ⊨ 𝑦 = 𝑥𝑖. Similarly, for 𝑃𝑏𝑗(𝑦) (𝑗 ≠ 𝑖), we have ⟨𝐀𝑎,𝑖, 𝑎′⟩ ⊭ 𝑃𝑏𝑗(𝑦) and
so this is equivalent to ⟨𝐀, 𝑎′, 𝑎⟩ ⊨ ⊥. The other atomic cases, and inductive
cases are trivial.

Claim VIII.5.6. There exist first-order formulas ⟨𝜒𝑌(𝑥)⟩𝑌∈𝔓(𝐵), that do not
depend on 𝐀, s.t. for every arbitrary 𝜎-structure 𝐀 and for every 𝑎 ∈ 𝐴, we
have ⟨𝐀, 𝑎⟩ ⊨ 𝜒𝑌(𝑥) iff 𝐹(𝑎) = 𝑌.

Indeed, given 𝑎 ∈ 𝐴 and 𝑖 ∈ ⟦1, 𝑘⟧, there is a homomorphism from 𝐀 to 𝐁
that sends 𝑎 to 𝑏𝑖 iff 𝐀𝑎,𝑖 ⊨ 𝜙, and so by Claim VIII.5.5, this is equivalent to
⟨𝐀, 𝑎⟩ ⊨ 𝜙∗𝑖 (𝑥𝑖). Hence, each 𝜒𝑌(𝑥) can be defined as a Boolean combination
of the 𝜙∗𝑖 (𝑥𝑖)’s, after renaming 𝑥𝑖 to 𝑥.61 61 In particular, note that ∀𝑥.¬𝜒∅(𝑥)

is a first-order formula that de-
fines ℋ𝑜𝑚(All, 𝐁) since for any 𝜎-
structure, 𝐀 hom−−−−→ 𝐁 iff 𝐹(𝑎) ≠ ∅
for all 𝑎 ∈ 𝐴.

We can now prove that ℋ𝑜𝑚(All, 𝐁) has uniformly first-order definable
homomorphisms. For each 𝑏 ∈ 𝐵, we let 𝜓𝑏(𝑥) =̂ ⋁

𝑌∈𝑔−1[𝑏] 𝜒𝑌(𝑥). Now
for any arbitrary 𝜎-structure 𝐀, for any 𝑎 ∈ 𝐴, there is at most one 𝑏 ∈ 𝐵
s.t. ⟨𝐀, 𝑎⟩ ⊨ 𝜓𝑏(𝑥)—indeed, there is a unique 𝑌 ∈ 𝔓(𝐵) (and so at most one
𝑌 ∈ 𝔓+(𝐵)) s.t. ⟨𝐀, 𝑎⟩ ⊨ 𝜒𝑌(𝑥) by Claim VIII.5.6. Furthermore, if 𝐀 hom−−−→ 𝐁,
then for each 𝑎 there is a unique 𝑏(𝑎) ∈ 𝐵 s.t. ⟨𝐀, 𝑎⟩ ⊨ 𝜓𝑏(𝑎)(𝑥), and moreover
𝑎 ↦ 𝑏(𝑎) is a homomorphism by Claim VIII.5.4. In turns, using Claim VIII.5.4,
we get that for each 𝑎 ∈ 𝐴, there is exactly one 𝑏(𝑎) ∈ 𝐵 s.t. ⟨𝐀, 𝑎⟩ ⊨
𝜙𝑏(𝑎)(𝑥), and that if 𝐀 hom−−−→ 𝐁, then 𝑎 ↦ 𝑏(𝑎) is a homomorphism—that is
equal to 𝑔 ∘ 𝐹. And hence, ℋ𝑜𝑚(All, 𝐁) has uniformly first-order definable
homomorphisms.

Uniformly first-order definable homomorphisms are actually a very strong
restriction: we show that such homomorphisms are always regular.

Proposition VIII.5.7.62 Let 𝐁 be a finite 𝜎-structure. If ℋ𝑜𝑚(All, 𝐁) has 62 This corresponds to the implica-
tion (DT)first-order ⇒ (DT)equal of
Theorem VIII.4.1.

uniformly first-order definable homomorphisms, then ℋ𝑜𝑚reg(Aut, 𝐁) =
ℋ𝑜𝑚(Aut, 𝐁).

Proof. Let 𝒜 be an automatic presentation of a 𝜎-structure 𝐀, and assume
that 𝐀 hom−−−→ 𝐁. We need to show that 𝒜 reg hom−−−−−→ 𝐁. Let ⟨𝜙𝑏(𝑥)⟩𝑏∈𝐵 be first-
order formulas over 𝜎 as in the definition of uniformly first-order definable
homomorphisms.

Since 𝒜 is an automatic presentation over Σ, for each predicate ℛ of arity
𝑘 of 𝜎, there exists a first-order formula 𝜓ℛ(𝑥1, … , 𝑥𝑘) over 𝜎syncΣ describing
each relation ℛ. We then define 𝜙∗𝑏(𝑥) as the formulas obtained from 𝜙𝑏(𝑥)
by substituting ℛ(𝑥1, … , 𝑥𝑘) for 𝜓ℛ(𝑥1, … , 𝑥𝑘).

Then, for each 𝑏 ∈ 𝐵, 𝜙∗𝑏(𝑥) is a first-order formula over 𝜎syncΣ , and so

{𝑢 ∈ Σ ∗ ∣ ⟨𝚺∗, 𝑢⟩ ⊨ 𝜙∗𝑏(𝑥)}

is regular by Proposition VII.2.4. Clearly, these sets are disjoint and cover
dom𝒜, and the function that maps 𝑢 ∈ dom𝒜 to the unique 𝑏 s.t. ⟨𝚺∗, 𝑢⟩ ⊨

266

viii.5. decidability of the regular homomorphism problem

𝜙∗𝑏(𝑥) is a homomorphism. Hence, we have built a regular homomorphism
from 𝒜 to 𝐁, which concludes the proof.

CorollaryVIII.5.8 (of Atserias’ theorem, LemmaVIII.5.2 and Proposition VIII.5.7).
If 𝐁 has finite duality, then ℋ𝑜𝑚reg(Aut, 𝐁) = ℋ𝑜𝑚(Aut, 𝐁).

In turn, since ℋ𝑜𝑚(Aut, 𝐁) is coRE and ℋ𝑜𝑚reg(Aut, 𝐁) is RE (Proposi-
tion VIII.4.5), this implies that ℋ𝑜𝑚reg(Aut, 𝐁) is decidable. In fact, using the
formulas 𝜙∗𝑏(𝑥), we can build a first-order formula saying “every 𝑥 satisfies
exactly one 𝜙∗𝑏(𝑥), and moreover if ⟨𝑥1, … , 𝑥𝑘⟩ is an ℛ-tuple then ⟨𝑏1, … , 𝑏𝑘⟩ is
an ℛ-tuple, where 𝑏𝑖 is the unique element of 𝐵 s.t. 𝜙𝑏𝑖(𝑥𝑖) holds”. Each prop-
erty “⟨𝑥1, … , 𝑥𝑘⟩ is an ℛ-tuple” can be expressed using a first-order formula
expressing the relations of the automatic presentation given as input.

Corollary VIII.5.9 (of Atserias’ theorem and Lemma VIII.5.2). Let 𝐁 be a
finite 𝜎-structure with finite duality. For each automatic presentation 𝒜 over
alphabet Σ, there exists a first-order formula 𝜙, whose size is linear in 𝒜, s.t.
𝚺∗ ⊨ 𝜙 iff 𝒜 reg hom−−−−−→ 𝐁.

In particular, this implies the decidability of ℋ𝑜𝑚reg(Aut, 𝐁).

VIII.5.2 Hyperedge Consistency for Finite Structures

Given a homomorphism 𝑓∶ 𝐆 → 𝐇 between graphs, note that if 𝑔 ∈ 𝐺 has at
least one successor in 𝐆, then 𝑓(𝑔) must also have one successor in 𝐇. As a
consequence, such an 𝑔 cannot be mapped by any homomorphism to a vertex
of 𝐇 with no successor. The idea behind hyperedge consistency is precisely
to identify for each 𝑔 ∈ 𝐺 the set Im𝑔 of all elements of 𝐇 to which it can
be mapped: initially this set is 𝐻, and we try to find some “obstructions”.
These obstructions take the following form: if 𝑔 ∈ 𝐺 has a successor (resp.
predecessor) 𝑔′ ∈ 𝐺, then any vertex of Im𝑔 must have a successor (resp.
predecessor) in 𝐇 that lives in Im𝑔′—see Figure VIII.23.

𝑔 𝑔′
𝐆-edge

Im𝑔 Im𝑔′

∈ ∈

∀ℎ ∃ℎ′𝐇-edge

Figure VIII.23: Diagrammatic rep-
resentation of the hyperedge consis-
tency algorithm.

Example VIII.5.10 (Example VIII.5.1, continued). We depict in Figure VIII.24
the first steps of the hyperedge consistency algorithm—that we will define
formally after this example—, when the target structure if 𝐓2 and the source
structure is 𝐙(𝑛)2 . The second step is a fixpoint, and so the procedure stops
there. Note also that each Im𝑔 (𝑔 ∈ 𝐙(𝑛)2) is non-empty.

267

viii. a dichotomy theorem for automatic structures

Figure VIII.24: Zeroth (top), first
(middle) and second step (bottom) of
the hyperedge consistency algorithm
on 𝐙(𝑛)2 when the target structure is
𝐓2, depicted in Figure VIII.25. Next
to each vertex 𝑔 of 𝐙(𝑛)2 we represent
all vertices ℎ of 𝐓2: the vertex is filled
when ℎ ∈ Im𝑔.

Figure VIII.25: The 2-transitive tour-
nament 𝐓2.

We formalize this algorithm as the greatest fixpoint of some operator.
Given a finite 𝜎-structure 𝐁, and an arbitrary63𝜎-structure 𝐀, we say that a

63 Note that in this part, while some
results—mostly complexity/decidabil-
ity ones—require the assumption
that the source structure is finite,
some results do not, and are stated
for arbitrary structures.

function 𝐹∶ 𝐴 → 𝔓(𝐵) is subsumed by 𝐺∶ 𝐴 → 𝔓(𝐵), denoted by 𝐹 ⊑ 𝐺, if
𝐹(𝑎) ⊆ 𝐺(𝑎) for each 𝑎 ∈ 𝐴. We denote by ⟨𝔓(𝐵)𝐴, ⊑⟩ the set of functions
𝐴 → 𝔓(𝐵) under this order.64 64 Equivalently, ⟨𝔓(𝐵)𝐴, ⊑⟩ is the set

of binary relations between 𝐴 and 𝐵,
ordered by inclusion.

We then define an operator on this space, which corresponds to one step
of the hyperedge consistency algorithm:

ℋ𝒞𝐀,𝐁 ∶ ⟨𝔓(𝐵)𝐴, ⊑⟩ → ⟨𝔓(𝐵)𝐴, ⊑⟩
𝐹 ↦ ℋ𝒞𝐀,𝐁(𝐹),

where for each 𝑎 ∈ 𝐴, ℋ𝒞𝐀,𝐁(𝐹)(𝑎) is the set of 𝑏 ∈ 𝐹(𝑎) s.t. for every ℛ(𝑘) ∈ 𝜎,
for every 𝑖 ∈ ⟦1, 𝑘⟧, if ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎), then there exists 𝑏1 ∈ 𝐹(𝑎1),
… , 𝑏𝑘−1 ∈ 𝐹(𝑎𝑘−1) s.t. ⟨𝑏1, … , 𝑏𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏).65 65 We write ℋ𝒞 for ℋ𝒞𝐀,𝐁 when

there is no ambiguity on the struc-
tures involved.Fact VIII.5.11. The ordered set ⟨𝔓(𝐵)𝐴, ⊑⟩ is a complete lattice, andmoreover

ℋ𝒞 is monotonic.

As a consequence of the Knaster-Tarski theorem, ℋ𝒞 admits a greatest
fixpoint, that we denote by 𝐻 ∗

𝐀,𝐁 ∈ ⟨𝔓(𝐵)𝐴, ⊑⟩.66 66 Recall that this greatest fixpoint
can be obtained by ordinal induction
by starting from the greatest element
of ⟨𝔓(𝐵)𝐴, ⊑⟩, namely the map 𝑎 ↦
𝐵, and iterating ℋ𝒞.

PropositionVIII.5.12. If 𝑓∶ 𝐀 → 𝐁 is a homomorphism then 𝑓(𝑎) ∈ 𝐻 ∗
𝐀,𝐁(𝑎)

for each 𝑎 ∈ 𝐴.

Proof. The property “𝑓(𝑎) ∈ 𝐹(𝑎) for each 𝑎 ∈ 𝐴” holds for the greatest
element of ⟨𝔓(𝐵)𝐴, ⊑⟩, is stable under application of ℋ𝒞 and under arbitrary
meets.67 Hence, by ordinal induction, it holds for 𝐻 ∗

𝐀,𝐁. 67 Meaning that if all 𝐹𝑖 (𝑖 ∈ 𝐼 for
some arbitrary set 𝐼) satisfy the prop-
erty, then so does 𝑎 ↦ ⋂𝑖∈𝐼 𝐹(𝑎)Corollary VIII.5.13. If 𝐻 ∗

𝐀,𝐁(𝑎) = ∅ for some 𝑎 ∈ 𝐴, then 𝐀���hom−−−→ 𝐁.

In general, the converse property does not hold. For instance, if 𝜎 is the
graph signature and 𝐁 is the 2-clique—or more generally any clique—, then

268

https://en.wikipedia.org/wiki/Complete_lattice
https://en.wikipedia.org/wiki/Knaster%E2%80%93Tarski_theorem

viii.5. decidability of the regular homomorphism problem

𝐻 ∗
𝐀,𝐁 is always the map 𝑎 ↦ 𝐵, no matter whether there is a homomorphism

from 𝐀 to 𝐁.
Yet, Larose, Loten and Tardif managed to identify a necessary and sufficient

condition on 𝐁 for the hyperedge consistency algorithm to decide whether
𝐀 ∈ ℋ𝑜𝑚(Fin, 𝐁).

Proposition VIII.5.14 ([LLT07, Theorem 3.3]). If 𝐁 has tree duality then
𝐀 hom−−−→ 𝐁 iff 𝐻 ∗

𝐀,𝐁(𝑎) ≠ ∅ for all 𝑎 ∈ 𝐴.

When 𝐀 is moreover finite, this immediately gives an algorithm to decide
𝐀 hom−−−→ 𝐁 since 𝐻 ∗

𝐀,𝐁 can be computed not only by an ordinal induction but
with a finite induction.

As an example, Example VIII.5.10 witnesses that 𝐙(𝑛)2
hom−−−→ 𝐓2 since 𝐓2 has

tree duality by Proposition VIII.2.14.

(step 2)

(step 3)

(step 6)

(step 7)

(step 13)

Figure VIII.26: Steps 2, 3, 6, 7 and
13 of the hyperedge consistency algo-
rithm on 𝐙(5)2 , when the target struc-
ture is 𝐏2, depicted in Figure VIII.27.

Figure VIII.27: The 2-path 𝐏2.
Example VIII.5.15 (Example VIII.5.10, continued). While 𝐏2 does not have
finite duality (Example VIII.2.11), it has tree duality (Proposition VIII.2.15), and
so the hyperedge consistency algorithm decides whether a finite 𝜎-structure
has a homomorphism to 𝐏2. We represent some steps of the algorithm in

269

viii. a dichotomy theorem for automatic structures

Figure VIII.26, on the source structure 𝐙(5)2 . Steps 0, 1 and 2 of the hyper-
edge consistency algorithm are identical to Example VIII.5.10. Yet, in step
2, we have not reached the fixpoint. In step 7, this is the first time we have
ℋ𝒞7(Λ𝐏2)(𝑔) = ∅ for some 𝑔 ∈ 𝐙(5)2 . This propagates until step 13, when
ℋ𝒞13(Λ𝐏2)(𝑔) = ∅ for all 𝑔 ∈ 𝐙(5)2 . This is of course the fixpoint of ℋ𝒞, prov-
ing that 𝐻 ∗

𝐙(5)2 ,𝐏2 is the constant map equal to ∅, and by Corollary VIII.5.13
that 𝐙(5)2 ���hom−−−→ 𝐏2.

In general, on source structure 𝐙(𝑛)2 (with 𝑛 ∈ ℕ>0), the smallest 𝑘 s.t.
ℋ𝒞 𝑘(Λ𝐏2)(𝑔) = ∅ for some 𝑔 ∈ 𝐙(𝑛)2 is of size 𝑛

2 +𝒪(1), and if we want to the
property to hold for all 𝑔’s, then 𝑘 has size 𝑛 +𝒪(1).

Corollary VIII.5.16. If 𝐁 has tree duality, then ℋ𝑜𝑚(Fin, 𝐁) can be solved
in polynomial time using the algorithm of Figure VIII.28.

However, note that the example of 𝐊2 shows that the property of having
tree duality, is not necessary for ℋ𝑜𝑚(Fin, 𝐁) to be decidable in P.

Input: Two finite 𝜎-structures 𝐀 and 𝐁.
Im0

𝑎 ← 𝐵 for 𝑎 ∈ 𝐴;
𝑛 ← 0;
do

for 𝑎 ∈ 𝐴 do
Im𝑛+1

𝑎 ← {𝑏 ∈ Im𝑛
𝑎 ∣

∀⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎),
∃⟨𝑏1, … , 𝑏𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏),
𝑏1 ∈ 𝐹(𝑎1) ∧ …∧ 𝑏𝑘−1 ∈ 𝐹(𝑎𝑘−1)

};
if Im𝑛+1

𝑎 = ∅ then
return false;

𝑛 ← 𝑛+ 1;
while some Im𝑎 has been updated ;
return true

Figure VIII.28: The hyperedge consis-
tency algorithm for finite structures.

VIII.5.3 Hyperedge Consistency for Automatic Structures

When 𝐀 is automatic, Proposition VIII.5.14 still applies, however it is not
clear how to compute 𝐻 ∗

𝐀,𝐁 since this element cannot necessarily be obtained
by finite induction, namely as ℋ𝒞𝑛(Λ𝐵) for some 𝑛 ∈ ℕ, where Λ𝐵 is the
maximum element of ⟨𝔓(𝐵)𝐴, ⊑⟩, namely the constant map 𝑎 ↦ 𝐵. Another
issue is to have a finite representation of the functions of ⟨𝔓(𝐵)𝐴, ⊑⟩ since 𝐴
can be infinite. This last point is easy to address.

Given an automatic presentation 𝒜 of 𝐀, we extend ℋ𝒞𝒜,𝐁 and 𝐻 ∗
𝒜,𝐁 to

be defined on dom𝒜 instead of 𝐀.

LemmaVIII.5.17 (ℋ𝒞 preserves regularity). Let𝐀 be an arbitrary 𝜎-structure
and𝐁 a finite 𝜎-structure. For any 𝐹 ∈ ⟨𝔓(𝐵)𝒜, ⊑⟩, if 𝐹 is regular, then ℋ𝒞(𝐹)
is regular.

270

viii.5. decidability of the regular homomorphism problem

Proof. Let 𝐹 ∈ ⟨𝔓(𝐵)𝒜, ⊑⟩ be regular, so for each 𝑌 ∈ 𝔓(𝐵), 𝐹−1[𝑌] is regular,
and so by Proposition VII.2.4, there exists a first-order formula 𝜙𝑌(𝑥) over
𝜎syncΣ s.t. 𝐹−1[𝑌] = ⟦𝜙𝑌(𝑥)⟧𝚺

∗
. Also, since 𝒜 is an automatic presentation,

for any ℛ ∈ 𝜎 of arity 𝑘, there exists by Proposition VII.2.4 a first-order
formula 𝜓ℛ(𝑥1, … , 𝑥𝑘) over 𝜎syncΣ s.t. ℛ𝒜 = ⟦𝜓ℛ(𝑥1, … , 𝑥𝑘)⟧𝚺

∗
. Similarly,

dom𝒜 = ⟦𝜓dom(𝑥)⟧𝚺
∗
for some formula 𝜓dom(𝑥).

It is then easy to prove that ℋ𝒞(𝐹) is regular by providing a first-order
formula �𝜙𝑌(𝑥) for each 𝑌 ∈ 𝔓(𝐵), describing ℋ𝒞(𝐹)−1[𝑌], using both the
formulas above, and the definition of ℋ𝒞. Indeed, recall that an element
𝑢 ∈ dom𝒜 should be sent via ℋ𝒞(𝐹) onto 𝑌 ∈ 𝔓(𝐵) if 𝑌 is exactly the set of
elements 𝑏 ∈ 𝐵 s.t. for every ℛ(𝑘) ∈ 𝜎, for every 𝑖 ∈ ⟦1, 𝑘⟧, if ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈
𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎), then there exists 𝑏1 ∈ 𝐹(𝑎1), … , 𝑏𝑘−1 ∈ 𝐹(𝑎𝑘−1) s.t. ⟨𝑏1, … , 𝑏𝑘−1⟩ ∈
𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏). Symbolically the set of such 𝑢’s can be written as ⟦�𝜙𝑌(𝑥)⟧𝚺

∗
,

where
�𝜙𝑌(𝑥) =̂ 𝜓dom(𝑥) ∧ ��

𝑏∈𝑌
𝜒𝑏(𝑥) ∧�

𝑏∉𝑌
¬𝜒𝑏(𝑥)�

where 𝜒𝑏(𝑥) is the formula68 68 Notice that since 𝜒𝑏 appear both
positively and negatively in �𝜙𝑌, go-
ing from the 𝜙’s to the �𝜙′𝑠 increases
the quantifier alternation of the for-
mulas by one. And so the formulas
we build to describe ℋ𝒞𝑛(Λ𝐵) are of
quantifier alternation 𝑛. Automata-
wise, it implies that this construction
is non-elementary in 𝑛.

𝜒𝑏(𝑥) =̂ �
ℛ(𝑘)∈𝜎

�
𝑖∈⟦1,𝑘⟧

∀𝑥1. … ∀𝑥𝑖−1. ∀𝑥𝑖+1. … ∀𝑥𝑘.

𝜓ℛ(𝑥1, … , 𝑥𝑖−1, 𝑥, 𝑥𝑖+1, … , 𝑥𝑘)

⇒ � �
⟨𝑏1,…,𝑏𝑖−1,𝑏𝑖+1,…𝑏𝑘⟩∈𝒜𝑑𝑗ℛ,𝑖

𝐁 (𝑏)
�

𝑖∈⟦1,𝑘⟧∖{𝑖}
�

𝑌′∈𝔓(𝐵)
𝑏𝑖∈𝑌′

𝜙𝑌′(𝑥𝑖)

�����������������
𝑏𝑖∈𝐹(𝑥𝑖)

�.

Notice that Λ𝐵 is trivially regular, and so by immediate induction, each
ℋ𝒞𝑛(Λ𝐵) with 𝑛 ∈ ℕ is also regular. While this opens the door to solving
ℋ𝑜𝑚reg(Aut, 𝐁) when 𝐁 has tree duality using the hyperedge consistency
algorithm, the problem of finite convergence remains.

First, we show that finite iterations are enough to detect the absence of
homomorphism.

Proposition VIII.5.18. Let 𝐀 be an arbitrary 𝜎-structure and 𝐁 a finite 𝜎-
structure with tree duality. If 𝐀���hom−−−→ 𝐁, then there exists 𝑛 ∈ ℕ and 𝑎 ∈ 𝐴
s.t. ℋ𝒞𝑛(Λ𝐵)(𝑎) = ∅.

In order to prove this proposition, we rely on the following property.

PropertyVIII.5.19 (Monotonicity ofℋ𝒞).69 Let𝐀,𝐀′ be arbitrary 𝜎-structures 69 Observe in particular that this
property can be applied if𝐀′ is a sub-
structure of 𝐀.

s.t. there is a homomorphism ℎ∶ 𝐀′ → 𝐀. Let 𝐁 a finite 𝜎-structure. For any
𝐹 ∈ ⟨𝔓(𝐵)𝐴, ⊑⟩ and 𝐹′ ∈ ⟨𝔓(𝐵)𝐴′ , ⊑⟩, if 𝐹(ℎ(𝑎)) ⊆ 𝐹′(𝑎) for all 𝑎 ∈ 𝐴′, then
ℋ𝒞(𝐹)(ℎ(𝑎)) ⊆ ℋ𝒞(𝐹′)(𝑎) for all 𝑎 ∈ 𝐴′.70 70 In other words, if 𝐹 ∘ ℎ ⊑ 𝐹′, then

ℋ𝒞(𝐹) ∘ ℎ ⊑ ℋ𝒞(𝐹′).

Proof. Assume that 𝐹|𝐴′ ⊑ 𝐹′, and let us show that ℋ𝒞(𝐹)|𝐴′ ⊑ ℋ𝒞(𝐹′). Let
𝑎 ∈ 𝐴′, and let 𝑏 ∈ ℋ𝒞(𝐹)(ℎ(𝑎)). By definition of ℋ𝒞, for every ℛ(𝑘) ∈ 𝜎, for
every 𝑖 ∈ ⟦1, 𝑘⟧, if ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀 (ℎ(𝑎)), then there exists 𝑏1 ∈ 𝐹(𝑎1),

271

viii. a dichotomy theorem for automatic structures

… , 𝑏𝑘−1 ∈ 𝐹(𝑎𝑘−1) s.t. ⟨𝑏1, … , 𝑏𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏). Now, let ℛ(𝑘) ∈ 𝜎 and
𝑖 ∈ ⟦1, 𝑘⟧, and let ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀′ (𝑎). Since ℎ is a homomorphism,
we have ⟨ℎ(𝑎1), … , ℎ(𝑎𝑘−1)⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀 (ℎ(𝑎)), and so there exists 𝑏1 ∈ 𝐹(ℎ(𝑎1)),
… , 𝑏𝑘−1 ∈ 𝐹(ℎ(𝑎𝑘−1)) s.t. ⟨𝑏1, … , 𝑏𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏). Since by hypothesis
𝐹(ℎ(𝑎𝑖)) ⊆ 𝐹′(𝑎𝑖) (for 𝑎𝑖 ∈ 𝐴′), it follows that for every ℛ(𝑘) ∈ 𝜎, for every
𝑖 ∈ ⟦1, 𝑘⟧, if ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀′ (𝑎), then there exists 𝑏1 ∈ 𝐹′(𝑎1), … ,
𝑏𝑘−1 ∈ 𝐹′(𝑎𝑘−1) s.t. ⟨𝑏1, … , 𝑏𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏). And hence 𝑏 ∈ ℋ𝒞(𝐹′)(𝑎),
which concludes the proof.

Proof of Proposition VIII.5.18. Let 𝐀 be an arbitrary 𝜎-structure and 𝐁 a finite
𝜎-structure with tree duality. Assume that 𝐀 ���hom−−−→ 𝐁. Then by Proposi-
tion VIII.2.7 there exists a finite substructure𝐀′ of𝐀 s.t. 𝐀′ ���hom−−−→ 𝐁, and so by
Proposition VIII.5.14, there exists some 𝑎 ∈ 𝐴 s.t. 𝐻 ∗

𝐀′,𝐁(𝑎) = ∅. But since 𝐀′

is finite, 𝐻 ∗
𝐀′,𝐁 = ℋ𝒞𝑛(Λ𝐵) for some 𝑛 ∈ ℕ. Then using Property VIII.5.19,

ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵)(𝑎) ⊆ ℋ𝒞𝑛

𝐀′,𝐁(Λ𝐵)(𝑎) = 𝐻 ∗
𝐀′,𝐁(𝑎) = ∅.

So, if 𝐀 ���hom−−−→ 𝐁, then the hyperedge consistency algorithm will detect
it in finite time assuming that 𝐁 has tree duality. We will then show the
dual implication, under the stronger assumption that 𝐁 has finite duality:
the reason we need this stronger assumption is that while the hyperedge
consistency algorithm converges for finite 𝜎-structures when 𝐁 has tree
duality, the number of iterations needed to reach the fixpoint depends on 𝐀:
for instance, in Example VIII.5.15, we showed that when the target structure
is 𝐏2, then hyperedge consistency algorithm converges on 𝐙(𝑛)2 in 𝑛 +𝒪(1)
steps. On the other hand, for structures with finite duality, we show that this
is not the case—and hence, convergence generalizes to infinite 𝜎-structures:
for instance, we showed in Example VIII.5.15 that over the target structure 𝐓2,
which has finite duality, then the hyperedge consistency algorithm converges
on 𝐙(𝑛)5 in only 2 steps.

Lemma VIII.5.20 (Uniform Convergence of Hyperedge Consistency for
Structures with Finite Duality). Let 𝐁 be a finite 𝜎-structure. The following
are equivalent:
1. 𝐁 has finite duality;
2. there exists 𝑛 ∈ ℕ s.t. for every finite 𝜎-structure 𝐀:

• ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵) = 𝐻 ∗

𝐀,𝐁 when 𝐀 hom−−−→ 𝐁, and
• ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎) = ∅ for some 𝑎 ∈ 𝐴 when 𝐀���hom−−−→ 𝐁;
3. there exists 𝑛 ∈ ℕ s.t. for every arbitrary 𝜎-structure 𝐀:

• ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵) = 𝐻 ∗

𝐀,𝐁 when 𝐀 hom−−−→ 𝐁, and
• ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎) = ∅ for some 𝑎 ∈ 𝐴 when 𝐀���hom−−−→ 𝐁;

Proof. We prove the implications (1)⇒ (2)⇒ (3)⇒ (1).
X (2) ⇒ (3). Let 𝑛 ∈ ℕ s.t. ℋ𝒞𝑛

𝐀′,𝐁(Λ𝐵) = 𝐻 ∗
𝐀′,𝐁 for every finite 𝜎-

structure 𝐀′. Let 𝐀 be an arbitrary 𝜎-structure. Note that for any 𝐹 ∈
⟨𝔓(𝐵)𝐴, ⊑⟩, for any substructure 𝐀′ of 𝐀 containing 𝑎, then by Prop-

272

viii.5. decidability of the regular homomorphism problem

erty VIII.5.19 ℋ𝒞𝐀,𝐁(𝐹)(𝑎) ⊆ ℋ𝒞𝐀′,𝐁(𝐹)(𝑎). We show that equality is reached
by a particular finite substructure.

Claim VIII.5.21. For any 𝐹 ∈ ⟨𝔓(𝐵)𝐴, ⊑⟩ and 𝑚 ∈ ℕ, there exists a finite
substructure71 𝐀𝑎,𝑚 of ℬ𝑚

𝐀(𝑎) s.t. 71 Of course, if 𝐀 is locally finite, we
can always take 𝐀𝑎,𝑚 = ℬ𝑚

𝐀(𝑎).

ℋ𝒞𝑚
𝐀,𝐁(𝐹)(𝑎) = ℋ𝒞𝑚

𝐀𝑎,𝑚,𝐁(𝐹)(𝑎).

We give a proof sketch of this claim. Note that by definition, ℋ𝒞𝐀,𝐁(𝐹)(𝑎)
only depends on the values of 𝐹(𝑎′) where 𝑎′ is at distance 1. More precisely,
it only depends on the values ⟨𝐹(𝑎1), … , 𝐹(𝑎𝑘−1)⟩, where ℛ is any predicate
of arity 𝑘, 𝑖 ∈ ⟦1, 𝑘⟧ and ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈ 𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎). Since 𝐵 is finite, there
are finitely many tuples of the form ⟨𝐹(𝑎1), … , 𝐹(𝑎𝑘−1)⟩, and so for each of
them it suffices to keep (for distance 𝑚 = 1) only one tuple ⟨𝑎1, … , 𝑎𝑘−1⟩ ∈
𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎). By induction on 𝑚, we obtain a finite substructure 𝐀𝑎,𝑚 of ℬ𝑚

𝐀(𝑎)
as in Claim VIII.5.21.

We now show that if 𝐀 hom−−−→ 𝐁, then ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵) = 𝐻 ∗

𝐀,𝐁, and if 𝐀 hom−−−→ 𝐁,
then ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎) = ∅ for some 𝑎 ∈ 𝐴. We assume that 𝐀 hom−−−→ 𝐁: by
Claim VIII.5.21 and Property VIII.5.19

ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵)(𝑎) = ℋ𝒞𝑛

𝐀𝑎,𝑛+1,𝐁(Λ𝐵)(𝑎).

Since 𝐀𝑎,𝑛+1 is finite, by (2), the right-hand side of the equality above equals
𝐻 ∗
𝐀𝑎,𝑚,𝐁(𝑎). But then again by Claim VIII.5.21 and (2),

ℋ𝒞𝑛+1𝐀,𝐁 (Λ𝐵)(𝑎) = 𝐻 ∗
𝐀𝑎,𝑛+1,𝐁(𝑎).

And hence ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵)(𝑎) = ℋ𝒞𝑛+1𝐀,𝐁 (Λ𝐵)(𝑎). Since this property holds for

arbitrary values of 𝑎 ∈ 𝐴, it follows that ℋ𝒞𝑛
𝐀,𝐁(Λ𝐵) = 𝐻 ∗

𝐀,𝐁. The case when
𝐀���hom−−−→ 𝐁 is handled similarly.

X (3)⇒ (1). One can show—exactly as in the proof of Lemma VIII.5.17—by
induction on 𝑚 ∈ ℕ that ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵) is first-order definable, in the sense
that for all 𝑌 ∈ 𝔓(𝐵), there exists a first-order formula 𝜙𝑚,𝑌(𝑥) over 𝜎 s.t.
ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵)−1[𝑌] = ⟦𝜙𝑚,𝑌(𝑥)⟧𝐀, i.e. for any 𝑎 ∈ 𝐴, we have

⟨𝐀, 𝑎⟩ ⊨ 𝜙𝑚,𝑌(𝑥) iff ℋ𝒞𝑚
𝐀,𝐁(Λ𝐵)(𝑎) = 𝑌.

We then claim that

𝐀 ⊨ ∀𝑥.¬𝜙𝑛,∅(𝑥) iff 𝐀 hom−−−→ 𝐁.

The left-to-right implication can be proven by contraposition, since if 𝐀���hom−−−→
𝐁 then by (3) we have ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎) = ∅ for some 𝑎 ∈ 𝐴. For the right-
to-left implication, we again use (3), which yields that ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵) = 𝐻 ∗
𝐀,𝐁.

Together with the contraposition of Corollary VIII.5.13, this implies that
ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎) ≠ ∅ for all 𝑎 ∈ 𝐴. The conclusion that 𝐁 has finite duality
follows from Atserias’ theorem.

273

viii. a dichotomy theorem for automatic structures

X (1)⇒ (2). To prove this implication, we first need a characterization of
what it means for an element 𝑏 ∈ 𝐵 not to be in 𝐻 ∗

𝐀,𝐁(𝑎), where 𝑎 ∈ 𝐴. We
denote by 𝑛(𝐁) the maximal diameter of a critical obstruction of 𝐁—which
must be finite since 𝐁 has finite duality.

Claim VIII.5.22. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Assume that there exists a 𝜎-tree 𝐓 s.t.
there is a homomorphism from 𝐓 to 𝐀 that maps some element 𝑡 ∈ 𝑇 to 𝑎,
but no homomorphism from 𝐓 to 𝐁 can map 𝑡 to 𝑏. Then, letting 𝑚 denote
the height of 𝐓 when rooted at 𝑡, we have 𝑏 ∉ ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵)(𝑎).

We can prove by induction on 𝐓 that if there are no homomorphism from
𝐓 to 𝐁 that can map 𝑡 to 𝑏, then 𝑏 ∉ ℋ𝒞𝑚

𝐓,𝐁(Λ𝐵)(𝑡) where𝑚 is the height of 𝐓
rooted at 𝑡. Then by Property VIII.5.19, ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵)(𝑎) ⊆ ℋ𝒞𝑚
𝐓,𝐁(Λ𝐵)(𝑡) and

so 𝑏 ∉ ℋ𝒞𝑚
𝐀,𝐁(Λ𝐵)(𝑎).

Claim VIII.5.23. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝐀���hom−−−→ 𝐁, then ℋ𝒞𝑛(𝐁)
𝐀,𝐁 (Λ𝐵)(𝑎) = ∅

for some 𝑎 ∈ 𝐴.

Indeed, since 𝐀���hom−−−→ 𝐁, there exists a critical obstruction 𝐓 of 𝐁 s.t. 𝐓 hom−−−→
𝐀. By Proposition VIII.2.14, w.l.o.g. 𝐓 is a 𝜎-tree. Since 𝐓 ���hom−−−→ 𝐁, for any
𝑡 ∈ 𝑇 and 𝑎 ∈ 𝐴 s.t. 𝑡 is mapped on 𝑎, we have by Claim VIII.5.22 that for any
𝑏 ∈ 𝐵, 𝑏 ∉ ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵)(𝑎), where 𝑚 is the height of 𝐓 when rooted at 𝑡. And
hence ℋ𝒞𝑚

𝐀,𝐁(Λ𝐵)(𝑎) = ∅. Since 𝑚 ≤ 𝑛(𝐁), this concludes the proof of the
first part of (2). We will now handle the more tricky case of 𝐀 hom−−−→ 𝐁.

Claim VIII.5.24.72 Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝐀 hom−−−→ 𝐁 and 𝑏 ∉ 𝐻 ∗
𝐀,𝐁(𝑎), then 72 In fact, Larose, Loten & Tardif

implicitly showed a weaker result,
by adapting [FV98, Theorem 21], in
[LLT07, Proof of Lemma 3.2]. It states
that if 𝑏 ∉ 𝐻 ∗

𝐀,𝐁(𝑎), then there exists
a 𝜎-tree 𝐓 s.t. there is a homomor-
phism from 𝐓 to 𝐀 that maps some
element 𝑡 ∈ 𝑇 to 𝑎, but no homo-
morphism from 𝐓 to 𝐁 can map 𝑡 to
𝑏. Moreover, the height of their 𝜎-
tree𝐓 is linearly bounded by the least
𝑛 ∈ ℕ s.t. 𝑏 ∉ ℋ𝒞𝑛

𝐀,𝐁(Λ𝐵)(𝑎). This
property is true without any duality
assumption on 𝐁, and only follows
from the inner workings of the hy-
peredge consistency algorithm.

𝑏 ∉ ℋ𝒞𝑛(𝐁)
𝐀,𝐁 (Λ𝐵)(𝑎).

Figure VIII.29: Construction of 𝐂
as in the proof of Claim VIII.5.24
when 𝐀 is the 2-path and 𝐁 is the
2-transitive tournament.

To prove this claim, we use a construction that is similar to Proposi-
tion VIII.2.6. Fix 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 s.t. 𝑏 ∉ 𝐻 ∗

𝐀,𝐁(𝑎). Let 𝐂 be defined by
first taking the disjoint union of 𝐀 and 𝐁, and then identifying 𝑎 and 𝑏. Note
that for any 𝑎′ ∈ 𝐴, we have:

𝒜𝑑𝑗ℛ,𝑖𝐂 (𝑎′) =

⎧⎪⎪⎨
⎪⎪⎩

𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎′) if 𝑎′ ≠ 𝑎,

𝒜𝑑𝑗ℛ,𝑖𝐀 (𝑎) ∪𝒜𝑑𝑗ℛ,𝑖𝐁 (𝑏) if 𝑎′ = 𝑎 = 𝑏.

The goal of this construction is that, when running the hyperedge consistency
algorithm on 𝐂, vertex 𝑏 will be removed as a potential image for 𝑎 since
𝑏 ∉ 𝐻 ∗

𝐀,𝐁(𝑎), but because of the copy of 𝐁 included in 𝐂, any homomorphism
from 𝐂 to 𝐁 must map 𝑎 to 𝑏. See Figure VIII.29 for an example.

Claim VIII.5.25. 𝐂���hom−−−→ 𝐁.

Indeed, if there was a homomorphism from 𝐂 to 𝐁, say 𝑓, then 𝑓|𝐁 would
be a homomorphism from 𝐁 to 𝐁. Since 𝐁 has finite duality, it is rigid by
Proposition VIII.2.13, and so in particular 𝑓(𝑏) = 𝑏. Hence, we would get
that 𝑓|𝐴 is a homomorphism from 𝐀 to 𝐁 which sends 𝑎 to 𝑏, and so by
Proposition VIII.5.12 we would have 𝑏 ∈ 𝐻 ∗

𝐀,𝐁(𝑎), which is a contradiction.
So, since 𝐂���hom−−−→ 𝐁, there exists a critical obstruction 𝐓 of 𝐁 s.t. there is a

homomorphism 𝑓 from 𝐓 to 𝐂. We claim that 𝑎 = 𝑏 must be in the image of

274

viii.5. decidability of the regular homomorphism problem

𝑓. Indeed, since 𝑎 = 𝑏 is the only vertex of 𝐀 that is adjacent to 𝐁 in 𝐂, and
since 𝐓 is connected as a critical obstruction, we would otherwise get that
either 𝐓 hom−−−→ 𝐁—contradicting that 𝐓 is a critical obstruction of 𝐁—or that
𝐓 hom−−−→ 𝐀—contradicting that 𝐀 hom−−−→ 𝐁.

And so, there exists 𝑡 ∈ 𝑇 s.t. 𝑓(𝑡) = 𝑎 = 𝑏. We let 𝐔 be the quotient
structure of 𝐓 by the congruence induced by 𝑓, namely ker𝑓. Then, we let
𝐔𝐀 be the substructure of 𝐔 induced by the elements that are sent via 𝑓 on
𝐀.

Claim VIII.5.26. 𝐔𝐀 is a 𝜎-tree.

Claim VIII.5.27. There is a homomorphism from 𝐓𝐀 to 𝐀 that maps 𝑡 to 𝑎,
but no homomorphism from 𝐓𝐀 to 𝐁 that maps 𝑡 to 𝑏.

The first point is trivial: it suffices to consider the restriction of 𝑓 to 𝑇𝐴.
For the second point, assume by contradiction that there is a homomorphism
𝑔 from 𝐓𝐀 to 𝐁 that maps 𝑡 to 𝑏. Then the function

𝑡′ ∈ 𝑇 ↦

⎧⎪⎪⎨
⎪⎪⎩
𝑔(𝑡′) if 𝑡′ ∈ 𝑇𝐴,

𝑓(𝑡′) if 𝑡′ ∈ 𝑇𝐵,

is well-defined—if 𝑡′ ∈ 𝑇𝐴 ∩ 𝑇𝐵, then 𝑓(𝑡′) = 𝑏 = 𝑔(𝑡)—and is a homomor-
phism from 𝐓 to 𝐁. This contradicts that 𝐓 is a critical obstruction of 𝐁.
And hence, no homomorphism from 𝐓𝐀 to 𝐁 can map 𝑡 to 𝑏. We then ap-
ply Claim VIII.5.22 to get that 𝑏 ∉ ℋ𝒞𝑛(𝐁)

𝐀,𝐁 (Λ𝐵)(𝑎), concluding the proof of
Claim VIII.5.24.

Overall, Claims VIII.5.23 and VIII.5.24 prove (2), which concludes the proof
of Lemma VIII.5.20.

Putting Lemma VIII.5.17 (for computations) and Lemma VIII.5.20 (for cor-
rectness), we get (1) that the algorithm of Figure VIII.30 decidesℋ𝑜𝑚reg(Aut, 𝐁)
when 𝐁 has finite duality and (2) that ℋ𝑜𝑚reg(Aut, 𝐁) = ℋ𝑜𝑚(Aut, 𝐁) under
the same assumption.

Input: An automatic presentation 𝒜 of a 𝜎-structure 𝐀 and a finite
𝜎-structure 𝐁.

Invariant: First-order formulas 𝜙𝑌(𝑥) (𝑌 ⊆ 𝐵) defining the set of
𝑎 ∈ 𝐴 s.t. Im𝑎 = 𝑌, where Im𝑎 is as in Figure VIII.28.

𝜙0𝐵(𝑥) ← ⊤;
𝜙0𝑌(𝑥) ← ⊥ for all 𝑌 ⊊ 𝐵;
𝑛 ← 0;
do

compute ⟨𝜙𝑛+1𝑌 (𝑥)⟩𝑌⊆𝐵 from the ⟨𝜙𝑛𝑌(𝑥)⟩𝑌⊆𝐵 using
Lemma VIII.5.17;

if ⟦𝜙𝑛+1∅ (𝑥)⟧𝐀 ≠ ∅ then
return false;

𝑛 ← 𝑛+ 1;
while some 𝜙𝑌(𝑥) has been semantically updated ;
return true

Figure VIII.30: The hyperedge con-
sistency algorithm for automatic struc-
tures.

275

viii. a dichotomy theorem for automatic structures

VIII.6 Discussion

VIII.6.1 Undecidability of Finite Regular Colourability

First and foremost, our original problem, namely the Aut/Rec-separability
problem, or equivalently by Theorem VIII.3.2, the finite regular coloura-
bility problem, remains open.

Conjecture VIII.6.1.73 finite regular colourability of automatic 73 The upper bound is trivial: given
an automatic graph 𝒢, we guess
some 𝑘 ∈ ℕ and check if 𝒢 ∈
ℋ𝑜𝑚reg(Aut, 𝐊𝑘), which is RE by

Proposition VIII.4.5.

graphs is RE-complete.

We briefly explain here why the techniques developed in this chapter,
cannot immediately solve this problem.

We define 𝐊<𝜔 to be the disjoint union ⨁
𝑘∈ℕ

𝐊2𝑘 of all finite cliques.
Note that it is homomorphically equivalent to⨁

𝑘∈ℕ
𝐊𝑘. Moreover, it admits

a simple automatic presentation 𝒦<𝜔: take the binary alphabet Σ =̂ 𝟚 and
let74 74 In this presentation, words of

length 𝑘 are used to encode 𝐊2𝑘 .

dom𝒦<𝜔
=̂ Σ ∗,

ℰ𝒦<𝜔
=̂ {⟨𝑢, 𝑣⟩ ∈ Σ ∗ ×Σ ∗ ∣ |𝑢| = |𝑣| and 𝑢 ≠ 𝑣}.

Of course, if some graph 𝒢 is finitely colourable, then it has a homomor-
phism to 𝐊<𝜔, but the converse implication does not hold—e.g. 𝐊<𝜔 itself is
not finitely colourable. However, the equivalence holds for a large class of
graphs.

Property VIII.6.2. Let 𝐆 be an arbitrary connected graph. 𝐆 hom−−−→ 𝐊<𝜔
iff 𝐆 is finitely colourable. Similarly, let 𝒢 be a connected automatic graph.
𝒢 reg hom−−−−−→ 𝒦<𝜔 iff 𝐆 is finitely regularly colourable.

Proof. A homomorphism must send pairs of connected vertices to pairs of
connected vertices, and hence a homomorphism from 𝐆 to 𝐊<𝜔 actually
yields a homomorphism from 𝐆 to some 𝐊2𝑛 for some 𝑛, and hence a finite
colouring of 𝐆.

Proposition VIII.6.3. The finite regular colourability problem and its
restriction to connected automatic graphs are computationally equivalent.

Proof. The reduction from the restricted to the general problem is straight-
forward. For the converse one, we add a new element ∗ to the structure 𝒜,75 75 In particular, we extend the alpha-

bet of the presentation.and put an edge from ∗ to any element 𝑢 of the original structure. Clearly,
the original structure is finitely regularly colourable iff the new one is—one
direction is trivial, for the other one it suffices to assign to ∗ a new colour.

Putting Property VIII.6.2 and Proposition VIII.6.3 together, we obtain the
following corollary.

Corollary VIII.6.4. The finite regular colourability problem and the
restriction of ℋ𝑜𝑚reg(Aut, 𝒦<𝜔) to connected graphs are computationally

276

viii.6. discussion

equivalent.

On the other hand, we strongly believe that the proof of Lemma VIII.4.16
can be adapted to obtain a lower bound on ℋ𝑜𝑚reg(Aut, 𝒦†

<𝜔).

Conjecture VIII.6.5. There is a reduction from regular unconnectivity
in automatic graphs to ℋ𝑜𝑚reg(Aut, 𝒦†

<𝜔).

Note however that Lemma VIII.4.16 does not directly apply since the
target structure is not finite—a fact that we use throughout the proof of
Lemma VIII.4.16.

Putting these last two statements together, to prove the RE-hardness of
finite regular colourability of automatic graphs, it would “suffice” to
build the following reduction.

Conjecture VIII.6.6. There is a reduction from ℋ𝑜𝑚reg(Aut, 𝒦†
<𝜔) to the

restriction of ℋ𝑜𝑚reg(Aut, 𝒦<𝜔) to connected graphs.

This question seems however quite challenging. Note first that the reduc-
tion from regular unconnectivity in automatic graphs toℋ𝑜𝑚reg(Aut, 𝒦†

<𝜔)
heavily uses the fact that the source structure can be unconnected. More-
over, beyond this issue of connectivity, whether ℋ𝑜𝑚reg(Aut, 𝒦†

<𝜔) and
ℋ𝑜𝑚reg(Aut, 𝒦<𝜔) are equivalent is also not straightforward: note in partic-
ular that Proposition VIII.2.6 does not apply: not only 𝐊<𝜔 is not finite, but
more importantly it is not a core.76 76 Indeed,⨁𝑘∈ℕ

𝐊𝑘 is homomorphi-

cally equivalent to⨁𝑘∈𝐼𝐊𝑘 for any
infinite subset 𝐼 of ℕ.

VIII.6.2 Invariance under Graph Isomorphisms

Note that given an automatic presentation 𝒜 of some 𝜎-structure𝐀, the prop-
erty of whether 𝒜 reg hom−−−−−→ 𝐁, where 𝐁 is a finite 𝜎-structure, does not depend
only on the structure 𝐀, but on its presentation 𝒜—see Example VIII.3.9 for
an example; it is trivial to come up with a presentation of the same graph that
admits a regular 2-colouring.

On the other hand, the implication (DT)fin-dual ⇒ (DT)equal proves that
if 𝐁 has finite duality, then the property of whether 𝒜 reg hom−−−−−→ 𝐁 is invariant
under graph isomorphisms, in the sense that for any presentations 𝒜1 and
𝒜2 of the structures 𝐀1 and 𝐀2, respectively, if 𝐀1 and 𝐀2 are isomorphic,
then 𝒜1

reg hom−−−−−→ 𝐁 iff 𝒜2
reg hom−−−−−→ 𝐁. We do not know whether the converse

implication holds.

Conjecture VIII.6.7. For any finite 𝜎-structure 𝐁, ℋ𝑜𝑚reg(Aut, 𝐁) is invari-
ant under graph isomorphisms iff 𝐁 has finite duality.

VIII.6.3 Obstacles to Finite Colourability

We also do not know whether finite colourability problem is undecidable.

277

https://ncatlab.org/nlab/show/isomorphism
https://ncatlab.org/nlab/show/isomorphism

viii. a dichotomy theorem for automatic structures

Finite Colourability of Automatic Graphs
Input : A presentation 𝒢 of an automatic graph 𝐆.

Question: Does 𝐆 admit a colouring with finitely many colours?

Conjecture VIII.6.8.77 Finite colourability of automatic graphs is 77 Note again that the upper-bound
is trivial, since by De Bruijn-Erdős
theorem, this problem is equivalent
to asking if there exists 𝑘 ∈ ℕ s.t.
every finite subgraph of the source is
𝑘-colourable.

Σ0
2 -complete.

Given that we do not know whether finite colourability of automatic
graphs is decidable, a natural question would be find algorithm to identify
sufficient conditions for a graph not to be finitely colourable. The first natural
idea is to ask the graph to contain an infinite transitive tournament, and
actually this property is decidable by Proposition VII.3.11 since it can be
expressed by the order-invariant first-order formula

∀𝑥. ∃𝑦. 𝑥 < 𝑦 ∧ (ℰ(𝑥, 𝑦) ∨ ℰ(𝑦, 𝑥)).

A typical example of such a condition is to contain unbounded tourna-
ments—meaning that 𝐊𝑘

hom−−−→ 𝐀 for all 𝑘 ∈ ℕ.

Conjecture VIII.6.9.78 The problem of whether an automatic graph has 78 This conjecture corresponds to
[BFM23, Conjecture 7.3].bounded tournaments is decidable.

In [BFM23, Conjecture 7.2], we conjectured that there was some automatic
graphs that were not finitely colourable, but did not contain unbounded tour-
naments. We pointed out that for arbitrary graphs, the property was clearly
true since there are triangle-free graphs79 𝐆 that are not finitely colourable 79 Meaning that its underlying undi-

rected graph is triangle-free, which
means that there are no three ver-
tices that are pairwise adjacent.

[UD54]. However, we believe(d) that the infinite graph built using Ungar-
Descartes’ technique is not automatic. Since then, we managed to prove
this conjecture, by relying on another classical construction of triangle-free
graphs with arbitrary large chromatic number.

Proposition VIII.6.10. There exists a triangle-free automatic graph that is
not finitely colourable.

Mycielski’s construction is an operator 𝔐 on undirected graphs, introduced
in [Myc55], with the property that if 𝐆 is triangle-free then so is 𝔐(𝐆),
and moreover the chromatic number of 𝔐(𝐆) is exactly one more than the
chromatic number of 𝐺. Iterating this operator on a triangle-free graph
shows that there exists triangle-free graphs with arbitrarily high chromatic
number. To prove Proposition VIII.6.10, we will build an automatic graph
whose underlying undirected graph is⨆𝑛∈ℕ 𝔐𝑛(𝟎) where 𝟎 is the graph on
a single vertex with no edge. Note that usually Mycielski’s construction is
not iterated on 𝟎 but on the undirected path of size 1: we made this choice to
make the proof of automaticity of the graph easier.

Definition VIII.6.11. Given an undirected graph𝐆 = ⟨𝑉,ℰ⟩, its Mycielskian,
denoted by 𝔐(𝐆), is the undirected graph whose set of vertices is𝑉 ×𝟚⊔ {•},
with the following edges:

278

viii.6. discussion

• {⟨𝑢, 0⟩, ⟨𝑣, 0⟩} for every edge {𝑢, 𝑣} ∈ ℰ,
• {⟨𝑢, 0⟩, ⟨𝑣, 1⟩} for every edge {𝑢, 𝑣} ∈ ℰ, and
• {•, ⟨𝑣, 1⟩} for every 𝑣 ∈ ℰ.

Note that 𝑢 ↦ ⟨𝑢, 0⟩ always defines an embedding of 𝐆 into 𝔐(𝐆).

Property VIII.6.12. If 𝐆 is triangle-free, then so is 𝔐(𝐆).

Proof. All adjacent elements of • are of the form ⟨−, 1⟩, and two vertices of
the form ⟨−, 1⟩ are never adjacent. Hence, any potential triangle in 𝔐(𝐆)
must be of the form

{⟨𝑢, 0⟩, ⟨𝑣, 0⟩, ⟨𝑤, 0⟩} or {⟨𝑢, 0⟩, ⟨𝑣, 1⟩, ⟨𝑤, 0⟩}.

In both cases, this would imply that {𝑢, 𝑣, 𝑤} is a triangle in 𝐆: contradiction.

Figure VIII.31: The undirected
path of length 1, and two iter-
ations of Mycielski’s construction
𝔐 on this graph. Each of these
graphs is equipped with a 2-, 3-,
and 4-colouring, respectively, which
are built using the construction
described in the proof of Prop-
erty VIII.6.13.

Property VIII.6.13. The chromatic number of 𝔐(𝐆) is exactly one more
than the chromatic number of 𝐆.

Proof. X Upper bound. Let 𝑓∶ 𝐆 → ⟦1, 𝑘⟧ be a colouring of 𝐆 for some
𝑘 ∈ ℕ. Then mapping ⟨𝑢, 𝑖⟩ to 𝑓(𝑢) for 𝑢 ∈ 𝑉 and 𝑖 ∈ 𝟚 and mapping • to
colour 𝑘 + 1 defines a (𝑘 + 1)-colouring of 𝔐(𝐆).

X Lower bound. Let 𝑘 ∈ ℕ>0 and let 𝑔∶ 𝔐(𝐆) → ⟦1, 𝑘⟧ be a 𝑘-colouring
of 𝔐(𝐆). Let 𝑔′ ∶ 𝔐(𝐆) → ⟦1, 𝑘⟧ be defined by 𝑔′⟨𝑢, 𝑖⟩ =̂ 𝑔⟨𝑢, 1⟩, and
𝑔′(•) =̂ 𝑔(•). Since the adjacency of ⟨𝑢, 0⟩ is included in the one of ⟨𝑢, 1⟩, it
follows that 𝑔′ is still a 𝑘-colouring of 𝔐(𝐆). Since • is adjacent to all vertices
of the form ⟨𝑢, 1⟩ where 𝑢 ∈ 𝐆, then {𝑔′⟨𝑢, 1⟩ ∣ 𝑢 ∈ 𝐆} can only contain
at most 𝑘 − 1 colours. By construction of 𝑔′, 𝑔′⟨𝑢, 1⟩ = 𝑔′⟨𝑢, 0⟩. And hence
𝑢 ↦ 𝑔′⟨𝑢, 0⟩ defines a (𝑘 − 1)-colouring of 𝐆.

We can now prove our result.

Proof of Proposition VIII.6.10. Let Σ =̂ {0, 1, •}, and let 𝟎 be the directed graph
on a single vertex with no edge. We are going to define an automatic graph
whose underlying undirected graph is⨆𝑛∈ℕ 𝔐𝑛(𝟎), in such a way that the
vertices of 𝔐𝑛(𝟎) will be encoded by words of length 𝑛.

We define disjoint subsets ⟨𝑉𝑖⟩𝑖∈ℕ ofΣ ∗ and (ℰ𝑖)𝑖∈ℕ of𝑉𝑖 ×𝑉𝑖, by induction
on 𝑖 ∈ ℕ, such that (𝑉𝑖,ℰ𝑖) is a directed version of 𝔐𝑖(𝟎).

279

viii. a dichotomy theorem for automatic structures

Define 𝑉0 =̂ {𝜀} and ℰ0 =̂ ∅. Then for 𝑛 ∈ ℕ, let

𝑉𝑛+1 =̂ {𝑢0 ∣ 𝑢 ∈ 𝑉𝑛} ∪ {𝑢1 ∣ 𝑢 ∈ 𝑉𝑛} ∪ {•𝑛+1}

ℰ𝑛+1 =̂ {⟨𝑢0, 𝑣0⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℰ𝑛} ∪ {⟨𝑣0, 𝑢0⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℰ𝑛}

∪ {⟨𝑢0, 𝑣1⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℰ𝑛} ∪ {⟨𝑣1, 𝑢0⟩ ∣ ⟨𝑢, 𝑣⟩ ∈ ℰ𝑛}

∪ {⟨𝑢1, •𝑛+1⟩ ∣ 𝑢 ∈ 𝑉𝑛} ∪ {⟨•𝑛+1, 𝑢1⟩ ∣ 𝑢 ∈ 𝑉𝑛}.

Then let 𝐌 =̂ ⟨𝑉,ℰ⟩ be the infinite Mycielski graph where 𝑉 =̂ ⋃
𝑛∈ℕ 𝑉𝑛

and 𝐸 =̂ ⋃𝑛∈ℕ 𝐸𝑛. By construction, each ℰ𝑛 is symmetric,80 and moreover 80 In fact some of the sets defining
ℰ𝑛+1 are redundant because of these,
but we keep them in the definition to
emphasize this symmetry.

𝑉𝑛 ⊆ Σ𝑛 by immediate induction on 𝑛 ∈ ℕ.
Also, the underlying undirected graph of𝐌 is ⨆𝑛∈ℕ 𝔐𝑛(𝟎), and so it is

triangle-free—since 𝟎 is triangle-free—by Property VIII.6.12 but has infinite
chromatic number by Property VIII.6.13.

It remains to show that𝐌 is automatic. First, notice that 𝑉 = •∗(0 + 1)∗

since by trivial induction on 𝑛 ∈ ℕ we have 𝑉𝑛 = (•∗(0 + 1)∗) ∩ Σ𝑛. And
hence, 𝑉 is regular.

Now we claim that there is an edge from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 if and only if
• 𝑢 and 𝑣 have the same length,
• 𝑢 contains at least one • and letting 𝑖 be the index of the last occurrence of
• in 𝑢, we have 𝑣𝑖 = 1, and

• for all 𝑗 ∈ ⟦𝑖 + 1, 𝑛⟧, 𝑢𝑗 = 0 and 𝑣𝑗 ∈ 𝟚.
Call the property above 𝒫. To prove it, observe first that ℰ contains no edge
between vertices of distinct length, and then we prove by induction on 𝑛 ∈ ℕ
that ℰ𝑛 = {⟨𝑢, 𝑣⟩ ∈ 𝑉𝑛 ∣ (𝑢, 𝑣) ⊨ 𝒫}. For 𝑛 = 0 the result is trivial, and if it
holds at rank 𝑛 ∈ ℕ, then it is clear that ℰ𝑛+1 ⊆ {⟨𝑢, 𝑣⟩ ∈ 𝑉𝑛+1 ∣ (𝑢, 𝑣) ⊨ 𝒫}.
Conversely, if 𝑢, 𝑣 ∈ 𝑉𝑛+1 satisfies 𝒫, then either:
• the last letter of 𝑢 is • and so 𝑣 ends with a 1, and thus ⟨𝑢, 𝑣⟩ ∈ {⟨•𝑛+1, 𝑣′1⟩ ∣
𝑣′ ∈ 𝑉𝑛} ⊆ ℰ𝑛+1, or

• the last letter of 𝑢 is 0, and the last letter of 𝑣 is 0 or 1; letting 𝑢 = 𝑢′0
and 𝑣 = 𝑣′𝑎 with 𝑎 ∈ 𝟚, we have that ⟨𝑢′, 𝑣′⟩ satisfy 𝒫, so by induction
hypothesis, ⟨𝑢′, 𝑣′⟩ ∈ ℰ𝑛 and hence

⟨𝑢, 𝑣⟩ ∈ {⟨𝑢′0, 𝑣′0⟩ ∣ ⟨𝑢′, 𝑣′⟩ ∈ ℰ𝑛} ∪ {⟨𝑢′0, 𝑣′1⟩ ∣ ⟨𝑢′, 𝑣′⟩ ∈ 𝐸𝑛} ⊆ ℰ𝑛+1.

In all cases, ⟨𝑢, 𝑣⟩ ∈ ℰ𝑛+1 which concludes the induction. To conclude, it
suffices to notice that the condition 𝒫 is clearly automatic.

VIII.6.4 Beyond Finite Duality

The notion of duality has been generalized in graph theory to restricted
dualities, in which the quantification over structures is restricted to a fixed
class of finite graphs. For instance, Naserasr showed [Nas07, Theorem 11]
that for any finite planar undirected graph 𝐆, then 𝐆 is triangle-free iff 𝐆
admits a homomorphism to the so-called Clebsch graph. Letting 𝐇5 denote
the directed graph induced by it—meaning that if {𝑢, 𝑣} is an edge, we put an

280

viii.6. discussion

edge from 𝑢 to 𝑣 and from 𝑣 to 𝑢—it follows that ℋ𝑜𝑚(Aut, 𝐇5) is decidable
when restricted to planar graphs, even though the full problem is undecidable.

This opens a wide class of problems that are undecidable by the dichotomy
theorem for automatic structures, but that admit non-trivial restrictions which
are decidable. We refer the reader to [NO12b] for more details on restricted
dualities.

281

Chapter IX
The Algebras for Automatic Relations

Abstract

We introduce “synchronous algebras”, an algebraic structure tailored to recognize
automatic relations (a.k.a. automatic relations, or regular relations). They are the
equivalent of monoids for regular languages, however they conceptually differ in
two points: first, they are typed and second, they are equipped with a dependency
relation expressing constraints between elements of different types.
The interest of the proposed definition is that it allows to lift, in an effective way,
pseudovarieties of regular languages to that of automatic relations, and we show how
algebraic characterizations of pseudovarieties of regular languages can be lifted to
the pseudovarieties of automatic relations that they induce. Since this construction is
effective, this implies that the membership problem is decidable for (infinitely) many
natural classes of automatic relations. A typical example of such a pseudovariety
is the class of “group relations”, defined as the relations recognized by finite-state
synchronous permutation automata.
In order to prove this result, we adapt two pillars of algebraic language theory
to synchronous algebras: (a) any relation admits a syntactic synchronous algebra
recognizing it, and moreover, the relation is synchronous if, and only if, its syntactic
algebra is finite and (b) classes of automatic relations with desirable closure properties
(i.e. pseudovarieties) correspond to pseudovarieties of synchronous algebras.

Acknowledgements

This article is mostly a reproduction of [Mor25], which was published at CSL ’25,
with minor modifications to the introduction and conclusion, and appendices have
been incorporated to the main body. Section IX.5.3 is entirely new. We thank Pablo
Barceló, Mikołaj Bojańczyk, and Diego Figueira for helpful discussions, and some
anonymous reviewers for valuable feedback.

283

Contents

IX.1 Introduction 285

IX.1.1 Motivation 285

IX.1.2 Contributions 286

IX.1.3 Related Work 287

IX.2 Preliminaries 288

IX.2.1 Automata & Relations 288

IX.2.2 Induced Relations 289

IX.3 Synchronous Algebras 291

IX.3.1 Types & Dependent Sets 291

IX.3.2 Synchronous Algebras 293

IX.3.3 Recognizability 294

IX.3.4 Syntactic Morphisms & Algebras 296

IX.4 The Lifting Theorem & Pseudovarieties 300

IX.4.1 Elementary Formulation 300

IX.4.2 Synchronous Algebras Require a Dependency Relation 303

IX.4.3 Pseudovarieties of Automatic Relations 304

IX.5 Discussion 310

IX.5.1 Path Algebras and the Lifting Theorem 310

IX.5.2 Path Algebras and Restricted Head Movements 311

IX.5.3 Theorem Projection via Monad Adjunction 311

IX.A Monads Everywhere! 315

284

ix.1. introduction

IX.1 Introduction

IX.1.1 Motivation

(𝑎𝑎), � 𝑏𝑏 �, Pad

� 𝑎𝑏 �, � 𝑏𝑎 �

� 𝑎𝑏 �, � 𝑏𝑎 �

(𝑎𝑎), � 𝑏𝑏 �, Pad Figure IX.1: Encoding a pair of
words of Σ∗ ×Σ∗ into an element of
(Σ2⊗)∗ where Σ2⊗ =̂ (Σ × Σ) ∪ (Σ ×
{ }) ∪ ({ } × Σ) (left) and a determin-
istic complete synchronous automa-
ton (right) over Σ = {𝑎, 𝑏} accepting
the binary relation of pairs (𝑢, 𝑣) such
that the number of 𝑎’s in 𝑢1…𝑢𝑘 and
in 𝑣1…𝑣𝑘 are the same mod 2, where
𝑘 = min(|𝑢|, |𝑣|). Pad denotes the set
of transitions {(𝑎), � 𝑏 �, (𝑎), (𝑏)}.

As mentioned in Section VII.1, automatic relation can be seen as a regular
language over the alphabet Σ2⊗ =̂ (Σ × Σ) ∪ (Σ × { }) ∪ ({ } × Σ) of pairs.
On the other hand any regular language 𝐿 over Σ2⊗ produces an automatic
relation when intersected with the language of all well-formed words—namely
words where the padding symbols are consistently placed; see Section IX.2
for precise definitions. In fact, the semantics of synchronous automata such
as the one in Figure IX.1 is precisely defined this way: it is the intersection of
the “classical semantic” of the automaton, seen as an NFA, intersected with
well-formed words.

Figure IX.2: Drawing in (Σ2⊗)∗ of a 𝒱-
relation ℛ and ¬ℛ =̂ {(𝑢, 𝑣) ∈ Σ∗ ×
Σ∗ ∣ (𝑢, 𝑣) ∉ ℛ}, where ℛ is defined
as 𝐿 ∩WellFormedΣ with 𝐿 ∈ 𝒱.

In particular, a class 𝒱 of regular languages over Σ2⊗ (e.g. first-order defin-
able languages, group languages, etc.) induces a class of so-called 𝒱-relations,
defined as the relations over Σ obtained as the intersection of some language
of 𝒱 with well-formed words, see Figure IX.2. For instance, the relation of
Figure IX.1 is a 𝒱-relation where 𝒱 is the class of all group languages—these
relations can be alternatively described as those recognized by a deterministic
complete synchronous automaton whose transitions functions are permuta-
tions of states.

Question IX.1.1. Given a class 𝒱 of languages, can we characterize and
decide the class of 𝒱-relations?

As we will see in Example IX.2.4, being in 𝒱Σ2⊗ , as a language, is a sufficient
but not necessary condition for a relation to be a 𝒱-relation.

285

ix. the algebras for automatic relations

IX.1.2 Contributions

We answer this question positively. For this we first need to develop an
algebraic theory of automatic relations, which enables us to prove the lifting
theorem. In short, the lifting theorem states that algebraic characterizations
of classes of word languages can be lifted in a canonical way to algebraic
characterizations of classes of word relations.

The algebraic approach usually provides more than decidability: it attaches
canonical algebras to languages/relations (e.g. monoids for languages of finite
words), and often simple ways to characterize complex properties (e.g. first-
order definability, see e.g. [Boj20, Theorem 2.6, p. 40]). Our synchronous
algebras differ from monoids in two points:
• they are typed—a quite common feature in algebraic language theory,

shared e.g. by 𝜔-semigroups [PP04, §4.1, p. 91];
• they are equipped with a dependency relation, which expresses constraints

between elements of different types—to our knowledge, this feature is
entirely novel.1 1 Note that algebras equipped

with binary relations have been
studied before, e.g. Pin’s ordered
𝜔-semigroups—see [Pin98, §2.4,
p. 7]—but the constraints (here
the ordering) are always defined
between elements of the same type.

To understand how this dependency relation appears, we find that looking
at the syntactic congruence helps: recall that the syntactic congruence of a
language 𝐿 ⊆ Σ ∗ is defined by

𝑢 ∼𝐿 𝑣 iff ∀𝑥, 𝑦 ∈ Σ ∗, 𝑥𝑢𝑦 ∈ 𝐿 ⇔ 𝑥𝑣𝑦 ∈ 𝐿.

This relation is, by definition, an equivalence relation. We claim that the
same definition cannot capture the essence of automatic relations, for the
simple reason that it might be that 𝑢, 𝑣, 𝑥 and 𝑦 are all well-formed, and
that 𝑥𝑢𝑦 is well-formed but 𝑥𝑣𝑦 is not. In this case, asking for the property
𝑥𝑢𝑦 ∈ ℛ ⇔ 𝑥𝑣𝑦 ∈ ℛ to hold does not make sense since the object 𝑥𝑣𝑦 simply
does not exist in our universe. To tackle this problem, we need to relativize this
property with the assumption that both 𝑥𝑢𝑦 and 𝑥𝑣𝑦 are well-formed. Doing
so yields a notion of syntactic congruence that makes sense—see Section IX.3.4
for the formal definition—, however because of this relativization, it is no
longer an equivalence relation: the non-trivial structure of this relation is
precisely captured by the notion of dependency relation!

Importantly, some variations are possible on the definition of syn-
chronous algebras: in particular, one could get rid of the notion of
dependency relation. However, we show in Section IX.4.2 that these
simplified synchronous algebras cannot characterize the property of
being a 𝒱-relation. Therefore, the notion of dependency seems neces-
sary to tackle Question IX.1.1. Moreover, we show that these algebras arise
from a monad, but to our knowledge none of the meta-theorems developing
algebraic language theories over monads apply to it, see Section IX.A for
more details.

We show that assuming that 𝒱 is a ∗-pseudovariety of regular languages—in
short, a class of regular languages with desirable closure properties—, then the

286

ix.1. introduction

algebraic characterization of 𝒱 can be easily lifted to characterize 𝒱-relations.

Theorem IX.4.2 (Lifting theorem: Elementary Formulation). Given a rela-
tion ℛ and a ∗-pseudovariety of regular languages 𝒱 corresponding to a
pseudovariety of monoids 𝕍, the following are equivalent:
1. ℛ is a 𝒱-relation,
2. ℛ is recognized by a finite synchronous algebra A whose underlying

monoids are all in 𝕍,
3. all underlying monoids of the syntactic synchronous algebras 𝐀ℛ of ℛ are

in 𝕍.

This theorem rests on a solid algebraic theory. First, we show the existence
of syntactic algebras (Lemma IX.3.11): each relation ℛ admits a unique canon-
ical and minimal algebra 𝐀ℛ, which is finite iff the relation is automatic,
and then, we exhibit a correspondence between classes of finite algebras and
classes of automatic relations (Lemma IX.4.11)—we assume suitable closure
properties; these classes are called “pseudovarieties”. While the proof struc-
tures of Lemmas IX.3.11 and IX.4.11 follow the classic proofs, see e.g. [Pin22],
the dependency relation has to be taken into account quite carefully, leading
for instance to a surprising definition of residuals, see Definition IX.4.7.

Remark IX.1.2. All our results are described for binary relations, but can be
extended to 𝑘-ary automatic relations.

Organization. After giving preliminary results in Section IX.2, we introduce
the synchronous algebras in Section IX.3 and show the existence of syntactic
algebras. We then proceed to prove the lifting theorem for ∗-pseudovarieties
in Section IX.4, and after introducing ∗-pseudovarieties of automatic relations,
we provide a more algebraic reformulation of the lifting theorem (Theo-
rem IX.4.13). We conclude this chapter with a short discussion in Section IX.5.

IX.1.3 Related Work

The algebraic framework has been extended far beyond languages of finite
words. Let us cite amongst others:
• Reutenauer’s “algèbre associative syntactique”—pardon my French—for
weighted languages [Reu80, Théorème I.2.1, p. 451] and their associated
Eilenberg theorem [Reu80, Théorème III.1.1, p. 469];

• for languages of 𝜔-words, Wilke’s algebras and 𝜔-semigroups, see [PP04,
§II, pp. 75–131 & §VI, pp. 265–306];

• for languages over countable ordinals, Bedon defined “𝜔1-semigroupes
syntaxiques” [Bed98, §3, pp. 49–109] and their Eilenberg theorem [BC98,
Theorem 22, p. 62];

• for languages over countable scattered orderings, see Rispal’s “♦-semigroupe
syntaxique” [Ris04, §4.4, pp. 82–86] and their Eilenberg theorem [BR05,
Theorem 6, p. 144];

• more generally, for languages over countable linear orderings, see Carton,

287

ix. the algebras for automatic relations

Colcombet & Puppis’ “⊛-monoids” and “⊛-algebras” [CCP18, §3, p. 7];
• Bojańczyk & Walukiewicz’s forest algebras [BW08, §1.3, p. 4] [Boj20, §5,

p. 159] dealing with tree languages;
• Engelfriet’s hyperedge replacement algebras for graph languages [CE12,

§2.3, p. 100] [Boj15, §6.2, p. 194].
A systemic approach has been recently developed using monads, see Sec-

tion IX.A. For relations over words, recognizable relations are exactly the ones
recognized by monoid morphisms Σ ∗ ×Σ ∗ →𝑀 where𝑀 is finite. This can
be trivially generalized to show that a relation ℛ is a finite union of Cartesian
products of languages in 𝒱 if, and only if, it is recognized by a monoid from 𝕍,
the pseudovariety of monoids corresponding to 𝒱, see Proposition VII.1.2. In
2023, Bojańczyk & Nguyễn managed to develop an algebraic structure called
“transducer semigroups” for “regular functions” [BN23, Theorem 3.2, p. 6], an
orthogonal class of relations to ours—see Figure VII.1.

The counterpart of 𝒱-relations for deterministic transductions —that we
call here deterministic 𝒱-transductions—was studied by Filiot, Gauwin & Lhote
[FGL19]: they show that if 𝒱 has decidable membership, then “deterministic 𝒱-
transductions” also have decidable membership [FGL19, Theorem 2.1]—which
is proven via the use of a minimal object (a deterministic transducer). They
extend their result to functional transductions by showing the decidability
of membership for functional 𝒱-transductions, under the same assumption
[FGL19, Theorem 4.10, p. 26]; however this proof does not rely on a canonical
construction but rather on a finite set of minimal objects. These results are
orthogonal to our lifting theorem: deterministic transductions and functional
transductions are both orthogonal to the class of automatic relations, see
Section VII.1. A different problem—focussing more on the semantics of the
transduction—, called “𝒱-continuity” was studied by Cadilhac, Carton &
Paperman [CCP20, Theorem 1.3, p. 3], although it has to be noted that their
results only concern a finite number of pseudovarieties.

IX.2 Preliminaries

IX.2.1 Automata & Relations

We assume familiarity with basic algebraic language theory over finite words,
see [Boj20, §1, 2, 4, pp. 3–66 & pp. 107–156] for a succinct and monad-driven
approach, or [Pin22, §I–XIV, pp. 3–247] for a more detailed presentation of
the domain. We also refer to [SW21] for a presentation on pseudovarieties.2 2 “Pseudovarieties of foo” and “vari-

eties of finite foo”—where foo is e.g.
“groups” or “semigroups”—are used
interchangeably in the literature.

More precise pointers are given in ??.
Recall that relation is a subset of Σ ∗ ×Σ ∗, where Σ is an alphabet—i.e. a

non-empty finite set. We define its complement ¬ℛ as the relation {(𝑢, 𝑣) ∈
Σ ∗ × Σ ∗ ∣ (𝑢, 𝑣) ∉ ℛ}. Letting Σ2⊗ =̂ (Σ × Σ) ∪ (Σ × { }) ∪ ({ } × Σ), a
synchronous automaton is a finite-state machine with initial states, final
states, and non-deterministic transitions labelled by elements of Σ2⊗. As

288

ix.2. preliminaries

(𝑎𝑎), � 𝑏𝑏 �

� 𝑎𝑏 �, � 𝑏𝑎 �

� 𝑎𝑏 �, � 𝑏𝑎 �

(𝑎𝑎), � 𝑏𝑏 �

(𝑎), � 𝑏 � (𝑎), (𝑏)

(𝑎), � 𝑏 � (𝑎), (𝑏)

∗
∗

∗

∗

Figure IX.3: Minimal (deterministic
complete) “classical” automaton for
the binary relation of pairs (𝑢, 𝑣) such
that the number of 𝑎’s in 𝑢1…𝑢𝑘 and
in 𝑣1…𝑣𝑘 are the same mod 2, where
𝑘 = min(|𝑢|, |𝑣|), seen as a language
over Σ2⊗. Said otherwise, this is au-
tomaton rejects exactly all words in
(Σ2⊗)∗ which (1) are not the valid en-
coding of a pair of words and (2) are
the encoding of a pair which does not
satisfy the property above. Each la-
bel ∗ is defined so that the automaton
is deterministic and complete.

mentioned in Chapter VII, we denote by WellFormedΣ the set of well-formed
words over Σ2⊗ where the padding symbols are placed consistently, namely:
if some padding symbol occurs on a tape/component, then the following
symbols of this tape/component must all be padding symbols. From this
constraint, and since () ∉ Σ2⊗, there can never be padding symbols on both
tapes.

Note that elements of WellFormedΣ are in natural bijection with Σ ∗ ×
Σ ∗—see Figure IX.1. The relation recognized by a synchronous automaton
is the set of pairs (𝑢, 𝑣) ∈ Σ ∗ ×Σ ∗ such that their corresponding element in
WellFormedΣ is the label of an accepting run of the automaton. Recall that
we say that a relation is automatic if it is recognized by such a machine.

Remark IX.2.1. Crucially, in the semantics of synchronous automata we
never try to feed them inputs where the padding symbols are not consistent:
for instance, while

� 𝑎𝑎𝑏𝑏 𝑎 �, or � 𝑎𝑏𝑎𝑎 𝑏 �

are sequences in (Σ2⊗)∗, the behaviour of a synchronous automaton on such
sequences is completely disregarded to define the relation it recognizes.

We can then reformulate the definition of the semantics of a synchronous
automaton, tomake the connectionwith𝒱-relations—see the next subsection—
explicit.

Fact IX.2.2. Given a synchronous automaton, its semantics as a synchronous
automaton can be written as the intersection of its semantics as a classical
automaton over Σ2⊗ with WellFormedΣ.

In particular a relation ℛ is automatic if, and only if, it is a regular language
when seen as a subset of (Σ2⊗)∗.

IX.2.2 Induced Relations

Given a class 𝒱 of regular languages, the class of 𝒱-relations overΣ consists of
all relations of the form 𝐿∩WellFormedΣ for some 𝐿 ∈ 𝒱Σ2⊗—see Figure IX.2.3 3 The notation 𝐿 ∈ 𝒱Σ2⊗ means that

𝐿 is a language over the alphabet Σ2⊗.
See [Pin22, introduction of §XIII.1]
for why classes of regular languages
are defined in such a way.

For instance, if 𝒱 is the class of all regular languages, then by Fact IX.2.2,
𝒱-relations are exactly the automatic relations! However, because of Re-

289

ix. the algebras for automatic relations

mark IX.2.1, the minimal automaton for a relation, seen as a language over
Σ2⊗, can be significantly more complex than a deterministic complete syn-
chronous automaton recognizing it, see Figure IX.3 in page 289—while the
size blow-up is only polynomial, it breaks many of the structural properties
of the automaton, such as the property of being a permutation automaton.

Note that if ℛ belongs to 𝒱 when ℛ is seen as a language over Σ2⊗, then ℛ
is a 𝒱-relation. The converse implication holds under some strong assumption
on 𝒱 (Fact IX.2.3), but is not true in general (Example IX.2.4).

Fact IX.2.3. If 𝒱 is a class of languages closed under intersection and that
contains WellFormedΣ, then a relation ℛ is a 𝒱-relation if, and only if, it
belongs to 𝒱 when seen as a language over Σ2⊗.

Classes of languages 𝒱 satisfying the previous assumption (e.g. first-order
definable languages, piecewise-testable languages, etc.) are easy to capture
when it comes to 𝒱-relations since this class reduces to 𝒱-languages. So, in
the remaining of the chapter, we will focus on classes 𝒱 which do not satisfy
the assumptions of Fact IX.2.3, such as group languages.

Example IX.2.4 (Group relations). If 𝒱 is the class of group languages,
namely languages recognized by permutation automata4 or equivalently 4 A permutation automaton is a

finite-state deterministic complete
automaton whose transition func-
tions are all permutations of states.

by a finite group, then we call 𝒱-relations “group relations”. They can be
characterized as relations recognized by permutation synchronous automata.
For instance, the relation of Figure IX.1 is a group relation as witnessed
by the permutation synchronous automaton of Figure IX.1. Note however
that it is not a group language, when seen as a language over Σ2⊗, since its
minimal automaton over Σ2⊗ is not a permutation automaton, see Figure IX.3
on Page 289.

Fact IX.2.5. Given a relation ℛ and a class 𝒱 of languages, the following are
equivalent:
1. ℛ is a 𝒱-relation;
2. ℛ and ¬ℛ are 𝒱-separable as languages over Σ2⊗, i.e. there is a language

in 𝒱 which contains ℛ and does not intersect ¬ℛ.

Proof. By definition, see Figure IX.2, on page 285.

And so, if the 𝒱-separability problem is decidable, then the class of 𝒱-
relations is decidable. However, there are pseudovarieties 𝒱 with decid-
able membership but undecidable separability problem [RS11, Corollary 1.6,
p. 478].5 Moreover, some of these classes do not contain WellFormedΣ [RS11, 5 The paper cited only claims unde-

cidability of pointlikes, but it was
noted in [GS19, §1, pp. 1–2] that un-
decidability of the 2-pointlikes also
holds, which is a problem equivalent
to separability by [Alm99, Proposi-
tion 3.4, p. 6].

Corollary 1.7, p. 478]. But beyond this, even when a separation algorithm ex-
ists, it can be conceptually much harder than its membership counterpart: for
instance, deciding membership for group languages is trivial—it boils down
to checking if a monoid is a group—, yet the decidability of the separation
problem for group languages is considered to be one of the major results in
semigroup theory: it follows from Ash’s infamous type II theorem [Ash91,
Theorem 2.1, p. 129], see [HMPR91, Theorem 1.1, p. 3] for a presentation of

290

ix.3. synchronous algebras

the result in terms of pointlike sets, see also [PZ23, §III, Theorem 8, p. 5] for
an elegant automata-theoretic reformulation.

IX.3 Synchronous Algebras

In this section, we introduce and study the “elementary” properties of syn-
chronous algebras.

IX.3.1 Types & Dependent Sets

Motivation. The axiomatization of a semigroup reflects the algebraic struc-
ture of finite words: these objects can be concatenated, in an associative way—
reflecting the linearity of words. Now observe that elements of WellFormedΣ
are still linear, but not all words can be concatenated together: for instance, (𝑎)
cannot be followed by � 𝑎𝑏 �. Formally, given two words 𝑢, 𝑣 ∈ WellFormedΣ,
to decide if 𝑢𝑣 ∈ WellFormedΣ it is necessary and sufficient to know if the
last pair of 𝑢 and first pair of 𝑣 consists of a pair of proper letters (denoted by
l ⁄l), a pair of a proper letter and a blank/padding symbol (l ⁄b) or a pair of a
blank/padding symbol and a proper letter (b ⁄l). This information is called the
letter-type of an element of Σ2⊗.

We then define the type of a word of (Σ2⊗)+ as the pair (𝛼, 𝛽), usually written
𝛼 → 𝛽, of the letter-types of its first and last letters. It is then routine to check
that the possible types of well-formed words are

𝒯 =̂ �l ⁄l → l ⁄l , l ⁄l → l ⁄b , l ⁄b → l ⁄b , l ⁄l → b ⁄l , b ⁄l → b ⁄l�.

For the sake of readability, we will write 𝛼 instead of 𝛼 → 𝛼 for 𝛼 ∈
{l ⁄l , l ⁄b , b ⁄l }.

One non-trivial point lies in the following innocuous question: what is the
type of the empty word? Any type of 𝒯sounds like an acceptable answer.
But then it would be natural to say that the concatenation of (𝑎𝑎𝑎𝑎𝑎𝑎) of type
l ⁄l with the empty word of type l ⁄l → l ⁄b should be (𝑎𝑎𝑎𝑎𝑎𝑎) of type l ⁄l → l ⁄b .
Automata-wise, this would represent a sequence of transitions (𝑎𝑎), (𝑎𝑎), (𝑎𝑎)
together with the promise that the next transition would have a padding
symbol on its second tape. But then, one has to formalize the idea that the two
elements (𝑎𝑎𝑎𝑎𝑎𝑎) of type l ⁄l and l ⁄l → l ⁄b represent the same underlying pair
of words of Σ ∗ ×Σ ∗: this idea will be captured by what we call a dependency
relation. A more natural solution would be to simply introduce a new type
for the empty word (or to forbid it), but we show in Section IX.4.2 that the
resulting notion of algebras cannot capture the property of being a 𝒱-relation.

A 𝒯-typed set (or typed set for short) consists of a tuple 𝐗 = (𝑋𝜏)𝜏∈𝒯, where
each 𝑋𝜏 is a set. Instead of 𝑥 ∈ 𝑋𝜏, we will often write 𝑥𝜏 ∈ 𝐗. A map
between typed sets 𝐗 and 𝐘 is a collection of functions 𝑋𝜏 → 𝑌𝜏 for each
type 𝜏. Similarly, a subset of 𝐗 is a tuple of subsets of 𝑋𝜏 for each type 𝜏. To
make the notations less heavy, we will often think of typed sets as sets with

291

ix. the algebras for automatic relations

type annotations rather than tuples, and ask that all operators/constructions
should preserve this type.

Definition IX.3.1. A dependency relation over a typed set 𝐗 consists of a
reflexive and symmetric relation ≍ over⊎𝐗 =̂ ⋃𝜏∈𝒯𝑋𝜏 × {𝜏}, such that for
all 𝑥𝜎, 𝑦𝜎 ∈ 𝐗, if 𝑥𝜎 ≍ 𝑦𝜎, then 𝑥𝜎 = 𝑦𝜏.

Crucially, we do not ask for this relation to be transitive—in some examples
the dependency relation will be an equivalence relation, but not always
(Example IX.3.15), and this non-transitivity is actually an important feature,
motivated amongst other by the syntactic congruence and Corollary IX.3.14.

A dependent set is a 𝒯-typed set together with a dependency relation over
it. A closed subset of a dependent set ⟨𝐗, ≍⟩ is a subset 𝐶 ⊆ 𝐗 such that for all
𝑥, 𝑥′ ∈ 𝐗, if 𝑥 ≍ 𝑥′ then 𝑥 ∈ 𝐶 ⟺ 𝑥′ ∈ 𝐶.6 6 In other words,𝐶 is a union of equiv-

alence classes of the transitive clo-
sure of ≍.

Figure IX.4: Representation of the
dependent set 𝐒2Σ of synchronous
words. Coloured edges represent the
dependency relation, and self-loops
are not drawn.

292

ix.3. synchronous algebras

Example IX.3.2. Given a finite alphabet Σ, let 𝐒2Σ be the dependent set of
synchronous words defined by:
• (𝐒2Σ)l ⁄l =̂ (Σ × Σ)∗,
• (𝐒2Σ)l ⁄l→l ⁄b =̂ (Σ × Σ)∗(Σ ×)∗,
• (𝐒2Σ)l ⁄b =̂ (Σ ×)∗,

• (𝐒2Σ)l ⁄l→b ⁄l =̂ (Σ × Σ)∗(× Σ)∗,
• (𝐒2Σ)b ⁄l =̂ (× Σ)∗.

Moreover, ≍ is the reflexive and symmetric closure of the relation that
identifies 𝑢l ⁄l with 𝑢l ⁄l→𝛽 for all 𝑢 ∈ (Σ×Σ ∗) and 𝛽 ∈ {l ⁄b , b ⁄l }, and 𝑢l ⁄l→l ⁄b
with 𝑢l ⁄b for 𝑢 ∈ (Σ ×)∗, and 𝑢l ⁄l→b ⁄l with 𝑢b ⁄l for 𝑢 ∈ (× Σ)∗. This
structure is depicted in Figure IX.4.7 7 The index refers to the arity of the

relations we are considering: here
we focus on binary relations, but all
constructions can be generalized to
higher arities.

Given a relation ℛ ⊆ Σ ∗ × Σ ∗, we denote by ℛ =̂ {(𝑢, 𝑣)𝜏 ∣ (𝑢, 𝑣)𝜏 ∈
𝐒2Σ and (𝑢, 𝑣) ∈ ℛ} the closed subset of 𝐒2Σ induced by ℛ.

Fact IX.3.3. The map ℛ ↦ ℛ is a bijection between binary relations over Σ ∗

and closed subsets of 𝐒2Σ.

Proof. Let 𝑓 be the function which maps a closed subset 𝐶 of 𝐒2Σ to {(𝑢, 𝑣) ∈
Σ ∗ ×Σ ∗ ∣ (𝑢, 𝑣)𝜏 ∈ 𝐶 for some 𝜏 ∈ 𝒯}. It then follows that 𝑓 ∘ − (resp. 𝑓(−))
is the identity on subsets of Σ ∗ ×Σ ∗ (resp. closed subsets of 𝐒2Σ).

IX.3.2 Synchronous Algebras

One key property of types is that some of them can be concatenated to produce
other types. We say that two types 𝜎, 𝜏 ∈ 𝒯 are compatible when there
exists non-empty words 𝑢, 𝑣 ∈ WellFormedΣ of type 𝜎 and 𝜏, respectively,
such that 𝑢𝑣 is well-formed. Said otherwise, 𝛼 → 𝛽 is compatible with
𝛽′ → 𝛾 if either 𝛽 = 𝛽′ or 𝛽 = l ⁄l—indeed, for this last case note that e.g.
the concatenation of (𝑎𝑎𝑎𝑎𝑎𝑎) of type l ⁄l with (𝑎𝑎) of type b ⁄l is well-formed.
Lastly, if 𝛼 → 𝛽 is compatible with 𝛽′ → 𝛾, we define their product as
(𝛼 → 𝛽)⋅(𝛽′ → 𝛾) =̂ 𝛼 → 𝛾. Note that this partial operation is associative,
in the following sense: for 𝜌, 𝜎, 𝜏 ∈ 𝒯, (𝜌⋅𝜎)⋅𝜏 is well-defined if and only if
𝜌⋅(𝜎⋅𝜏) is well-defined, in which case both types are equal. This implies that
the notion of compatibility of types can be unambiguously lifted to finite lists
of types 𝜏1, … , 𝜏𝑛.

Definition IX.3.4. A synchronous algebra ⟨𝐀, ⋅, ≍⟩ consists of a dependent
set ⟨𝐀, ≍⟩ together with a partial binary operation ⋅ on 𝐀, called product such
that:
• for 𝑥𝜎, 𝑦𝜏 ∈ 𝐀, 𝑥𝜎 ⋅ 𝑦𝜏 is defined iff 𝜎 and 𝜏 are compatible,
• associativity: for all 𝑥𝜌, 𝑦𝜎, 𝑧𝜏 ∈ 𝐀, if 𝜌, 𝜎, 𝜏 are compatible:

(𝑥𝜌 ⋅ 𝑦𝜎) ⋅ 𝑧𝜏 = 𝑥𝜌 ⋅ (𝑦𝜎 ⋅ 𝑧𝜏),

• “monotonicity”: for all 𝑥𝜎, 𝑥′𝜎′ , 𝑦𝜏 ∈ 𝐀, if 𝑥𝜎 ≍ 𝑥′𝜎′ and both 𝜎, 𝜏 and 𝜎′, 𝜏
are compatible, then 𝑥𝜎 ⋅ 𝑦𝜏 ≍ 𝑥′𝜎′ ⋅ 𝑦𝜏, and dually if 𝜏, 𝜎 and 𝜏, 𝜎′ are
compatible, then 𝑦𝜏 ⋅ 𝑥𝜎 ≍ 𝑦𝜏 ⋅ 𝑥′𝜎′ ,

• units: for each type 𝜏 there is an element 1𝜏 ∈ 𝐀 such that for any 𝑥𝜎 ∈ 𝐀,
then 1𝜏 ⋅ 𝑥𝜎 ≍ 𝑥𝜎 if 𝜏 and 𝜎 are compatible, and 𝑥𝜎 ⋅ 1𝜏 ≍ 𝑥𝜎 if 𝜎 and 𝜏 are

293

ix. the algebras for automatic relations

compatible, and moreover, 1l ⁄l→𝛽 = 1l ⁄l ⋅ 1𝛽 for 𝛽 ∈ {l ⁄b , b ⁄l }.

Note in particular that for any type 𝜏 ∈ {l ⁄l , l ⁄b , b ⁄l }, then 1𝜏 ⋅ 𝑥𝜏 ≍ 𝑥𝜏
but since 1𝜏 ⋅ 𝑥𝜏 has type 𝜏 and ≍ is a dependency relation, then 1𝜏 ⋅ 𝑥𝜏 =
𝑥𝜏. This implies in particular that restricting ⟨𝐀, ⋅⟩ to a type l ⁄l , l ⁄b or b ⁄l
yields a monoid. These are called the three underlying monoids of 𝐀. The
canonical example of synchronous algebras is synchronous words 𝐒2Σ under
concatenation. Its underlying monoids are (Σ × Σ)∗, (Σ × { })∗ and ({ } × Σ)∗.

Fact IX.3.5. Any closed subset of𝐀 either contains all units, or none of them.

Proof. From 1l ⁄l→l ⁄b = 1l ⁄l ⋅ 1l ⁄b we have 1l ⁄l ≍ 1l ⁄l→l ⁄b and 1l ⁄l→l ⁄b ≍
1l ⁄b . By symmetry between l ⁄b and b ⁄l , we also have 1l ⁄l ≍ 1l ⁄l→b ⁄l and
1l ⁄l→b ⁄l ≍ 1b ⁄l . Hence, if a closed subset of 𝐀 contains at least one unit, then
it must contain them all.

Note that the product induces a monoid left (resp. right) action of the
underlying monoid 𝐀l ⁄l (resp. 𝐀l ⁄b) on the set 𝐀l ⁄l→l ⁄b . Moreover, 𝑥l ⁄l ↦
𝑥l ⁄l ⋅ 1l ⁄b identifies any element of type l ⁄l with an element of type l ⁄l → l ⁄b .
Over 𝐒2Σ, these identifications are injective, but it need not be the case
in general. Note also that in general, 𝑥l ⁄l ⋅ 1l ⁄l→l ⁄b = 𝑥l ⁄l ⋅ 1l ⁄l ⋅ 1l ⁄b =
𝑥l ⁄l ⋅ 1l ⁄b .

Remark IX.3.6. There exists a monad over the category of dependent sets
whose Eilenberg-Moore algebras exactly correspond to synchronous algebras,
see Section IX.A.

Morphisms of synchronous algebras are defined naturally as maps that
preserve the type, units, the product and the dependency relation.

Free algebras 𝐒2Σ is free in the sense that for any synchronous algebra 𝐀,
there is a natural bijection between synchronous algebra morphisms 𝐒2Σ →
𝐀 and maps of typed sets Σ2⊗ → 𝐀. Said otherwise, synchronous algebra
morphisms are uniquely defined by their value on Σ2⊗.

IX.3.3 Recognizability

Given a synchronous algebra𝐀, a morphism𝜙∶ 𝐒2Σ → 𝐀 and a closed subset
Acc ⊆ 𝐀 called “accepting set”, we say that ⟨𝜙,𝐀,Acc⟩ recognizes a relation
ℛ ⊆ Σ ∗ ×Σ ∗ when ℛ = 𝜙−1[Acc]. We extend the notion of recognizability to
⟨𝜙,𝐀⟩ or to simply 𝐀 by existential quantification over the missing elements
in the tuple ⟨𝜙,𝐀,Acc⟩.

Synchronous algebra induced by a monoid A monoid morphism 𝜙∶ (Σ2⊗)∗ →
𝑀 naturally induces a synchronous algebra morphism �̃� ∶ 𝐒2Σ → 𝐀𝑀, where:
• 𝐀𝑀 has for every type 𝜏 a copy of𝑀, and ≍ is {(𝑥𝜎, 𝑥𝜏) ∣ 𝑥 ∈ 𝑀, 𝜎, 𝜏 ∈ 𝒯},
• for all 𝑥𝜎, 𝑦𝜏 ∈ 𝐀𝑀 with compatible type, 𝑥𝜎 ⋅ 𝑦𝜏 =̂ (𝑥 ⋅ 𝑦)𝜎⋅𝜏,
• �̃�� 𝑎𝑏 � =̂ �𝜙� 𝑎𝑏 ��l ⁄l

, �̃�(𝑎) =̂ �𝜙(𝑎)�
l ⁄b

, and �̃�(𝑎) =̂ �𝜙(𝑎)�
b ⁄l

.

294

https://ncatlab.org/nlab/show/algebra+over+a+monad

ix.3. synchronous algebras

The algebra simply duplicates𝑀 as many times as needed and identifies two
elements together when they originated from the same element of𝑀.

Fact IX.3.7. If 𝜙 recognizes ℛ for some relation ℛ ⊆ Σ ∗ × Σ ∗ seen as a
language over Σ2⊗, then �̃� recognizes ℛ.

Consolidation of a synchronous algebra Given a synchronous algebra mor-
phism 𝜙∶ 𝐒2Σ → 𝐀, define its consolidation8 as the semigroup morphism 8 Named by analogy with Tilson’s

construction [Til87, §3, p. 102].𝜙0 ∶ (Σ2⊗)∗ → 𝐀0, where 𝐀0 is the monoid obtained from⊎𝐀 by first merg-
ing units, by adding a zero (denoted by 0), and extending ⋅ to be a total function
by letting all missing products equal 0, and 𝜙0 sends a word 𝑢 ∈ (Σ2⊗)∗ to
• 0 if 𝑢 is not well-formed,
• 𝜙(𝑢l ⁄l) if 𝑢 ∈ (Σ ×Σ)∗,
• 𝜙(𝑢l ⁄b) if 𝑢 ∈ (Σ ×)+,
• 𝜙(𝑢b ⁄l) if 𝑢 ∈ (× Σ)+,

• 𝜙(𝑢l ⁄l→l ⁄b) if 𝑢 ∈ (Σ × Σ)+(Σ ×
)+,

• 𝜙(𝑢l ⁄l→b ⁄l) if 𝑢 ∈ (Σ × Σ)+(×
Σ)+.

Note that this operation disregards the dependency relation of 𝐀.

Fact IX.3.8. If 𝜙 recognizes some relation ℛ, then 𝜙0 recognizes ℛ, when
seen as a language over Σ2⊗.

The following result follows from Facts IX.2.2, IX.3.7 and IX.3.8.

Proposition IX.3.9. A relation is automatic if and only if it is recognized by
a finite synchronous algebra.

Let us continue with a slightly less trivial example of algebra.

Example IX.3.10 (Group relations: Example IX.2.4, cont’d.). Fix 𝑝, 𝑞 ∈ ℕ>0.
Let 𝐙𝑝,𝑞 denote the algebra whose underlying monoids are:
• the trivial monoid (0, +) for type l ⁄l ,
• the cyclic monoid (ℤ/𝑝ℤ, +) for type l ⁄b ,
• the cyclic monoid (ℤ/𝑞ℤ, +) for type b ⁄l .
Moreover, the sets 𝑍l ⁄l→l ⁄b and 𝑍l ⁄l→b ⁄l are defined as ℤ/𝑝ℤ and ℤ/𝑞ℤ,
respectively. The product is addition—we identify 0l ⁄l with the zero of ℤ/𝑝ℤ
and of ℤ/𝑞ℤ. We denote by �̄� the equivalence class of 𝑘 ∈ ℤ in ℤ/𝑛ℤ when 𝑛
is clear from context. The dependency relation identifies (1) all units together
and (2) 𝑥𝜎 with 1𝜏 ⋅ 𝑥𝜎 and 𝑥𝜎 ⋅ 1𝜏 when the types are compatible.

Let 𝜙∶ 𝐒2Σ → 𝐙𝑝,𝑞 be the synchronous algebra morphism defined by

𝜙� 𝑎𝑏 � =̂ 0̄l ⁄l , 𝜙(𝑎) =̂ 1̄l ⁄b , 𝜙(𝑎) =̂ 1̄b ⁄l and 𝜙(𝜀𝜏) =̂ 0̄𝜏 for 𝜏 ∈ 𝒯.

This morphism recognizes any relation of the form

ℛ𝐼,𝐽 =̂ �(𝑢, 𝑣) � |𝑢| > |𝑣| and (|𝑢| − |𝑣| mod 𝑝) ∈ 𝐼, or

|𝑢| < |𝑣| and (|𝑣| − |𝑢| mod 𝑞) ∈ 𝐽. �,

where 𝐼 ⊆ ℤ/𝑝ℤ and 𝐽 ⊆ ℤ/𝑞ℤ are such that 0̄ ∉ 𝐼 and 0̄ ∉ 𝐽. This last
condition is necessary because the accepting set has to be a closed subset
of 𝐙𝑝,𝑞: if 0̄ was in 𝐼, then we would need 0̄ ∈ 𝐽, but also to add 0̄l ⁄l to the

295

ix. the algebras for automatic relations

accepting set: this would recognize

�(𝑢, 𝑣) � |𝑢| > |𝑣| and (|𝑢| − |𝑣| mod 𝑝) ∈ 𝐼, or

|𝑢| < |𝑣| and (|𝑣| − |𝑢| mod 𝑞) ∈ 𝐽, or |𝑢| = |𝑣|�.

Note also that all relations ℛ𝐼,𝐽 with 0̄ ∉ 𝐼 and 0̄ ∉ 𝐽 are group relations:
letting 𝐺 be the group ℤ/𝑝ℤ ×ℤ/𝑞ℤ, ℛ can be written as WellFormedΣ ∩
𝜓−1[𝐼 × {0} ∪ {0} × 𝐽] where 𝜓∶ (Σ2⊗)∗ → 𝐺 is the monoid morphism defined
by 𝜓� 𝑎𝑏 � =̂ (0̄, 0̄), 𝜓(𝑎) =̂ (1̄, 0̄) and 𝜓(𝑎) =̂ (0̄, 1̄).

IX.3.4 Syntactic Morphisms & Algebras

Lemma IX.3.11 (Syntactic morphism theorem). For each relation ℛ, there
exists a surjective synchronous algebra morphism

𝜂ℛ ∶ 𝐒2Σ ↠ 𝐀ℛ

that recognizes ℛ and is such that for any other surjective synchronous
algebra morphism 𝜙∶ 𝐒2Σ ↠ 𝐁 recognizing ℛ, there exists a synchronous
algebra morphism 𝜓∶ 𝐁 ↠ 𝐀ℛ such that the diagram

𝐒2Σ 𝐀ℛ

𝐁,

𝜂ℛ

𝜙
𝜓

commutes. The objects 𝜂ℛ and𝐀ℛ are called the syntactic synchronous algebra
morphism and syntactic synchronous algebra of ℛ, respectively. Moreover,
these objects are unique up to isomorphisms of the algebra.

Corollary IX.3.12 (of Proposition IX.3.9 and Lemma IX.3.11). A relation is
automatic if and only if its syntactic synchronous algebra is finite.

The proof of Lemma IX.3.11 relies, as in the case of monoids, on the notion
of congruence.

Given a synchronous algebra ⟨𝐀, ≍, ⋅⟩, a congruence is any reflexive, sym-
metric relation ⌢⌣ over𝐀which is coarser than≍, and which is locally transitive,
meaning that for all 𝑥𝜎, 𝑥′𝜎, 𝑦𝜏, 𝑦′𝜏 ∈ 𝐗, if 𝑥′𝜎⌢⌣𝑥𝜎, 𝑥𝜎⌢⌣𝑦𝜏 and 𝑦𝜏⌢⌣𝑦′𝜏, then 𝑥′𝜎⌢⌣𝑦′𝜏.9 9 In particular, it implies that ⌢⌣ is tran-

sitive when restricted to elements of
the same type.

The quotient structure 𝐀/⌢⌣ of 𝐀 by a congruence ⌢⌣ is defined as follows:
• its underlying typed set consists of the equivalence classes of 𝐀 under

the equivalence relation {(𝑥𝜎, 𝑦𝜎) ∣ 𝑥𝜎⌢⌣𝑦𝜎}, such a class being abusively
denoted by [𝑥]⌢⌣,

• its product is the product induced by𝐀, in the sense that [𝑥]⌢⌣ ⋅ [𝑦]⌢⌣ =̂ [𝑥𝑦]⌢⌣,
and

• its dependency relation is the relation induced by ⌢⌣, i.e. [𝑥]⌢⌣ ≍ [𝑦]⌢⌣ when-
ever 𝑥⌢⌣𝑦,

• its units are defined as the equivalence classes of the units of 𝐀.
Moreover, 𝑥 ↦ [𝑥]⌢⌣ defines a surjective morphism of synchronous algebras
from 𝐀 to 𝐀/⌢⌣.

296

https://ncatlab.org/nlab/show/isomorphism

ix.3. synchronous algebras

Given a synchronous algebra ⟨𝐀, ≍, ⋅⟩ and a closed subset𝐶 ⊆ 𝐀, we define
a congruence ⌢⌣𝐶, called syntactic congruence of 𝐶 over 𝐀 by letting 𝑎𝜎 ⌢⌣𝐶 𝑏𝜏
when for all 𝑥, 𝑦 ∈ 𝐀
• if both 𝑥𝑎𝜎𝑦 and 𝑥𝑏𝜏𝑦 are defined, then 𝑥𝑎𝜎𝑦 ∈ 𝐶 iff 𝑥𝑏𝜏𝑦 ∈ 𝐶, and
• if both 𝑥𝑎𝜎 and 𝑥𝑏𝜏 are defined, then 𝑥𝑎𝜎 ∈ 𝐶 iff 𝑥𝑏𝜏 ∈ 𝐶, and
• if both 𝑎𝜎𝑦 and 𝑏𝜏𝑦 are defined, then 𝑎𝜎𝑦 ∈ 𝐶 iff 𝑏𝜏𝑦 ∈ 𝐶.
It is routine to check that the syntactic congruence is indeed a congruence.
For instance, to prove that ⌢⌣𝐶 is coarser than ≍, observe that if 𝑎𝜎 ≍ 𝑏𝜏, then
for all 𝑥, 𝑦 s.t. both 𝑥𝑎𝜎𝑦 and 𝑥𝑏𝜏𝑦 are defined, then 𝑥𝑎𝜎𝑦 ≍ 𝑥𝑏𝜏𝑦, and since 𝐶
is a closed subset of 𝐀, 𝑥𝑎𝜎𝑦 ∈ 𝐶 iff 𝑥𝑏𝜏𝑦 ∈ 𝐶. The other two conditions are
proven in the same fashion. Note however that while the relation is locally
transitive, it is not transitive in general.

When ℛ ⊆ Σ ∗ × Σ ∗ is a relation, we abuse the notation and write ⌢⌣ℛ
to denote the syntactic congruence ⌢⌣ℛ of ℛ in 𝐒2Σ. The existence of the
syntactic morphism then follows from the next proposition.

Proposition IX.3.13. Let 𝜙∶ 𝐒2Σ ↠ 𝐀 be a surjective synchronous algebra
morphism that recognizes ℛ, say ℛ = 𝜙−1[Acc] for some closed subset
Acc ⊆ 𝐀, then

𝜙/⌢⌣Acc ∶ 𝐒2Σ ↠ 𝐀/⌢⌣Acc

𝑢 ↦ [𝜙(𝑢)]⌢⌣Acc

is the syntactic morphism of ℛ.

Proof. We claim that 𝜙/⌢⌣Acc is a, and hence the, syntactic synchronous algebra
morphism of ℛ. First, if 𝜙(𝑢) ⌢⌣Acc 𝜙(𝑣) then in particular 𝜙(𝑢) ∈ Acc iff
𝜙(𝑣) ∈ Acc. It follows that the preimage of Acc′ =̂ [Acc]⌢⌣Acc by 𝜙/⌢⌣Acc is
indeed ℛ. Moreover Acc′ is a closed subset of 𝐀/⌢⌣Acc since Acc is a closed
subset of 𝐀. Hence, 𝜙/⌢⌣Acc is a surjective morphism which recognizes ℛ.

Then, given another surjective morphism 𝜓∶ 𝐒2Σ ↠ 𝐁 which recognizes
ℛ, say ℛ = 𝜓−1[Bcc], then for each 𝑏𝜎 ∈ 𝐁, there exists 𝑢𝜎 ∈ 𝐒2Σ such that
𝜓(𝑢𝜎) = 𝑏𝜎. This defines a map 𝜒∶ 𝐁 → 𝐀/⌢⌣Acc which sends 𝑏𝜎 to 𝜙/⌢⌣Acc(𝑢𝜎).

We claim that 𝜙/⌢⌣Acc = 𝜒 ∘ 𝜓, meaning that the following diagram com-
mutes

𝐀

𝐒2Σ 𝐀ℛ

𝐁.

−/⌢⌣Acc

𝜙

𝜙/⌢⌣Acc

𝜓
𝜒

Indeed, for 𝑢𝜎 ∈ 𝐒2Σ, 𝜒(𝜓(𝑢𝜎)) equals𝜙/⌢⌣Acc(𝑣𝜎) for some 𝑣𝜎 ∈ 𝐒2Σ such that
𝜓(𝑣𝜎) = 𝜓(𝑢𝜎). This in turns implies that 𝑢𝜎 ⌢⌣ℛ 𝑣𝜎 since for all 𝑥, 𝑦 ∈ 𝐒2Σ, if
𝑥𝑢𝑦 and 𝑥𝑣𝑦 are well-defined, then so are 𝜓(𝑥)𝜓(𝑢)𝜓(𝑣) and 𝜓(𝑥)𝜓(𝑣)𝜓(𝑦),
and both elements are equal, so one belongs to Bcc iff the other does. It
follows that 𝑥𝑢𝑦 ∈ ℛ iff 𝑥𝑣𝑦 ∈ ℛ, and hence 𝑢𝜎 ⌢⌣ℛ 𝑣𝜎. By surjectivity of

297

ix. the algebras for automatic relations

𝜙, it follows that 𝜙(𝑢𝜎) ⌢⌣Acc 𝜙(𝑣𝜎), i.e. 𝜙/⌢⌣Acc(𝑢𝜎) = 𝜙/⌢⌣Acc(𝑣𝜎). And hence
𝜒(𝜓(𝑢)) = 𝜙/⌢⌣Acc(𝑢𝜎).

We now show that 𝜒 is a morphism. From 𝜙/⌢⌣Acc = 𝜒 ∘ 𝜓 it follows that
the map 𝜒 preserves the product10 and is surjective. Lastly, we claim that it 10 See e.g. [Boj15, Lemma 3.2, p. 10].

preserves the dependency relation. Indeed, by surjectivity of 𝜓, it boils down
to proving that for all 𝑢𝜎, 𝑣𝜏 ∈ 𝐒2Σ, if 𝜓(𝑢) ≍ 𝜓(𝑣) then 𝜒(𝜓(𝑢)) ≍ 𝜒(𝜓(𝑣)),
namely 𝜙/⌢⌣Acc(𝑢𝜎) ≍ 𝜙/⌢⌣Acc(𝑣𝜏), which rewrites as 𝜙(𝑢𝜎) ⌢⌣Acc 𝜙(𝑣𝜏). So
pick 𝑥, 𝑦 such that both 𝑥𝑢𝑦 and 𝑥𝑣𝑦 are well-defined. Then 𝜓(𝑥)𝜓(𝑢)𝜓(𝑦)
and 𝜓(𝑢)𝜓(𝑣)𝜓(𝑦) have the same type as 𝑥𝑢𝑦 and 𝑥𝑣𝑦, respectively, so they
are well-defined, but since 𝜓(𝑢) ≍ 𝜓(𝑣), then 𝜓(𝑥)𝜓(𝑢)𝜓(𝑦) ≍ 𝜓(𝑥)𝜓(𝑢)𝜓(𝑦)
and since Bcc is a closed subset, one of these elements belongs in it iff the
other ones does too, from which it follows that 𝑥𝑢𝑣 ∈ ℛ iff 𝑥𝑣𝑦 ∈ ℛ i.e.
𝑢𝜎 ⌢⌣ℛ 𝑣𝜏 and hence𝜙(𝑢𝜎) ⌢⌣Acc 𝜙(𝑣𝜏). Overall, this proves that𝜒 is a surjective
synchronous algebra morphism, and concludes our proof.

Proof of Lemma IX.3.11. X Uniqueness. Consider two potential syntactic
morphisms, say 𝜂1 ∶ 𝐒2Σ ↠ 𝐀1 and 𝜂2 ∶ 𝐒2Σ ↠ 𝐀2. Then by the universal
property of 𝜂1 (resp. 𝜂2), there exists 𝜓1 ∶ 𝐀2 ↠ 𝐀1 and 𝜓2 ∶ 𝐀1 ↠ 𝐀2 such
that 𝜂1 = 𝜓1 ∘ 𝜂2 and 𝜂2 = 𝜓2 ∘ 𝜂1. Overall, it implies that the following
digram commutes

𝐀1

𝐒2Σ 𝐀2

𝐀1,

𝜂1

𝜂2

𝜂1

𝜓1

𝜓2

and so 𝜓1 ∘ 𝜓2 ∘ 𝜂1 = 𝜂1. Since 𝜂1 is surjective, and hence right-cancellative,
𝜓1 ∘ 𝜓2 = id𝐀1 . Symmetrically, 𝜓2 ∘ 𝜓1 = id𝐀2 , showing that 𝜓1 and 𝜓2 are
mutually inverse isomorphisms of synchronous algebras.

X Existence. It follows from Proposition IX.3.13—which we will prove
just afterwards—applied to the identity morphism id ∶ 𝐒2Σ ↠ 𝐒2Σ, which
recognizes ℛ since ℛ = id−1[ℛ] and ℛ is closed.

Corollary IX.3.14. In the syntactic synchronous algebra 𝐀ℛ, the syntactic
congruence ⌢⌣Acc and the dependency relation ≍ coincide.

Proof. By Proposition IX.3.13 applied to the syntactic morphism, 𝑥 ↦ [𝑥]⌢⌣Acc

is an isomorphism from 𝐀ℛ to 𝐀ℛ/⌢⌣Acc. Hence, [𝑥]⌢⌣Acc ≍ [𝑦]⌢⌣Acc in 𝐀ℛ/⌢⌣Acc

iff 𝑥 ≍ 𝑦 in 𝐀ℛ, for all 𝑥, 𝑦 ∈ 𝐀ℛ. But then, the dependency relation ≍ of
𝐀ℛ/⌢⌣Acc is, by definition, such that [𝑥]⌢⌣Acc ≍ [𝑦]⌢⌣Acc iff 𝑥 ⌢⌣Acc 𝑦. Putting both
equivalences together, we get that 𝑥 ⌢⌣Acc 𝑦 iff 𝑥 ≍ 𝑦 for all 𝑥, 𝑦 ∈ 𝐀ℛ.

We now provide a simple example of syntactic synchronous algebra whose
dependency relation is not an equivalence relation.

298

https://ncatlab.org/nlab/show/isomorphism

ix.3. synchronous algebras

Example IX.3.15. We now provide an example of syntactic synchronous
algebra whose dependency relation is not an equivalence relation. Consider
the relation

ℛ = � ΣΣ �
∗
�� Σ � + � Σ �

+
(𝑎) + (Σ) + (Σ)+(𝑎)�,

where Σ = {𝑎, 𝑏}. In other words, a pair (𝑢, 𝑣) belongs to ℛ if either: the
length difference between 𝑢 and 𝑣 is one, or it is at least two and the longer
words ends with an ‘𝑎’. We are going to compute the syntactic congruence

⌢⌣ℛ of ℛ in 𝐒2Σ.

Figure IX.5: The three underly-
ing monoids of the syntactic syn-
chronous algebra of the relation ℛ
of Example IX.3.15, together with its
dependency relation. The two equiv-
alence classes of its transitive closure
are drawn in red and blue.

Recall that the restriction of ⌢⌣ℛ to a single type is an equivalence relation.
For l ⁄l , there is a single equivalence class, denoted by/identified with 𝜀l ⁄l .
For type l ⁄b , we claim that for any 𝑢 ∈ Σ ∗:

• (𝑢)l ⁄b ⌢⌣ℛ (𝑎)l ⁄b iff 𝑢 ∈ Σ ∗𝑎;
• (𝑢)l ⁄b ⌢⌣ℛ � 𝑏 �

l ⁄b
iff 𝑢 = 𝑏;

• 𝜀l ⁄b is alone in its equivalence
class;

• all elements of the form (𝑢)l ⁄b
where 𝑢 is a word of length at least
2 whose last letter is a ‘𝑏’ are pair-
wise equivalent, and the class is
identified with � 𝑏𝑏 �

l ⁄b
.

Since ℛ is invariant under (𝑢, 𝑣) ↦ (𝑣, 𝑢), the situation is symmetric for
type b ⁄l . Moreover, ℛ is invariant under adding/removing prefixes of type
l ⁄l , so types l ⁄l → l ⁄b and l ⁄l → b ⁄l also have four elements each.

In the end, we obtain the synchronous algebra drawn in Figure IX.5 (el-
ements of type l ⁄l → l ⁄b and l ⁄l → b ⁄l are omitted for the sake of sim-
plicity). Note that the dependency relation is not transitive: for instance
(𝑎)l ⁄b ⌢⌣ℛ (𝑏)b ⁄l and (𝑏)b ⁄l ⌢⌣ℛ � 𝑏 �

l ⁄b
but (𝑎)l ⁄b �⌢

⌣ℛ � 𝑏 �
l ⁄b

.
Given two elements of distinct type, we want to determine when they are

dependent. For the sake of simplicity, we will focus on types l ⁄l , l ⁄b and b ⁄l .
X Types l ⁄l and l ⁄b . Since dependent elements must either both belong

299

ix. the algebras for automatic relations

to ℛ or both to ¬ℛ, we have 𝜀l ⁄l �⌢
⌣ℛ (𝑎)l ⁄b and 𝜀l ⁄l �⌢

⌣ℛ � 𝑏 �
l ⁄b

. Because

ℛ is a closed subset, then 𝜀l ⁄l ⌢⌣ℛ 𝜀l ⁄b . Moreover, 𝜀l ⁄l �⌢
⌣ℛ � 𝑏𝑏 �

l ⁄b
since

𝜀l ⁄l � 𝑏 �l ⁄b
∈ ℛ but � 𝑏𝑏 �

l ⁄b
� 𝑏 �

l ⁄b
∉ ℛ.

X Types l ⁄b and b ⁄l . Again, using the fact that dependent elements must
either both belong to ℛ or both to ¬ℛ, we have

(𝑎)l ⁄b �⌢
⌣ℛ 𝜀b ⁄l , (𝑎)l ⁄b �⌢

⌣ℛ (𝑏𝑏)b ⁄l

� 𝑏 �
l ⁄b �⌢

⌣ℛ 𝜀b ⁄l , � 𝑏 �
l ⁄b �⌢

⌣ℛ (𝑏𝑏)b ⁄l ,

𝜀l ⁄b �⌢
⌣ℛ (𝑎)b ⁄l , 𝜀l ⁄b �⌢

⌣ℛ (𝑏)b ⁄l

� 𝑏𝑏 �
l ⁄b �⌢

⌣ℛ (𝑎)b ⁄l , � 𝑏𝑏 �
l ⁄b �⌢

⌣ℛ (𝑏)b ⁄l .

We claim that (𝑎)l ⁄b ⌢⌣ℛ (𝑎)b ⁄l . Note that there is no, 𝑦𝜏 be such that (𝑎)l ⁄b 𝑦𝜏
and (𝑎)b ⁄l 𝑦𝜏 arewell-formed. So, let 𝑥𝜎 be such that 𝑥𝜎(𝑎)l ⁄b and 𝑥𝜎(𝑎)b ⁄l are
well-formed: 𝜎 must be of type l ⁄l , but then ℛ is invariant under removing
prefixes of type l ⁄l , and so 𝑥𝜎(𝑎)l ⁄b ∈ ℛ and 𝑥𝜎(𝑎)b ⁄l ∈ ℛ. And hence,
(𝑎)l ⁄b ⌢⌣ℛ (𝑎)b ⁄l . Similarly,

(𝑎)l ⁄b ⌢⌣ℛ (𝑏)b ⁄l , � 𝑏 �
l ⁄b

⌢⌣ℛ (𝑎)b ⁄l and � 𝑏 �
l ⁄b

⌢⌣ℛ (𝑏)b ⁄l .

The dual argument (using now the fact that both sides do not belong to ℛ)
shows that

𝜀l ⁄b ⌢⌣ℛ 𝜀b ⁄l , 𝜀l ⁄b ⌢⌣ℛ (𝑏𝑏)b ⁄l , � 𝑏𝑏 �
l ⁄b

⌢⌣ℛ 𝜀b ⁄l and � 𝑏𝑏 �
l ⁄b

⌢⌣ℛ (𝑏𝑏)b ⁄l .

The case of types l ⁄l and l ⁄b follows by symmetry.

Boolean operations Given two synchronous algebras 𝐀 and 𝐁, define their
Cartesian product 𝐀× 𝐁 by taking, for each type 𝜏, the Cartesian product
𝐴𝜏 × 𝐵𝜏. Units, product are defined naturally, and the dependency relation
is defined by taking the conjunction over each component. Then ¬ℛ is
recognized by 𝐀, and ℛ∪ 𝒮 and ℛ∩ 𝒮 are recognized by 𝐀×𝐁.

IX.4 The Lifting Theorem & Pseudovarieties

IX.4.1 Elementary Formulation

Example IX.4.1 (Group relations: Example IX.3.10 cont’d). We want to
decide when the relation

ℛ𝐼,𝐽 =̂ �(𝑢, 𝑣) � |𝑢| > |𝑣| and (|𝑢| − |𝑣| mod 𝑝) ∈ 𝐼, or

|𝑢| < |𝑣| and (|𝑣| − |𝑢| mod 𝑞) ∈ 𝐽. �

from Example IX.3.10 is a group relation. By definition this happens if and only
if there exists a finite group𝐺, together with a monoid morphism 𝜙∶ (Σ2⊗)∗ →
𝐺 and a subset Acc ⊆ 𝐺 s.t. ∀𝑢 ∈ WellFormedΣ, 𝑢 ∈ ℛ𝐼,𝐽 iff 𝜙(𝑢) ∈ Acc. We

300

ix.4. the lifting theorem & pseudovarieties

claim:
ℛ𝐼,𝐽 is a group relation iff �0̄ ∉ 𝐼 and 0̄ ∉ 𝐽�. (IX.1)

The right-to-left implication was shown in Example IX.3.10. We prove
the implication from left to right: let 𝑛 be the order of 𝐺 so that 𝑥𝑛 = 1
for all 𝑥 ∈ 𝐺. In particular, we have: 𝜙�(𝑎)𝑝𝑞𝑛� = 1 = 𝜙�(𝑎𝑎)𝑝𝑞𝑛�. Since

𝜙�(𝑎𝑎)𝑝𝑞𝑛� ∉ ℛ𝐼,𝐽, it follows that (𝑎)𝑝𝑞𝑛 ∉ ℛ𝐼,𝐽 i.e. 0̄ ∉ 𝐼. Also, 0̄ ∉ 𝐽 by
symmetry, which concludes the proof.

Even more generally, we can decide if a relation ℛ is a group relation by
simply looking at the syntactic synchronous algebra of ℛ.

Theorem IX.4.2 (Lifting theorem: Elementary Formulation). Given a rela-
tion ℛ and a ∗-pseudovariety of regular languages 𝒱 corresponding to a
pseudovariety of monoids 𝕍, the following are equivalent:
1. ℛ is a 𝒱-relation,
2. ℛ is recognized by a finite synchronous algebra A whose underlying

monoids are all in 𝕍,
3. all underlying monoids of the syntactic synchronous algebras 𝐀ℛ of ℛ are

in 𝕍.

Proof. X (1) ⇒ (2). Since ℛ is a 𝒱-relation, there exists ℒ ∈ 𝒱Σ2⊗ such
that ℛ = ℒ ∩WellFormedΣ. Hence, there exists a morphism of monoids
𝜙∶ (Σ2⊗)∗ → 𝑀 such that𝑀 ∈ 𝕍 and ℒ = 𝜙−1[Acc] for some Acc ⊆ 𝑀. It
follows that ℛ = ℒ ∩WellFormedΣ rewrites as “for all 𝑢 ∈ WellFormedΣ,
𝜙(𝑢) ∈ Acc iff 𝑢 ∈ ℛ”. Letting 𝐀𝑀 be the synchronous algebra induced by
the monoid𝑀, define 𝜓∶ 𝐒2Σ → 𝐀𝑀 by 𝜓(𝑢𝜎) =̂ (𝜙(𝑢))𝜎 for 𝑢𝜎 ∈ 𝐒2Σ. Let
Acc′ =̂ {𝑥𝜎 ∣ 𝑥 ∈ Acc ∧ 𝜎 ∈ 𝒯}. We claim that 𝜓−1[Acc′] = ℛ. Indeed, for
𝑢𝜎 ∈ 𝐒2Σ, 𝑢𝜎 ∈ ℛ iff 𝑢 ∈ ℒ, i.e. 𝜙(𝑢) ∈ Acc, that is 𝜓(𝑢𝜎) = (𝜙(𝑢))𝜎 ∈ Acc′.
Notice then that all underlying monoids of 𝐀𝑀 are𝑀, and hence they belong
to 𝕍.

X (2)⇒ (3). By Lemma IX.3.11, the syntactic synchronous algebra of ℛ
divides any algebra 𝐁 recognizing ℛ. In particular, its underlying monoids
divide the underlying monoids of 𝐁. The conclusion follows since 𝕍 is closed
under division.

X (3) ⇒ (1). Denote by 𝑀l ⁄l ,𝑀l ⁄b and 𝑀b ⁄l the underlying monoids
of 𝐀ℛ. Let Acc ⊆ 𝐀ℛ be the accepting set such that ℛ = 𝜂−1ℛ [Acc]. Define
𝑀 =̂ 𝑀l ⁄l ×𝑀l ⁄b ×𝑀b ⁄l , and

𝜙∶ (Σ2⊗)∗ → 𝑀
� 𝑎𝑏 � ↦ ⟨𝜂ℛ� 𝑎𝑏 �l ⁄l

, 1l ⁄b , 1b ⁄l ⟩

(𝑎) ↦ ⟨1l ⁄l , 𝜂ℛ(𝑎)l ⁄b , 1b ⁄l ⟩
(𝑎) ↦ ⟨1l ⁄l , 1l ⁄b , 𝜂ℛ(𝑎)b ⁄l ⟩

301

ix. the algebras for automatic relations

and finally, let

Acc′ ∪ �⟨1l ⁄l , 1l ⁄b , 𝑧b ⁄l ⟩ ∣ 𝑧b ⁄l ∈ Acc�

∪ �⟨𝑥l ⁄l , 𝑦l ⁄b , 1b ⁄l ⟩ ∣ 𝑥l ⁄l ⋅ 𝑦l ⁄b ∈ Acc�

∪ �⟨𝑥l ⁄l , 1l ⁄b , 𝑧b ⁄l ⟩ ∣ 𝑥l ⁄l ⋅ 𝑧b ⁄l ∈ Acc�.

We first claim that

For every 𝑢l ⁄l→l ⁄b ∈ 𝐒2Σ,

𝜙(𝑢) is of the form ⟨𝑎, 𝑏, 1⟩ and moreover, (IX.2)

𝜂ℛ(𝑢l ⁄l→l ⁄b) = 𝑎 ⋅ 𝑏,

which can trivially be proven by induction on 𝑢. Analogous results hold for
words of different type. We then prove that for each 𝑢𝜎 ∈ 𝐒2Σ,

𝜂ℛ(𝑢𝜎) ∈ Acc iff 𝜙(𝑢) ∈ Acc′. (IX.3)

The direct implication is straightforward, using Equation (IX.2). The converse
implication is more tricky: assume e.g. that 𝜎 = l ⁄l → l ⁄b , say 𝑡𝜎 = 𝑢l ⁄l 𝑣l ⁄b .
If 𝜙(𝑡) ∈ Acc′, using Equation (IX.2) then it implies either that
1. 𝜂ℛ(𝑢l ⁄l) = 1l ⁄l and 𝜂ℛ(𝑣l ⁄b) = 1l ⁄l , and 1b ⁄l ∈ Acc, or
2. 𝜂ℛ(𝑢l ⁄l) ⋅ 𝜂ℛ(𝑣l ⁄b) ∈ Acc, or even
3. 𝜂ℛ(𝑣l ⁄b) = 1l ⁄b and 𝜂ℛ(𝑢l ⁄l) ⋅ 1b ⁄l ∈ Acc.
Clearly, (2) implies the desired conclusion, namely that

𝜂ℛ(𝑡𝜎) = 𝜂ℛ(𝑢l ⁄l)𝜂ℛ(𝑣l ⁄b) ∈ Acc.

In all other cases, we will make heavy use of the dependency relation. For
case (1), we have that 𝜂ℛ(𝑡𝜎) = 1l ⁄l→l ⁄b . From 1b ⁄l ∈ Acc, Fact IX.3.5
yields 1l ⁄l ⋅ 1l ⁄b = 1l ⁄l→l ⁄b ∈ Acc, since Acc is closed. Lastly, in case (3),
𝜂ℛ(𝑢l ⁄l) ≍ 𝜂ℛ(𝑢l ⁄l) ⋅ 1b ⁄l ∈ Acc so 𝜂ℛ(𝑢l ⁄l) ∈ Acc and hence 𝜂ℛ(𝑡l ⁄l→l ⁄b) =
𝜂ℛ(𝑢l ⁄l) ⋅ 1l ⁄b ≍ 𝜂ℛ(𝑢l ⁄l) ∈ Acc which yields 𝜂ℛ(𝑡l ⁄l→l ⁄b) ∈ Acc. This
concludes the proof of (IX.3) for type 𝜎 = l ⁄l → l ⁄b . Other types are handled
similarly, and hence ℛ = 𝜙−1[Acc′] ∩WellFormedΣ.

Remark IX.4.3. In light of Theorem IX.4.2, one can wonder whether the
notion of synchronous algebra is necessary to characterize 𝒱-relations, or
if it is enough to look at the languages corresponding to the underlying
monoids. Said otherwise, is the membership of ℛ in the class of 𝒱-relations
uniquely determined by the regular languagesℛ∩(Σ×Σ)∗, ℛ∩(Σ×{ })∗ and
ℛ∩ ({ } × Σ)∗? Unsurprisingly, synchronous algebras are indeed necessary,
as there are relations ℛ such that:

ℛ∩ (Σ ×Σ)∗ ∈ 𝒱Σ×Σ, ℛ∩ (Σ ×)∗ ∈ 𝒱Σ× and ℛ∩ (× Σ)∗ ∈ 𝒱 ×Σ,
(IX.4)

but ℛ is not a 𝒱-relation. This can happen even if 𝒱 is the ∗-pseudovariety of

302

ix.4. the lifting theorem & pseudovarieties

all regular languages: for instance for the relation

ℛ =̂ {(𝑢, 𝑣) ∣ |𝑢| > |𝑣| > 0 and |𝑢| − |𝑣| is prime}.

Notice that there is a subtle but crucially important difference between (IX.4)
and the second item of the Lifting Theorem: while the underlyingmonoids of a
synchronous algebra𝐀 recognizing ℛ only accept words of the form (Σ×Σ)∗,
(Σ×)∗ or (×Σ)∗, elements of (Σ×Σ)+(Σ×)+ or (Σ×Σ)+(×Σ)+ influence
the underlying monoids of 𝐀 via the axioms of synchronous algebras.

Also, note that the existence the Lifting Theorem follows from the careful
definition of synchronous algebras: more naive definitions of these algebras
simply cannot characterize 𝒱-relations, see Section IX.4.2.

From Theorem IX.4.2 and the implicit fact that all our constructions are
effective, we obtain a decidability (meta-)result for 𝒱-relations.

Corollary IX.4.4. The class of 𝒱-relations has decidable membership if, and
only if, 𝒱 has decidable membership.

For instance, a relation is a group relation if, and only if, all underlying
monoids of its syntactic synchronous algebra are groups.

IX.4.2 Synchronous Algebras Require a Dependency Relation

In this part, we introduce the notion of synchronous algebra with no de-
pendency relation, called naive synchronous algebra. This notion is more
natural—or naive—than Definition IX.3.4, and share some of its enjoyable
properties, such as the existence of syntactic algebras. Yet, we show that
these algebras cannot characterize some natural classes of automatic relation.
More precisely, we show that there is a ∗-pseudovariety of regular languages
𝒱 and two automatic relations ℛ0 and ℛ1, such that:
• ℛ0 is a 𝒱-relation,
• ℛ1 is not a 𝒱-relation,
• ℛ0 and ℛ1 have the same syntactic naive synchronous algebra.

Definition IX.4.5 (Naive synchronous algebra). Let 𝒯1 =̂ 𝒯∪ {1}. We extend
the notion of compatibility so that every 𝜎 ∈ 𝒯1 is compatible with 1 and 1 is
compatible with 𝜎. A naive synchronous algebra 𝐀 consists of a 𝒯1-typed sets,
together with a partial binary operator ⋅ such that:
• ⋅ is defined exactly on compatible elements and is associative, and
• there is a unique element of type 1, denoted by 1, and it satisfies 𝑥𝜎 ⋅ 1 =
𝑥𝜎 = 1 ⋅ 𝑥𝜎 for all 𝑥𝜎 ∈ 𝐀.

The set of all synchronous words is naturally a naive synchronous algebra
under concatenation. Moreover, any automatic relation admits a syntac-
tic naive synchronous algebra—this can be shown in the same fashion as
Lemma IX.3.11.

Example IX.4.6 (Group relations: Example IX.4.1 cont’d). Consider the rela-

303

ix. the algebras for automatic relations

tions

ℛ0 =̂ �(𝑢, 𝑣) � |𝑢| > |𝑣| and (|𝑢| − |𝑣| mod 𝑝) = 0�

ℛ1 =̂ �(𝑢, 𝑣) � |𝑢| > |𝑣| and (|𝑢| − |𝑣| mod 𝑝) = 1�.

Then by Example IX.4.1, ℛ0 is not a group relation but ℛ1 is. Yet, we claim
that both relations have the same syntactic naive synchronous algebra 𝐀,
described as follows:
• it has a unit, denoted by 0, of type 1,
• 𝐀l ⁄l , 𝐀b ⁄l and 𝐀l ⁄l→b ⁄l are all reduced to a single element, denoted by
0l ⁄l , 0b ⁄l and 0l ⁄l→b ⁄l ,

• 𝐀l ⁄l→l ⁄b and 𝐀l ⁄b contain the elements ℤ/𝑝ℤ,
• ⋅ is defined as the addition over ℤ/𝑝ℤ, by identifying 01, 0l ⁄l , 0l ⁄l→b ⁄l and
0b ⁄l with the zero of ℤ/𝑝ℤ.

Then ℛ0 and ℛ1 are the preimages of {0l ⁄l→l ⁄b , 0l ⁄b } and {1l ⁄l→l ⁄b , 1l ⁄b },
respectively, by the natural morphism onto 𝐀. And hence ℛ0 and ℛ1 are
recognized by 𝐀. It is easy to show that it is in fact the syntactic naive
synchronous algebra of these relations: by surjectivity of the morphism
above, it suffices to show that no two elements of 𝐀 can be identified and still
recognize the same relation.

And so, from this example is follows that “being a 𝒱-relations” cannot
be characterized by the syntactic naive synchronous algebra of the relation,
which shows how crucial the dependency relation of Definition IX.3.4 is in
order to get Theorem IX.4.2.

The same result can be used to prove that “naive positive synchronous
algebras”—defined analogously to naive synchronous algebra except that there
is no type 1 and no unit, and hence no empty word in the free algebra—are
also unable to capture the property of “being a 𝒱-relations”.

IX.4.3 Pseudovarieties of Automatic Relations

We introduce the notion of pseudovariety of synchronous algebras and ∗-
pseudovariety of automatic relations. We show an Eilenberg-Schützenberger
correspondence between these two notions. We then reformulate the Lift-
ing Theorem to show that any Eilenberg-Schützenberger correspondence
between monoids and regular languages lifts to an Eilenberg-Schützenberger
correspondence between synchronous algebras and automatic relations.

Recall that a synchronous algebra 𝐀 is a quotient of 𝐁 when there exists
a surjective synchronous algebra morphism from 𝐁 to 𝐀. A subalgebra of
𝐁 is any closed subset of 𝐁 closed under product and containing the units.
We then say that synchronous algebra 𝐀 divides 𝐁 when 𝐀 is a quotient of a
subalgebra of 𝐁.

Observe that𝐒2Σ admits the following property: elements of type l ⁄l → l ⁄b
and l ⁄l → b ⁄l are generated by the underlying monoids. Since syntactic

304

ix.4. the lifting theorem & pseudovarieties

synchronous algebras are homomorphic images of 𝐒2Σ, they also satisfy this
property. In general, we say that a synchronous algebra𝐀 is locally generated
if every element of type l ⁄l → l ⁄b (resp. l ⁄l → b ⁄l) can be written as the
product of an element of type l ⁄l with an element of type l ⁄b (resp. b ⁄l).

A pseudovariety of synchronous algebras is any class 𝕍 of locally generated
finite synchronous algebras closed under
• finite product: if 𝐀,𝐁 ∈ 𝕍 then 𝐀×𝐁 ∈ 𝕍,
• division: if some finite locally generated algebra 𝐀 divides 𝐁 for some
𝐁 ∈ 𝕍, then 𝐀 ∈ 𝕍.
Because of Lemma IX.3.11, an automatic relation is recognized by a finite

synchronous algebra of a pseudovariety 𝕍 iff its syntactic synchronous
algebra belongs to 𝕍.

A ∗-pseudovariety of automatic relations is a function 𝒱 ∶ Σ ↦ 𝒱Σ such that
for any finite alphabet Σ, 𝒱Σ is a set of automatic relations over Σ such that
𝒱 is closed under
• Boolean combinations: if ℛ,𝒮 ∈ 𝒱Σ, then ¬ℛ, ℛ∪ 𝒮 and ℛ∩ 𝒮 belong to

𝒱Σ too,
• Syntactic derivatives: if ℛ ∈ 𝒱Σ, then any relation recognized by the

syntactic synchronous algebra morphism of ℛ also belongs to 𝒱Σ.
• Inverse morphisms: if 𝜙∶ 𝐒2Γ → 𝐒2Σ is a synchronous algebra morphism

and ℛ ∈ 𝒱Σ then 𝜙−1[ℛ] ∈ 𝒱Γ.
To recover a more traditional definition (of the form “closure under Boolean

operations, residuals11 and inverse morphisms”), we need to properly define 11 Also called “quotient” e.g. in
[Pin22, §III.1.3, p. 39], or “polynomial
derivative” in [Boj15, §4, p. 19].

what are the residuals of a relation. It turns out that the answer is quite
surprising and less trivial than what one would expect.

Definition IX.4.7 (Residuals). Let 𝐀 be a synchronous algebra, 𝑥𝜎 ∈ 𝐀, and
𝐶 ⊆ 𝐀 be a closed subset. The left residual and right residual of 𝐶 by 𝑥𝜎 are
defined by

𝑥−1𝜎 𝐶 =̂ �𝑦𝜏 ∈ 𝐀 ∣ ∃𝑦′𝜏′ ⌢⌣𝐶 𝑦𝜏, 𝑥𝜎𝑦′𝜏′ ∈ 𝐶�, and

𝐶𝑥−1𝜎 =̂ �𝑦𝜏 ∈ 𝐀 ∣ ∃𝑦′𝜏′ ⌢⌣𝐶 𝑦𝜏, 𝑦′𝜏′𝑥𝜎 ∈ 𝐶�,

respectively. We refer indiscriminately to both these notions as residuals.
We extend these notions to sets, by letting 𝑋−1𝐶 =̂ ⋃𝑥∈𝑋 𝑥

−1𝐶 and 𝐶𝑋−1 =̂
⋃
𝑥∈𝑋 𝐶𝑥

−1.

For the sake of readability, we will sometimes drop the type of elements
when dealing with residuals. It is routine to check that residuals are always
closed subsets (since ⌢⌣𝐶 is coarser than the dependency relation), or that
(𝑥−1𝐶)𝑦−1 = 𝑥−1(𝐶𝑦−1). Equivalently, 𝐶𝑥−1𝜎 can be defined as the smallest
closed subset containing the “naive residual” �𝑦𝜏 ∈ 𝐀 ∣ 𝑦𝜏𝑥𝜎 ∈ 𝐶�. This latter
set is always contained in 𝐶𝑥−1𝜎 (by reflexivity of ⌢⌣𝐶), and moreover, if it is
empty, then so is 𝐶𝑥−1𝜎 .

As an example, consider the relation ℛ from Example IX.3.15. Then the

305

ix. the algebras for automatic relations

“naive right residual” of ℛ by (𝑎)l ⁄b consists of 𝜀l ⁄l and all elements of type
l ⁄b and l ⁄l → l ⁄b . But it does not contain any element of type b ⁄l or l ⁄l → b ⁄l
because such elements cannot be concatenated with (𝑎)l ⁄b on the right. Yet,
the residual ℛ(𝑎)−1l ⁄b contains all elements of type b ⁄l (and also l ⁄l → b ⁄l):
for instance, (𝑎)b ⁄l ∈ ℛ(𝑎)−1l ⁄b since (𝑎)b ⁄l ⌢⌣ℛ (𝑎)l ⁄b and (𝑎)l ⁄b (

𝑎)l ⁄b ∈ ℛ.
On the other hand, in the algebra 𝐒2𝑎 consider the relation 𝒮 = (𝑎𝑎)∗ ×

𝑎(𝑎𝑎)∗. Then 𝒮(𝑎𝑎)−1l ⁄l is empty since its “naive residual” {𝑦𝜏 ∈ 𝐒2𝑎 ∣ 𝑦𝜏 ⋅ (𝑎𝑎) ∈
𝒮} is empty. Indeed, for 𝑦𝜏 ⋅ (𝑎𝑎)l ⁄l to be well-defined, one needs 𝜏 to be l ⁄l , i.e.
𝑦 encodes a pair of two words (𝑢, 𝑣) of the same length. But then (𝑢𝑎, 𝑣𝑎) ∉ 𝒮.

Lemma IX.4.8. A class 𝒱 ∶ Σ ↦ 𝒱Σ is a ∗-pseudovariety of automatic
relations if, and only if, it is closed under Boolean combinations, residuals
and inverse morphisms.

Proof. We first need two propositions.

Claim IX.4.9. Let 𝜙∶ 𝐀 ↠ 𝐁 be a surjective morphism, and Acc be a closed
subset of 𝐁. Let 𝑎, 𝑎′ ∈ 𝐀. Then

𝑎 ⌢⌣𝜙−1[Acc] 𝑎′ iff 𝜙(𝑎) ⌢⌣Acc 𝜙(𝑎′).

X Direct implication. Pick any 𝑏ℓ, 𝑏𝑟 ∈ 𝐁 such that both 𝑏ℓ𝜙(𝑎)𝑏𝑟 and
𝑏ℓ𝜙(𝑎′)𝑏𝑟 are well-defined. By surjectivity of 𝜙, there exists 𝑎ℓ, 𝑎𝑟 ∈ 𝐀 such
that 𝜙(𝑎ℓ) = 𝑏ℓ and 𝜙(𝑎𝑟) = 𝑏𝑟. Then both 𝑎ℓ𝑎𝑎𝑟 and 𝑎ℓ𝑎′𝑎𝑟 are well-defined
since they have the same type as 𝑏ℓ𝜙(𝑎)𝑏𝑟 and 𝑏ℓ𝜙(𝑎′)𝑏𝑟, respectively. From
𝑎 ⌢⌣𝜙−1[Acc] 𝑎′, it follows that 𝑎ℓ𝑎𝑎𝑟 belongs to 𝜙−1[Acc] iff 𝑎ℓ𝑎′𝑎𝑟 does. And
hence

𝑏ℓ𝜙(𝑎)𝑏𝑟 ∈ Acc iff 𝑏ℓ𝜙(𝑎′)𝑏𝑟 ∈ Acc.

X Converse implication. Dually, pick any 𝑎ℓ, 𝑎𝑟 ∈ 𝐀 such that both
𝑎ℓ𝑎𝑎𝑟 and 𝑎ℓ𝑎′𝑎𝑟 are well-defined. Then 𝜙(𝑎ℓ)𝜙(𝑎)𝜙(𝑎𝑟) and 𝜙(𝑎ℓ)𝜙(𝑎′)𝜙(𝑎𝑟)
are also well-defined since they have the same type as their preimage, and
𝜙(𝑎) ⌢⌣Acc 𝜙(𝑎′) implies that the element 𝜙(𝑎ℓ)𝜙(𝑎)𝜙(𝑎𝑟) belongs to Acc iff
𝜙(𝑎ℓ)𝜙(𝑎′)𝜙(𝑎𝑟) does. It follows that 𝑎ℓ𝑎𝑎𝑟 ∈ 𝜙−1[Acc] iff 𝑎ℓ𝑎′𝑎𝑟 ∈ 𝜙−1[Acc].
This concludes the proof of Claim IX.4.9.

Claim IX.4.10 (Inverse images of surjective morphisms preserve residuals).
Let 𝜙∶ 𝐀 ↠ 𝐁 be a surjective morphism, and Acc ⊆ 𝐁 be a closed subset. Let
𝑢 ∈ 𝐀. Then

𝑢−1𝜙−1[Acc] = 𝜙−1[𝜙(𝑢)−1Acc].

X Left-to-right inclusion. Let 𝑎 ∈ 𝑢−1𝜙−1[Acc]. Then there exists 𝑎′ ∈ 𝐀
such that 𝑎 ⌢⌣𝜙−1[Acc] 𝑎′ and 𝑢𝑎′ ∈ 𝜙−1[Acc]. By Claim IX.4.9 𝑎 ⌢⌣𝜙−1[Acc] 𝑎′

implies 𝜙(𝑎) ⌢⌣Acc 𝜙(𝑎′), and 𝑢𝑎′ ∈ 𝜙−1[Acc] yields 𝜙(𝑢)𝜙(𝑎′) ∈ Acc. Overall,
this shows that 𝑎 ∈ 𝜙−1[𝜙(𝑢)−1Acc].

X Right-to-left inclusion. Let 𝑎 ∈ 𝜙−1[𝜙(𝑢)−1Acc]. Then𝜙(𝑎) ∈ 𝜙(𝑢)−1Acc,
so there exists 𝑏′ ∈ 𝐁 such that 𝜙(𝑎) ⌢⌣Acc 𝑏′ and 𝜙(𝑢)𝑏′ ∈ Acc. By surjectivity
of 𝜙 and Claim IX.4.9, there exists 𝑎′ ∈ 𝐀 such that 𝜙(𝑎′) = 𝑏′ and 𝑎 ⌢⌣𝜙−1[Acc]

306

ix.4. the lifting theorem & pseudovarieties

𝑎′.
Being done with the proof of Claim IX.4.10, we now proceed to prove

Lemma IX.4.8. X Direct implication. By Claim IX.4.10, the residual of any
relation recognized by some morphism 𝜙 is also recognized by 𝜙. Hence,
being closed under syntactic derivatives implies being closed under residuals.

X Converse implication. Consider some relation ℛ. We will show that
any relation recognized by 𝜂ℛ can be expressed as a Boolean combination of
residuals of ℛ.12 Let Acc be the closed subset of𝐀ℛ such that ℛ = 𝜂ℛ

−1[Acc]. 12 This result can be put in perspec-
tive with [Pin22, Lemma XIII.4.11,
p. 229] which proves a similar result
in the context of monoids.

Pick 𝑥 ∈ 𝐀ℛ. Let Λ =̂ {𝑠, 𝑡 ∈ 𝐀ℛ ∣ ∃𝑥′ ∈ 𝐀ℛ, 𝑥′ ≍ 𝑥 and 𝑠𝑥′𝑡 ∈ Acc}. We
claim that

[𝑥]≍𝐀ℛ
=
⎛
⎜⎜⎜⎜⎝ �
(𝑠,𝑡)∈Λ

𝑠−1Acc 𝑡−1
⎞
⎟⎟⎟⎟⎠ ∖

⎛
⎜⎜⎜⎜⎝ �
(𝑠,𝑡)∉Λ

𝑠−1Acc 𝑡−1
⎞
⎟⎟⎟⎟⎠ . (IX.5)

To prove the inclusion from left-to-right, first notice that 𝑥 ∈ 𝑠−1Acc 𝑡−1 for
all (𝑠, 𝑡) ∈ Λ. Then, assume by contradiction that there exists (𝑠, 𝑡) ∉ Λ
s.t. 𝑥 ∈ 𝑠−1Acc 𝑡−1. Then there would exist 𝑥′ ⌢⌣Acc 𝑥 such that such that
𝑠𝑥′𝑡 ∈ Acc. But since 𝜂ℛ is the syntactic synchronous algebra of ℛ, ⌢⌣Acc

is precisely the relation ≍ by Corollary IX.3.14. Contradiction. Hence, 𝑥
belongs to the right-hand side (RHS). But then, this latter set is a Boolean
combination of residuals of a closed subset, so it is also closed, and hence
[𝑥]≍𝐀ℛ

is included in the RHS.
Dually, any element 𝑦 of the RHS satisfies that for all 𝑠, 𝑡 ∈ 𝐀ℛ, 𝑥 ∈

𝑠−1Acc 𝑡−1 iff 𝑦 ∈ 𝑠−1Acc 𝑡−1. We claim that 𝑥 ⌢⌣Acc 𝑦. Pick 𝑠, 𝑡 ∈ 𝐁 and assume
that both 𝑠𝑥𝑡 and 𝑠𝑦𝑡 are well-defined. If 𝑠𝑥𝑡 ∈ Acc then 𝑥 ∈ 𝑠−1Acc 𝑡−1 so
𝑦 ∈ 𝑠−1Acc 𝑡−1 and hence, there exists 𝑦′ ≍𝐀ℛ

𝑦 s.t. 𝑠𝑦′𝑡 ∈ Acc. But 𝑠𝑦𝑡 is also
well-defined and 𝑦 ≍𝐀ℛ

𝑦′ so 𝑠𝑦𝑡 ∈ Acc. By symmetry, we have shown that
𝑠𝑥𝑡 ∈ Acc iff 𝑠𝑦𝑡 ∈ Acc, and hence 𝑥 ⌢⌣Acc 𝑦. Using again the fact that 𝐀ℛ is
the syntactic algebra of ℛ, it follows that 𝑥 ≍𝐀ℛ

𝑦. This concludes the proof
of (IX.5). By taking the union, it follows that any closed subset of 𝐀ℛ is a
Boolean combination of residuals of Acc. Applying Claim IX.4.10 then yields
that any relation recognized by 𝜙 is a Boolean combination of residuals of
ℛ. Hence, any class closed under Boolean combinations and residuals is also
closed under syntactic derivatives.

Let 𝕍→𝒱 denote the map (called correspondence) that takes a pseudovari-
ety of synchronous algebras and maps it to

𝒱 ∶ Σ ↦ {ℛ ⊆ Σ ∗ ×Σ ∗ ∣ 𝐀ℛ ∈ 𝕍}.

Dually, let 𝒱→𝕍 denote the correspondence that takes a ∗-pseudovariety
of automatic relations 𝒱 and maps it to the pseudovariety of synchronous
algebras generated by all 𝐀ℛ for some ℛ ∈ 𝒱Σ. Here, the pseudovariety
generated by a class 𝐶 of finite locally generated synchronous algebras is the
smallest pseudovariety containing all finite locally generated algebras of 𝐶, or
equivalently,13 the class of all finite locally generated synchronous algebras 13 The proof is straightforward, see

e.g. [Pin22, Proposition XI.1.1, p. 190]
for a proof in the context of semi-
groups.307

ix. the algebras for automatic relations

that divide a finite product of algebras of 𝐶.14 14 Note that “being locally generated”
is not preserved by taking subalge-
bras, but this is not an issue: we re-
strict the construction to (finite) lo-
cally generated algebras.

Lemma IX.4.11 (An Eilenberg theorem for automatic relations). The corre-
spondences 𝕍→𝒱 and 𝒱→𝕍 define mutually inverse bijections between
pseudovarieties of synchronous algebras and ∗-pseudovarieties of automatic
relations.

Proof. Wevery roughly follow the proof schema of [Pin22, §XIII.4, pp. 226–229],
which is a proof of Eilenberg’s theorem in the context of monoids.

X The correspondence 𝕍→𝒱 produces varieties. First we have to show
that if 𝕍 is a pseudovariety of synchronous algebras and 𝕍→𝒱, then 𝒱
is a ∗-pseudovarieties of automatic relations. Since 𝕍 is closed under finite
products, 𝒱 is closed under Boolean operations.

Syntactic derivatives: Then let ℛ ∈ 𝒱Σ, and let 𝒮 be any other relation
recognized by 𝐀ℛ. This implies that 𝐀𝒮 divides 𝐀ℛ, and so 𝐀𝒮 ∈ 𝕍, from
which we have 𝐀𝒮 ∈ 𝒱Σ.

Inverse morphisms: Lastly, if ℛ ∈ 𝒱Σ, say ℛ = 𝜂−1ℛ [Acc], if 𝜓∶ 𝐒2Γ → 𝐒2Σ
is a synchronous algebra morphism, then 𝜓−1[ℛ] = (𝜂ℛ ∘ 𝜓)−1[Acc], so
𝜓−1[ℛ] is recognized by 𝐀ℛ, that is 𝐀𝜓−1[ℛ] divides 𝐀ℛ. Since 𝐀ℛ ∈ 𝕍 and
𝕍 is closed by division, it follows that 𝐀𝜓−1[ℛ] ∈ 𝕍 and hence 𝜓−1[ℛ] ∈ 𝒱Γ.
This concludes the proof that 𝒱 is a ∗-pseudovariety of automatic relations.

X Inverse bijections: part 1. Assume that 𝕍→𝒱 and 𝒱→𝕎. Then

𝒱 ∶ Σ ↦ {ℛ ⊆ Σ ∗ ×Σ ∗ ∣ 𝐀ℛ ∈ 𝕍},

and so 𝕎 is the pseudovariety generated by all syntactic synchronous al-
gebras that belong to 𝕍. It follows that 𝕎 ⊆ 𝕍. To prove that 𝕍 ⊆ 𝕎,
let 𝐀 ∈ 𝕍. Let Σ𝐀 be an alphabet big enough so that there are injections
from 𝐀l ⁄l to Σ𝐀 × Σ𝐀, and from 𝐀l ⁄b and 𝐀b ⁄l to Σ𝐀 × and × Σ𝐀, re-
spectively. Since 𝐀 is locally generated, this allows us to define a surjective
synchronous algebra morphism 𝜙∶ 𝐒2Σ𝐀 ↠ 𝐀. We then claim that𝐀 divides
𝐁 =̂ ∏𝑥𝜏∈𝐀

𝐁𝑥𝜏 where 𝐁𝑥𝜏 is the syntactic synchronous algebra of 𝜙−1[𝑥𝜏].
Indeed, let𝜓𝑥𝜏 ∶ 𝐒2Σ𝐀 ↠ 𝐁𝑥𝜏 be the syntactic synchronous algebra morphism
of 𝜙−1[𝑥𝜏], say 𝜙−1[𝑥𝜏] = 𝜓−1𝑥𝜏 [Acc𝑥𝜏]. Then consider

Ψ∶ 𝐒2Σ𝐀 → 𝐁
𝑢𝜎 ↦ ⟨𝜓𝑥𝜏(𝑢𝜎)⟩𝑥𝜏∈𝐀,

and let 𝐁0 be its image. Observe that for each 𝑢𝜎 ∈ 𝐒2Σ𝐀, 𝜓𝑥𝜏(𝑢𝜎) ∈ Acc𝑥𝜏
iff 𝑢𝜎 ∈ 𝜙−1[𝑥𝜏] i.e. 𝜙(𝑢𝜎) = 𝑥𝜏—note by the way that it implies 𝜎 = 𝜏.
This implies that for any (⟨𝑦𝑥𝜏⟩𝑥𝜏∈𝐀)𝜎 ∈ 𝐁0, there exists a unique 𝑥𝜏 s.t.
𝑦𝑥𝜏 ∈ Acc𝑥𝜏 . This defines a map 𝜒∶ 𝐁0 → 𝐀. Since moreover it makes the
following diagram commute

308

ix.4. the lifting theorem & pseudovarieties

𝐒2Σ𝐀 𝐁0

𝐀

Ψ

𝜙
𝜒

it follows that 𝜒 is in fact a surjective synchronous algebra morphism.15 15 See e.g. [Boj15, Lemma 3.2, p. 10]
for a proof in a similar (but different)
context.

Hence, 𝐀 is a quotient of 𝐁0, which is a subalgebra of 𝐁, which in turns in
a product of algebras from 𝕎, and so 𝐀 ∈ 𝕎. It concludes the proof that
𝕍 = 𝕎.

X Inverse bijections: part 2. Assume now that 𝒱→𝕍 and 𝕍→𝒲. Then
for each Σ, for each ℛ ∈ 𝒱Σ, 𝐀ℛ ∈ 𝕍 so ℛ ∈ 𝒲Σ, and hence 𝒱 ⊆ 𝒲.

We then want to show the converse inclusion, namely 𝒲 ⊆ 𝒱. Let ℛ ∈
𝒲Σ for some Σ, i.e. 𝐀ℛ ∈ 𝕍. Hence there exists Γ and relations 𝒮1 ∈
𝒱Γ1 , …𝒮𝑘 ∈ 𝒱Γ𝑘 such that 𝐀ℛ divides 𝐁 =̂ 𝐀𝒮1 ×⋯ × 𝐀𝒮𝑘 , i.e. there is
a subalgebra 𝐂 ⊆ 𝐁 which is a quotient of 𝐁. Then 𝐂 also recognizes ℛ,
say ℛ = 𝜙−1[Acc] for some morphism 𝜙∶ 𝐒2Σ ↠ 𝐂 and Acc ⊆ 𝐂. Let
𝜄 ∶ 𝐂 → 𝐁 be the canonical embedding, 𝜋𝑖 ∶ 𝐁 ↠ 𝐀𝒮𝑖 be the canonical
projection, and 𝜙𝑖 =̂ 𝜋𝑖 ∘ 𝜄 ∘ 𝜙∶ 𝐒2Σ → 𝐀𝒮𝑖 for 𝑖 ∈ ⟦1, 𝑘⟧. Then notice that
since 𝜂𝒮𝑖 ∶ 𝐒2Γ𝑖 ↠ 𝐀𝒮𝑖 is surjective, then there exists 𝜓𝑖 ∶ 𝐒2Σ → 𝐒2Γ𝑖 such
that 𝜂𝒮𝑖 ∘ 𝜓𝑖 = 𝜙𝑖. Indeed, it suffices to send � 𝑎𝑏 � (resp. (𝑎), resp. (𝑎)) on
any element 𝑢l ⁄l ∈ 𝐒2Γ𝑖 (resp. 𝑢l ⁄b , resp. 𝑢b ⁄l) such that 𝜂𝒮𝑖(𝑢l ⁄l) = 𝜙�

𝑎
𝑏 �

(resp. 𝜂𝒮𝑖(𝑢l ⁄b) = 𝜙(𝑎), resp. 𝜂𝒮𝑖(𝑢b ⁄l) = 𝜙(𝑎)). Overall, the following
diagram commutes

𝐒2Σ 𝐒2Γ𝑖

𝐂

𝐁 𝐀𝒮𝑖
.

𝜓𝑖

𝜙 𝜙𝑖 𝜂𝒮𝑖

𝜄
𝜋𝑖

Our goal is to show that ℛ ∈ 𝒱Σ. Observe that:

ℛ = 𝜙−1[Acc] = �
𝑥∈Acc

𝜙−1[𝑥]

but then Acc ⊆ 𝐁, so 𝑥 is a tuple ⟨𝑥1, … , 𝑥𝑛⟩ (all elements having the same
type), and by definition:

𝜙−1[𝑥] =
𝑛
�
𝑖=1

𝜙−1[𝜄−1[𝜋−1𝑖 [𝑥𝑖]]] =
𝑛
�
𝑖=1

𝜙−1𝑖 [𝑥𝑖].

But then 𝜙−1𝑖 [𝑥𝑖] = 𝜓−1𝑖 [𝜂𝒮𝑖
−1[𝑥𝑖]]. Since 𝒱 is closed under syntactic deriva-

tives and 𝒮𝑖 ∈ 𝒱Γ𝑖 we have 𝜂𝒮𝑖
−1[𝑥𝑖] ∈ 𝒱Γ𝑖 , and then since 𝒱 is closed under

Inverse morphisms and𝜓𝑖 ∶ 𝐒2Σ → 𝐒2Γ𝑖 is a morphism between free algebras,
𝜓−1𝑖 [𝜂𝒮𝑖

−1[𝑥𝑖]] ∈ 𝒱Σ. Thus ℛ is a Boolean combination of elements of 𝒱Σ,
and hence it also belongs to 𝒱Σ. This concludes the proof of 𝒲 ⊆ 𝒱.

As consequence of Lemma IX.4.11, if 𝒱 is a ∗-pseudovariety of automatic
relations and 𝕍 is a pseudovariety of synchronous algebras, we write 𝒱↔𝕍

309

ix. the algebras for automatic relations

to mean that either 𝒱→𝕍 or, equivalently, 𝕍→𝒱. This relation is called an
Eilenberg-Schützenberger correspondence.

Proposition IX.4.12. If 𝕍 is a pseudovariety of monoids, then

𝕍sync =̂ {𝐀 locally generated finite synchronous algebra

s.t. all underlying monoids of 𝐀 are in 𝕍}

is a pseudovariety of synchronous algebras. Similarly, if 𝒱 is an ∗-pseudovariety
of regular languages, then the class of 𝒱-relations, namely

𝒱sync ∶ Σ ↦ {ℛ ⊆ Σ ∗ ×Σ ∗ ∣ ∃𝐿 ∈ 𝒱Σ2⊗ , ℛ = 𝐿 ∩WellFormedΣ},

is a ∗-pseudovariety of automatic relations.

Proof. The first point is straightforward. The second one follows from it and
Lemma IX.4.11and Theorem IX.4.2.

Finally, Theorem IX.4.2 can be elegantly rephrased by saying that corre-
spondences between pseudovarieties of monoids and ∗-pseudovarieties of
regular languages lift to correspondences between pseudovarieties of syn-
chronous algebras and ∗-pseudovarieties of automatic relations.

Theorem IX.4.13 (Lifting Theorem: Pseudovariety Formulation). If, in the
Eilenberg-Schützenberger correspondence between pseudovarieties of mon-
oids and ∗-pseudovarieties of regular languages we have 𝒱↔𝕍, then in
the Eilenberg-Schützenberger correspondence between the pseudovariety of
synchronous algebras 𝕍sync and the ∗-pseudovariety of automatic relations
𝒱sync, we have 𝒱sync↔𝕍sync.

IX.5 Discussion

IX.5.1 Path Algebras and the Lifting Theorem

A natural next step is to generalize Question IX.1.1 by replacing WellFormedΣ
by a fixed regular language Ω.

Question IX.5.1. Given a class of regular languages 𝒱, can we characterize
the class 𝒱Ω of all languages of the form 𝐿∩Ω for some 𝐿 ∈ 𝒱, in a way that
preserves decidability?

Remark IX.5.2. There is no (meta2-)algorithm taking as input a regular lan-
guageΩ, and returning a (meta-)algorithm s.t., given a membership algorithm
for 𝒱, returns a membership algorithm for 𝒱Ω.

Indeed, let 𝒱 be a pseudovariety of regular languages with decidable mem-
bership but undecidable separation—see [RS11, Corollary 1.6, p. 478] and
Footnote 5. We reduce the 𝒱-separability problem to our problem.

Given two regular languages 𝐿1 and 𝐿2, to decide if they are 𝒱-separable,
we first test if 𝐿1 ∩ 𝐿2 = ∅: if not, we reject. Otherwise, we let Ω =̂ 𝐿1 ∩ 𝐿2,

310

ix.5. discussion

and ask whether 𝐿1 is in 𝒱Ω. By definition, this happens iff 𝐿1 can be written
as 𝑆 ∩Ω = 𝑆 ∩ (𝐿1 ∪ 𝐿2) for some 𝑆 ∈ 𝒱. Since 𝐿1 and 𝐿2 are disjoint, the
equality 𝐿1 = 𝑆 ∩ (𝐿1 ∪ 𝐿2) is precisely equivalent to having 𝐿1 ⊆ 𝑆 and
𝑆∩𝐿2 = ∅. Hence, 𝐿1 is in 𝒱Ω if, and only if, 𝐿1 and 𝐿2 are 𝒱-separable.

What this remark shows is that actually the language WellFormedΣ is
special, in the sense that we relied on some of its specific properties to obtain
the Lifting theorem.

We claim that the construction of synchronous algebras can be generalized
for any Ω, giving rise to the notion of “path algebras”.16 The lifting theorem 16 In short, they are the adaptation

of the free category generated by a
graph to dependent sets. See also
Section IX.A.

for monoids can be shown to hold for some Ω, including well-formed words
for 𝑛-ary relations with 𝑛 ≥ 3, and that it cannot effectively hold for all Ω.
We believe that a necessary condition for the Lifting theorem to hold would
be that Ω is fully-preordered, in the sense that there exists a preorder ≼ on
the alphabet Σ s.t. Ω = {𝑢1…𝑢𝑛 ∈ Σ ∗ ∣ 𝑢1 ≼ … ≼ 𝑢𝑛}.17 17 The important property about

these languages is that the monad
defining their path-algebras are
strongly acyclic, like the monad of
Section IX.A.

IX.5.2 Path Algebras and Restricted Head Movements

Anatural next step would then be to study the relationship between “path alge-
bras” and Figueira & Libkin’s 𝑇-controlled relations defined in Section VII.1.6.
For any regular language 𝑇 ⊆ ⟦1, 𝑘⟧∗, we claim that we can define a regular
languageΩ𝑇 such that finiteΩ𝑇-path algebras exactly recognize 𝑇-controlled
relations.

Conjecture IX.5.3. There is a way of defining a map 𝑇 ↦ Ω𝑇 s.t. for any
regular languages 𝑇1, 𝑇2 ⊆ ⟦1, 𝑘⟧∗, 𝑇1-controlled relations are included in
𝑇2-controlled relations if, and only if, there is an adjunction from the category
of Ω𝑇1-path algebras to the category of Ω𝑇2-path algebras.

IX.5.3 Theorem Projection via Monad Adjunction

In fact, Conjecture IX.5.3 is part of a larger idea we have, about relating
the expressiveness of universe—formalized by a monad—and its categorical
properties. In algebraic language theory, monads play an essential role—see
Section IX.A. Informally, a monad describes a universe. For instance, the
monad

Σ ↦ Σ ∗

describes the universe of finite words, and gives rise to the notion of monoids.
Similarly, weighted words over a field 𝕂 can be described by

Σ ↦ 𝕂Σ ∗,

where 𝕂𝑋 denotes the free vector space over set 𝑋. Again, this monad
gives rise to Reutenauer’s “algèbres associatives” [Reu80], a.k.a. “𝕂-weighted
monoids”, which is essentially an algebraic structure that is both a monoid
and a 𝕂-vector space. Our synchronous algebras are no exception—see
Section IX.A—, and we refer the reader to [Boj20, § 4] for more examples.

311

ix. the algebras for automatic relations

For well-behaved monads, “languages” recognized by their finite algebras
coincide with monadic second-order-definable languages.18 This gives rise to 18 We refer here to external logics in

the sense of Remark VII.2.6.a natural set of questions, consisting in finding algebraic characterizations
of fragments of monadic second-order logic. The perhaps most celebrated
example is that of the Schützenberger-McNaughton-Papert theorem, which
proves that first-order definable languages of finite words are exactly those
recognized by aperiodic monoids [Sch65; MP71]. The statement was extended
to 𝜔-words [Per84], to countable ordinal words [Bed01], and to countable
scattered words [BC11]. In the latter case, asking only for aperiodicity is not
enough: the algebra should also be “gap-insensitive”.19 This can be explained 19 In the more general case of words

over countable orderings, Colcom-
bet and Sreejith also provides a char-
acterization for first-order definable
languages, although it is more com-
plex [CS15]. See also [CS25] for other
classes of languages.

as follows: by going from the simpler setting of finite words (or countable
ordinal words) to countable scattered words, there are new phenomena that
appear and that first-order logic is not able to describe.

However, intuitively, going in the converse direction should be easy! Given
an algebraic characterization of first-order logic over a “richer” monad (e.g.
countable scatter words), it should be easy to reprove the Schützenberger-
McNaughton-Papert theorem over finite words, using the “rich” algebraic
characterization as a black box.

“base monad” “richer monad”

encoding

projection

Figure IX.6: Tools to project alge-
braic characterizations from one uni-
verse to another.

Surprisingly, while it is easy to “project” the algebraic characterization
of first-order logic over 𝜔-words to get its counterpart for finite words, the
task becomes less straightforward—but still possible—when projecting from
countable ordinal words or countable scattered words to finite ones. In both
cases, the proof relies on two ingredients:
• a function, encoding a language of finite words into a language in the richer

setting;
• a function, projecting a language in the richer setting to a language of

finite words,
see Figure IX.6. Moreover, both functions should preserve the properties that
we are studying—either being first-order definable, or satisfying the algebraic
characterization.

In the case of 𝜔-words, finding these functions is easy: for instance, the
projection simply consists in restricting a language of words of length at
most 𝜔 to the finite words. On the other hand, the projection from countable
scattered words to finite ones cannot simply do this, since finite words are
not first-order definable amongst countable scattered ones.20 Hence, the 20 This can be proven by using the al-

gebraic characterization of first-order
definable languages over scattered
words of Bès & Carton [BC11, Theo-
rem 21].

projection in question needs to be tailor-made to preserve first-order logic.21

21 This construction is an unpub-
lished joint work with Thomas Col-
combet.

In fact, not only does the projection of 𝜔-words to finite words preserve
the property of being first-order definable, it also preserve membership in any
pseudovariety! In this sense, words of length at most 𝜔 form a conservative
extension of finite words, while countable scattered words do not: this is why
we can find a single construction to project algebraic characterizations22 from 22 By “algebraic characterization”

we formally mean an Eilenberg-
Schützenberger correspondence.

𝜔-words to finite ones, but not from countable scattered words to finite ones.
This begs the question: how can we formalize this idea of a monad being

a conservative extension of another one? In light of Figure IX.6, we propose

312

ix.5. discussion

to look at the notion of monad adjunction. Before introducing it, we need a
preliminary definition.

Let S = (𝑆, unit,mult) be a C-monad and T = (𝑇, unit,mult) be a D-
monad.23 We assume C and D to be both categories of typed sets. 23 Following Street, we use the same

notation for the unit and multiplica-
tion in S and T.

A monad functor,24 from S to T is a pair (Φ, 𝐹), where:

24 The notion was introduced by
Street [Str72, §1] in the slightly
more general context of 2-categories.
We found this reference thanks to
[Rez12]. Monad functors are also
known as “lax maps of monads”.

• 𝐹∶ C→ D is a functor,
• Φ∶ 𝑇𝐹 ⇒ 𝐹𝑆 is a natural transformation,
such that, for every object 𝑋 ∈ C, the following diagrams commute:

(mf)unit:

𝐹𝑋

𝑇𝐹𝑋 𝐹𝑆𝑋,

unit𝐹𝑋
𝐹unit𝑋

𝜙𝑋

(mf)mult:

𝑇𝐹𝑆𝑋 𝐹𝑆𝑆𝑋

𝑇𝑇𝐹𝑋 𝐹𝑆𝑋.

𝑇𝐹𝑋

𝜙𝑆𝑋

𝐹mult𝑋𝑇𝜙𝑋

mult𝐹𝑋 𝜙𝑋

Such a pair is denoted by Φ𝐹 ∶ S⇒ T.25 25 Note that, somewhat surprisingly,
one element of a monad functor from
S to T is covariant—namely the func-
tor 𝐹∶ C → D—while the other one
is contravariant—namely the natural
transformation Φ∶ 𝑇𝐹 ⇒ 𝐹𝑆. The
next example will illustrate why this
definition makes sense.

K+ W

Ψzero

Φproj

Figure IX.7: Monads functors be-
tween Kleene’s monad and Wilke’s
monad.

Example IX.5.4 (Finite words and 𝜔-words). Let K+ be Kleene’s monad over
the category Set of non-empty finite words, defined by 𝑋 ↦ 𝑋+. Moreover,
let W be Wilke’s monad, defined over the category of 2-typed sets Set+,𝜔, by
⟨𝐹, 𝐼⟩ ↦ ⟨𝐹+, 𝐹+𝐼 ∪ 𝐹𝜔-up⟩, where 𝐹𝜔-up denotes the set of ultimately-periodic
words of length 𝜔 over 𝐹.

We start by defining a monad functor from W to K+: it represents the
natural surjection from words of length at most 𝜔 to non-empty finite words.
Let proj ∶ Set+,𝜔 → Set𝒮 be the functor that only keeps the first component,
defined by ⟨𝐹, 𝐼⟩ ↦ 𝐹, andΦ be the natural transformationK+ proj⇒ projW,
defined for ⟨𝐹, 𝐼⟩ ∈ Set+,𝜔 by letting

𝜙𝐹,𝐼 ∶ K+ proj⟨𝐹, 𝐼⟩���������������
=𝐹+

projW⟨𝐹, 𝐼⟩���������������
=𝐹+

be the identity. ThenΦproj is a monad functor fromWilke’s monad to Kleene’s
monad.

Dually, we then define a monad functor from K+ to W that corresponds
to the natural embedding of non-empty finite words into words of length at
most 𝜔. We let zero ∶ Set → Set+,𝜔 be the functor that transforms a set 𝑋
into a pair ⟨𝑋, {•}⟩, andΨ be the natural transformation W zero⇒ zeroK+,
defined for 𝑋 ∈ Set by letting

𝜓𝑋 ∶ W zero𝑋�����������
=⟨𝑋+,𝑋+{•}∪𝑋𝜔-up⟩

zeroK+𝑋�����������
=⟨𝑋+,{•}⟩

send 𝑢 ∈ 𝑋+ to itself, and 𝑢 ∈ 𝑋+{•} ∪ 𝑋𝜔-up to • ∈ {•}. Then Ψzero is a
monad functor from Kleene’s monad to Wilke’s monad, see Figure IX.7.

Unsurprisingly, monad functors can be composed. Moreover, it can be

313

ix. the algebras for automatic relations

shown that any monad functor from S to T induces a functor from the cat-
egory of S-algebras to T-algebras. For instance, Φproj ∶ W ⇒ K+ induces
the functor from Wilke’s algebras to semigroups that sends ⟨𝑆+, 𝑆𝜔⟩ to 𝑆+.
Dually, Ψzero ∶ K+ ⇒ W induces the functor from semigroups to Wilke’s
algebras that sends 𝑆 to ⟨𝑆, {•}⟩.

We conjecture that we can naturally define a notion of “monad (functor)
adjunction”, which generalizes the notion of “functor adjunctions”, in such a
way that a monad adjunction between S and T induces an adjunction between
S-algebras and T-algebras. A typical example of such a monad adjunction
would be Figure IX.7.

semigroups Wilke’s algebras

𝑅 ↦ ⟨𝑅, {•}⟩

⟨𝐿+, 𝐿𝜔⟩ ↦ 𝐿+

Figure IX.8: An adjunction between
the category of W-algebras and the
category of K+-algebras.

“Monad (functor) adjunctions” are high-order objects, and so, for the sake
of simplicity, we will work with the adjunction they induce between the
categories algebras. Going back to Example IX.5.4 and Fig. IX.7, we repre-
sent in Figure IX.8 the two functors induced between their Eilenberg-Moore
categories. It is indeed an adjunction, with ⟨𝐿+, 𝐿𝜔⟩ ↦ 𝐿+ acting as the left
adjoint and 𝑅 ↦ ⟨𝑅, {•}⟩ as the right adjoint, and there are natural bijections

homSgp(𝐿+, 𝑅) ≅ homWilke(⟨𝐿+, 𝐿𝜔⟩, ⟨𝑅, •⟩).

We believe that this adjunction is precisely what allows us to automatically
project any algebraic characterization of 𝜔-regular languages to an algebraic
characterization of regular languages, for the good reason that the two maps
⟨𝐿+, 𝐿𝜔⟩ ↦ 𝐿+ and 𝑅 ↦ ⟨𝑅, {•}⟩ are the key ingredients of the proof!

Interestingly, sending a semigroup 𝑆 to the ordinal semigroup 𝑆 ⊔ {•},
defined by letting any infinite product be equal to the zero element • also
defines a functor from the category of semigroups to the category of ordinal
semigroups. Dually, the canonical surjection sending an ordinal semigroup to
its underlying semigroup is a functor from the category of ordinal semigroups
to the category of semigroups. However, they do not form an adjunction! We
actually believe that there are no adjunction between these categories.

These observations lead us to the last conjecture of this thesis.

Conjecture IX.5.5 (Projecting Algebraic Characterizations). Let S and T be
two monads. Any monad adjunction between them induces a “natural func-
tion” from Eilenberg-Schützenberger correspondences over T to Eilenberg-
Schützenberger correspondences over S.

In the case of finite words and 𝜔-words, this surjection sends for instance
the theorem “an 𝜔-regular language is first-order definable iff its syntactic
Wilke’s algebra is aperiodic” onto the theorem “a regular language is first-
order definable iff its syntactic semigroup is aperiodic”! We believe that
the lifting theorem (Theorem IX.4.13) could be a consequence of Conjec-
ture IX.5.5.

314

ix.a. monads everywhere!

Appendices

IX.A Monads Everywhere!

We denote by Set𝒮 and Pos𝒮 the categories of 𝒮-typed sets and 𝒮-partially
ordered sets—note that in this model, each type is equipped with its own
order and that elements of different types cannot be compared. Similarly, let
Dep𝒮 be the category of 𝒮-dependent sets.

We claim that synchronous algebras correspond to Eilenberg-Moore alge-
bras of some monad over the category Dep𝒯. For the sake of readability, we
represent the underlying typed set of a 𝒯-dependent set

𝐗 = ⟨𝑋l ⁄l , 𝑋l ⁄l→l ⁄b , 𝑋l ⁄b , 𝑋l ⁄l→b ⁄l , 𝑋b ⁄l ⟩

as follows:

l ⁄l

l ⁄b

b ⁄l

𝑋l ⁄l

𝑋l ⁄l→l ⁄b

𝑋l ⁄b

𝑋l ⁄l→b ⁄l

𝑋b ⁄l .

We define the synchronous monad 𝐒2 over Dep𝒯 as the functor which maps

l ⁄l

l ⁄b

b ⁄l

𝐴

𝐵

𝐶

𝐷

𝐸

equipped with a dependency relation ≍ to the dependent set

l ⁄l

l ⁄b

b ⁄l

𝐴∗
𝐴∗𝐵𝐶∗ ∪𝐴∗𝐶∗

𝐶∗

𝐴∗𝐷𝐸∗ ∪𝐴∗𝐸∗

𝐸∗,

and two words are dependent if their domain are isomorphic and their letters
are pairwise dependent. The unit and free multiplication are defined naturally.

Note in particular that all five empty words are mutually dependent, and
that synchronous words 𝐒2Σ correspond to applying 𝐒2 to

315

https://ncatlab.org/nlab/show/algebra+over+a+monad
https://ncatlab.org/nlab/show/algebra+over+a+monad

ix. the algebras for automatic relations

l ⁄l

l ⁄b

b ⁄l

Σ×Σ

∅

Σ× { }

∅

{ } × Σ,

equipped with equality. Moreover, synchronous algebras exactly correspond
to 𝐒2-algebras.

A systemic approach to algebraic language theory was proposed by Bo-
jańczyk using the formalism of monads [Boj15], for monads over finitely
typed sets Set𝒮. Urbat, Adámek, Chen & Milius then extended these results to
capture monads over varieties of typed (ordered) algebras [UACM17]. Lastly,
Blumensath extended those results to monads over the category of typed
posets Pos𝒮 when the set 𝒮 of types is infinite [Blu21].

Observe that the category of dependent sets is not captured by any of the
results above since the dependency relation can compare elements of different
types, contrary to typed posets & co.

316

Chapter X
Conclusion & Open Problems

Abstract

This chapter concludes Part 2 of this thesis. We recall some open problems mentioned
previously, and highlight a new research direction relating the structural properties
of a language-theoretic framework with its expressiveness.

Contents

X.1 Separating Automatic Relations by Recognizable Ones 318

X.2 Colouring Problems on Automatic Graphs 319

X.3 An Algebraic Approach Beyond Automatic Relations 319

317

x. conclusion & open problems

X.1 Separating Automatic Relations by Recognizable Ones

Figure X.1: Le passé – Le présent –
L’Avenir , by Honoré Daumier.

The problem introduced in Chapter VII remains open.

Open Problem VII.1.10. Is the Rec-separability problem for automatic
relations decidable?

In Chapter VIII, we proved this problem to be equivalent to finite regu-
lar colourability of automatic graphs (Theorem VIII.3.2), and showed
that when the number of colours is fixed, the problem is undecidable (Theo-
rem VIII.3.7). In fact, we showed that most problems of this form are unde-
cidable (Theorem VIII.4.1). In turn, it implies that this separability problem
becomes undecidable when the separator is restricted to be a union of 𝑘 prod-
ucts of regular languages for some fixed 𝑘 ≥ 2. However, as explained in
Section VIII.6, some gaps remain to be able to use our techniques to prove
the undecidability of the Aut/Rec-separability problem.

On the other hand, we introduced in Chapter IX an algebraic approach
for automatic relations, hoping to prove the decidability of this problem.
Algebraic language theory is a powerful tool to prove the decidability of
separation over finite words [PZ16], but also in more complex settings such
as countable ordinal words [CGM22].

Alas, using the theory we developped to tackle Open Problem VII.1.10
seems non-trivial. The main obstacle being that, while recognizable relations
have some desirable closure properties, they do not form a pseudovariety of
automatic relations.

However, should Open Problem VII.1.10 problem be decidable, the question
of the decidability of its generalization to larger class of relations would be a
natural next step.

Open Problem X.1.1. Are the DRat/Rec-separability and Rat/Rec-sepa-
rability problems decidable?

In [BFM23, § 1], we incorrectly stated that “As for definability1, the Rec- 1 Definability is the same as themem-
bership problem.separability problem for rational relations is in general undecidable”, which

is unfounded as we do not currently know if it is true. Indeed, as mentioned
in Chapter VII, the Rat/Rec-membership problem is undecidable, by [Ber79,
§ III, Theorem 8.4]. Moreover, in general, membership problems reduced
to separability problems: a relation ℛ belongs to a class 𝒱 if, and only if,
ℛ and ¬ℛ are 𝒱-separable. However, for this argument to work, the larger
class of relation needs to be effectively closed under complement. This is not
the case of rational relations, see Section VII.1.4.

For deterministic rational relations, while they are effectively closed un-
der complement, the DRat/Rec-membership problem is decidable—see Sec-
tion VII.1.5!

318

https://www.metmuseum.org/art/collection/search/365043
https://www.metmuseum.org/art/collection/search/365043

x.2. colouring problems on automatic graphs

X.2 Colouring Problems on Automatic Graphs

Let us quickly recall some of the conjectures that have been discussed in
Section VIII.6. The first one is about finding an equivalent characterization in
the dichotomy theorem for automatic structures (Theorem VIII.4.1).

Conjecture VIII.6.7. For any finite 𝜎-structure 𝐁, ℋ𝑜𝑚reg(Aut, 𝐁) is invari-
ant under graph isomorphisms iff 𝐁 has finite duality.

In other words, this conjecture could be rephrased as follows: “a problem of
the form ℋ𝑜𝑚reg(Aut, 𝐁) is decidable if, and only if, its output only depends
on the structure represented by the automatic presentation, and not on the
presentation itself”! Going back to our original question, while we do not
know if finite regular colourability of automatic graphs is decidable,
it is natural to study variations of this problem, as well as sufficient or neces-
sary conditions to ensure colourability or non-colourability. However, our
understanding of these problems are also somewhat limited.

Conjecture VIII.6.8.2 Finite colourability of automatic graphs is 2 Note again that the upper-bound
is trivial, since by De Bruijn-Erdős
theorem, this problem is equivalent
to asking if there exists 𝑘 ∈ ℕ s.t.
every finite subgraph of the source is
𝑘-colourable.

Σ0
2 -complete.

Conjecture VIII.6.9.3 The problem of whether an automatic graph has

3 This conjecture corresponds to
[BFM23, Conjecture 7.3].

bounded tournaments is decidable.

X.3 An Algebraic Approach Beyond Automatic Relations

The algebraic theory developed in Chapter IX can be generalized, by replacing
the constraint of “being well-formed” with an arbitrary regular language Ω.
This would result in the notion of Ω-path algebras—with WellFormedΣ-path
algebras corresponding to our synchronous algebras.

While there is no hope to get a version of the lifting theorem (Theo-
rem IX.4.2) for every Ω—see Remark IX.5.2—, we believe it holds for fully-
preordered languages. See Section IX.5 for more details.

Interestingly, we believe this question to be related to Figueira & Libkin’s 𝑇-
controlled relations, presented in Section VII.1.6. Each language 𝑇, specifying
the head movements that are allowed, gives rise to a language Ω𝑇, such that
relations recognized by finite Ω𝑇-path algebras exactly correspond to the
𝑇-controlled relations.

Open Problem X.3.1. Given 𝑘 ∈ ℕ>0, given regular languages 𝑇1 and 𝑇2
over ⟦1, 𝑘⟧, can we decide if 𝑇1-controlled relations exactly correspond to
𝑇2-controlled relations?

We conjecture that, one way of tackling this problem would be to study
properties of the category of Ω𝑇-path algebras.

Conjecture IX.5.3. There is a way of defining a map 𝑇 ↦ Ω𝑇 s.t. for any
regular languages 𝑇1, 𝑇2 ⊆ ⟦1, 𝑘⟧∗, 𝑇1-controlled relations are included in
𝑇2-controlled relations if, and only if, there is an adjunction from the category

319

https://ncatlab.org/nlab/show/isomorphism

x. conclusion & open problems

of Ω𝑇1-path algebras to the category of Ω𝑇2-path algebras.

Figure X.2: La Sieste, by Henri Man-
guin.

Hopefully, the latter condition could maybe be massaged to get decidability.
Finally, Section IX.5.3 explains how the notion of monad adjunction could
provide a way of automatically projecting—or lifting, depending on the point
of view—an algebraic characterization from a universe to another.

Conjecture IX.5.5 (Projecting Algebraic Characterizations). Let S and T be
two monads. Any monad adjunction between them induces a “natural func-
tion” from Eilenberg-Schützenberger correspondences over T to Eilenberg-
Schützenberger correspondences over S.

320

https://commons.wikimedia.org/wiki/File:Henri_Manguin,_1905,_La_Sieste_(Le_repos,_Jeanne),_oil_on_canvas,_88.9_x_116.84_cm,_Villa_Flora,_Winterthur.jpg

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computa-
tional Complexity: A Modern Approach. 2009 (Cited
on pp. 45, 46, 73).
doi: 10.1017/CBO9780511804090

[ABISV09] Eric Allender, Michael Bauland, Neil Im-
merman, Henning Schnoor, and Heribert Vollmer.
“The complexity of satisfiability problems: Refining
Schaefer’s theorem.” In Journal of Computer and Sys-
tem Sciences (JCSS) 75.4 (2009), pp. 245–254 (Cited
on p. 234).
doi: 10.1016/j.jcss.2008.11.001

[ACP87] Stefan Arnborg, Derek G Corneil, and An-
drzej Proskurowski. “Complexity of finding embed-
dings in a k-tree.” In 8.2 (1987), pp. 277–284 (Cited
on p. 69).
doi: 10.1137/0608024

[AHV95] Serge Abiteboul, Richard Hull, and Victor
Vianu. Foundations of Databases. 1995. isbn: 0-201-
53771-0 (Cited on pp. 53–55).
url: http://webdam.inria.fr/Alice/

[Alm99] Jorge Almeida. “Some algorithmic prob-
lems for pseudovarieties.” In Publ. Math. Debrecen
52.1 (1999). Consulted version: https : / / www .
researchgate.net/profile/Jorge-Almeida-

14/publication/2510507_Some_Algorithmic_

Problems _ for _ Pseudovarieties /

links / 02e7e531d968b4fe8f000000 /

Some - Algorithmic - Problems - for -

Pseudovarieties . pdf, pp. 531–552 (Cited on
p. 290)

[Ang+17] Renzo Angles, Marcelo Arenas, Pablo
Barceló, Aidan Hogan, Juan Reutter, and Domagoj
Vrgoč. “Foundations of Modern Query Languages

for Graph Databases.” In ACM Computing Surveys
50.5 (2017) (Cited on p. 75).
doi: 10.1145/3104031

[AP89] Stefan Arnborg and Andrzej Proskurowski.
“Linear time algorithms for NP-hard problems re-
stricted to partial k-trees.” In 23.1 (1989), pp. 11–24
(Cited on p. 68).
doi: 10.1016/0166-218X(89)90031-0

[Ash91] C. J. Ash. “Inevitable graphs: a proof of the
type II conjecture and some related decision pro-
cedures.” In International Journal of Algebra and
Computation 01.01 (1991), pp. 127–146 (Cited on
p. 290).
doi: 10.1142/S0218196791000079

[Ats08] Albert Atserias. “On digraph coloring prob-
lems and treewidth duality.” In European Journal
of Combinatorics 29.4 (2008), pp. 796–820 (Cited on
pp. 31, 235, 259).
doi: 10.1016/j.ejc.2007.11.004

[AW12] Isolde Adler and Mark Weyer. “Tree-width
for first order formulae.” In Logical Methods in Com-
puter Science (LMCS) Volume 8, Issue 1 (2012) (Cited
on p. 55).
doi: 10.2168/LMCS-8(1:32)2012

[Bar09] Pablo Barceló. “Locality of Queries.” In Ency-
clopedia of Database Systems. 2009, pp. 1637–1638
(Cited on p. 76).
doi: 10.1007/978-0-387-39940-9_1270

[Bar13] Pablo Barceló Baeza. “Querying Graph
Databases.” In ACM Symposium on Principles of
Database Systems (PODS). 2013, pp. 175–188 (Cited
on p. 75).
doi: 10.1145/2463664.2465216

321

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1016/j.jcss.2008.11.001
https://doi.org/10.1137/0608024
http://webdam.inria.fr/Alice/
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://www.researchgate.net/profile/Jorge-Almeida-14/publication/2510507_Some_Algorithmic_Problems_for_Pseudovarieties/links/02e7e531d968b4fe8f000000/Some-Algorithmic-Problems-for-Pseudovarieties.pdf
https://doi.org/10.1145/3104031
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1142/S0218196791000079
https://doi.org/10.1016/j.ejc.2007.11.004
https://doi.org/10.2168/LMCS-8(1:32)2012
https://doi.org/10.1007/978-0-387-39940-9_1270
https://doi.org/10.1145/2463664.2465216

bibliography

[BC11] Alexis Bès and Olivier Carton. “Algebraic
Characterization of FO for Scattered Linear Order-
ings.” In EACSL Annual Conference on Computer
Science Logic (CSL). Vol. 12. 2011, pp. 67–81 (Cited
on p. 312).
doi: 10.4230/LIPIcs.CSL.2011.67

[BC98] Nicolas Bedon and Olivier Carton. “An Eilen-
berg theorem for words on countable ordinals.” In
Latin American Theoretical Informatics Symposium
(LATIN). Lecture Notes in Computer Science. 1998,
pp. 53–64 (Cited on p. 287).
doi: 10.1007/BFb0054310

[Bed01] Nicolas Bedon. “Logic over Words on De-
numerable Ordinals.” In Journal of Computer and
System Sciences 63.3 (2001), pp. 394–431 (Cited on
p. 312).
doi: 10.1006/jcss.2001.1782

[Bed98] Nicolas Bedon. “Langages reconnaissables
de mots indexés par des ordinaux.” PhD thesis. Uni-
versité de Marne la Vallée, 1998 (Cited on p. 287).
url: https : / / theses . hal . science / tel -
00003586

[Ber79] Jean Berstel. Transductions and Context-Free
Languages. Consulted version: http://www-igm.
univ-mlv.fr/~berstel/LivreTransductions/

LivreTransductions.pdf. 1979 (Cited on pp. 197,
206, 213, 233, 318)

[BFM23] Pablo Barceló, Diego Figueira, and Rémi
Morvan. “Separating Automatic Relations.” In Inter-
national Symposium on Mathematical Foundations
of Computer Science (MFCS). Vol. 272. 2023, 17:1–
17:15 (Cited on pp. 231, 278, 318, 319).
doi: 10.4230/LIPIcs.MFCS.2023.17

[BFR19] Pablo Barceló, Diego Figueira, and Miguel
Romero. “Boundedness of Conjunctive Regular Path
Queries.” In International Colloquium on Automata,
Languages and Programming (ICALP). Vol. 132. 2019,
104:1–104:15 (Cited on p. 87).
doi: 10.4230/LIPIcs.ICALP.2019.104

[BG00] A. Blumensath and E. Gradel. “Automatic
structures.” In Annual Symposium on Logic in Com-

puter Science (LICS). 2000, pp. 51–62 (Cited on
p. 225).
doi: 10.1109/LICS.2000.855755

[BG04] Achim Blumensath and Erich Grädel. “Finite
Presentations of Infinite Structures: Automata and
Interpretations.” en. In Theory of Computing Systems
37.6 (2004), pp. 641–674 (Cited on pp. 226, 227).
doi: 10.1007/s00224-004-1133-y

[BG21] Joshua Brakensiek and Venkatesan Gu-
ruswami. “Promise Constraint Satisfaction: Al-
gebraic Structure and a Symmetric Boolean Di-
chotomy.” In SIAM Journal on computing 50.6 (2021),
pp. 1663–1700 (Cited on p. 175).
doi: 10.1137/19M128212X

[BGLZ22] Pascal Bergsträßer, Moses Ganardi, An-
thony W. Lin, and Georg Zetzsche. “Ramsey Quan-
tifiers over Automatic Structures: Complexity and
Applications to Verification.” In Annual Symposium
on Logic in Computer Science (LICS). 2022, 28:1–28:14
(Cited on pp. 204, 233).
doi: 10.1145/3531130.3533346

[BHLLN19] Pablo Barceló, Chih-Duo Hong, Xuan
Bach Le, Anthony W. Lin, and Reino Niskanen.
“Monadic Decomposability of Regular Relations.”
In International Colloquium on Automata, Lan-
guages and Programming (ICALP). 2019, 103:1–
103:14 (Cited on pp. 204, 233).
doi: 10.4230/LIPIcs.ICALP.2019.103

[BKW17] Libor Barto, Andrei Krokhin, and Ross
Willard. “Polymorphisms, and How to Use Them.”
In The Constraint Satisfaction Problem: Complexity
and Approximability. Ed. by Andrei Krokhin and
Stanislav Zivny. Vol. 7. Dagstuhl Follow-Ups. 2017,
pp. 1–44 (Cited on p. 234).
doi: 10.4230/DFU.Vol7.15301.1

[BLLW12] Pablo Barceló, Leonid Libkin, Anthony
Widjaja Lin, and Peter T. Wood. “Expressive Lan-
guages for Path Queries over Graph-Structured
Data.” In ACM Transactions on Database Systems
(TODS) 37.4 (2012), p. 31 (Cited on p. 197).
doi: 10.1145/2389241.2389250

322

https://doi.org/10.4230/LIPIcs.CSL.2011.67
https://doi.org/10.1007/BFb0054310
https://doi.org/10.1006/jcss.2001.1782
https://theses.hal.science/tel-00003586
https://theses.hal.science/tel-00003586
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2023.17
https://doi.org/10.4230/LIPIcs.ICALP.2019.104
https://doi.org/10.1109/LICS.2000.855755
https://doi.org/10.1007/s00224-004-1133-y
https://doi.org/10.1137/19M128212X
https://doi.org/10.1145/3531130.3533346
https://doi.org/10.4230/LIPIcs.ICALP.2019.103
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1145/2389241.2389250

bibliography

[BLR14] Pablo Barceló, Leonid Libkin, and Miguel
Romero. “Efficient Approximations of Conjunctive
Queries.” In SIAM Journal on computing 43.3 (2014),
pp. 1085–1130 (Cited on pp. 132, 133, 136).
doi: 10.1137/130911731

[BLSS03] Michael Benedikt, Leonid Libkin, Thomas
Schwentick, and Luc Segoufin. “Definable relations
and first-order query languages over strings.” In
Journal of the ACM 50.5 (2003), pp. 694–751 (Cited
on pp. 197, 218, 220).
doi: 10.1145/876638.876642

[Blu21] Achim Blumensath. “Algebraic Language
Theory for Eilenberg–Moore Algebras.” In Logical
Methods in Computer Science (LMCS) Volume 17,
Issue 2 (2021) (Cited on p. 316).
doi: 10.23638/LMCS-17(2:6)2021

[Blu24] Achim Blumensath. Monadic Second-Order
Model Theory. Unpublished monograph. Version of
2024-07-30. 2024 (Cited on pp. 223, 225, 228).
url: https://www.fi.muni.cz/~blumens/MSO.
pdf

[BMPP18] Sougata Bose, Anca Muscholl, Gabriele
Puppis, and Vincent Penelle. “Origin-equivalence of
two-way word transducers is in PSPACE.” In IARCS
Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FST&TCS).
Consulted version: https://hal.science/hal-
02415557. 2018 (Cited on p. 213).
doi: 10.4230/LIPIcs.FSTTCS.2018.22

[BMT20] Angela Bonifati, Wim Martens, and
Thomas Timm. “An Analytical Study of Large
SPARQL Query Logs.” In The VLDB Journal 29.2
(2020), pp. 655–679 (Cited on p. 86).
doi: 10.1007/s00778-019-00558-9

[BN23] Mikołaj Bojańczyk and Lê Thành Dũng (Tito)
Nguyễn. “Algebraic Recognition of Regular Func-
tions.” In International Colloquium on Automata,
Languages and Programming (ICALP). Vol. 261. Con-
sulted version: https : / / hal . science / hal -
03985883v2. 2023, 117:1–117:19 (Cited on p. 288).
doi: 10.4230/LIPIcs.ICALP.2023.117

[Bod96] Hans L. Bodlaender. “A Linear-Time Algo-
rithm for Finding Tree-Decompositions of Small
Treewidth.” In 25.6 (1996), pp. 1305–1317 (Cited on
p. 69).
doi: 10.1137/S0097539793251219

[Bod98] Hans L. Bodlaender. “A partial k-arboretum
of graphs with bounded treewidth.” In 209.1 (1998),
pp. 1–45 (Cited on p. 137).
doi: 10.1016/S0304-3975(97)00228-4

[Boj14] Mikołaj Bojańczyk. “Transducers with Ori-
gin Information.” In International Colloquium on
Automata, Languages and Programming (ICALP).
Consulted version: https://arxiv.org/pdf/
1309.6124. 2014, pp. 26–37 (Cited on p. 209)

[Boj15] Mikołaj Bojańczyk. “Recognisable Lan-
guages over Monads.” In International Conference
on Developments in Language Theory. Lecture Notes
in Computer Science. Consulted version: https:
//arxiv.org/abs/1502.04898v1. 2015, pp. 1–13
(Cited on pp. 288, 298, 305, 309, 316).
doi: 10.1007/978-3-319-21500-6_1

[Boj20] Mikołaj Bojańczyk. Languages recognised by
finite semigroups, and their generalisations to objects
such as trees and graphs, with an emphasis on defin-
ability in monadic second-order logic. Lecture notes.
2020 (Cited on pp. 44, 197, 286, 288, 311).
doi: 10.48550/arXiv.2008.11635

[Boj22] Mikołaj Bojańczyk. “Transducers of polyno-
mial growth.” InAnnual Symposium on Logic in Com-
puter Science (LICS). 2022 (Cited on pp. 213, 215).
doi: 10.1145/3531130.3533326

[Bou06] Nicolas Bourbaki. “Description de la math-
ématique formelle.” In Théorie des ensembles. 2006,
pp. 8–45 (Cited on p. 29).
doi: 10.1007/978-3-540-34035-5_2

[BR05] Nicolas Bedon and Chloé Rispal. “Schützen-
berger and Eilenberg Theorems forWords on Linear
Orderings.” In International Conference on Develop-
ments in Language Theory. Lecture Notes in Com-
puter Science. 2005, pp. 134–145 (Cited on p. 287).
doi: 10.1007/11505877_12

323

https://doi.org/10.1137/130911731
https://doi.org/10.1145/876638.876642
https://doi.org/10.23638/LMCS-17(2:6)2021
https://www.fi.muni.cz/~blumens/MSO.pdf
https://www.fi.muni.cz/~blumens/MSO.pdf
https://hal.science/hal-02415557
https://hal.science/hal-02415557
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.22
https://doi.org/10.1007/s00778-019-00558-9
https://hal.science/hal-03985883v2
https://hal.science/hal-03985883v2
https://doi.org/10.4230/LIPIcs.ICALP.2023.117
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://arxiv.org/pdf/1309.6124
https://arxiv.org/pdf/1309.6124
https://arxiv.org/abs/1502.04898v1
https://arxiv.org/abs/1502.04898v1
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.48550/arXiv.2008.11635
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.1007/978-3-540-34035-5_2
https://doi.org/10.1007/11505877_12

bibliography

[BRV16] Pablo Barceló, Miguel Romero, and Moshe
Y. Vardi. “Semantic Acyclicity on Graph Databases.”
In SIAM Journal on computing 45.4 (2016), pp. 1339–
1376 (Cited on pp. 24, 87, 129, 132, 133, 135, 142, 163,
164, 166, 172, 175, 176, 179).
doi: 10.1137/15M1034714

[BRZ20] Pablo Barceló, Miguel Romero, and Thomas
Zeume. “A More General Theory of Static Approx-
imations for Conjunctive Queries.” In 64.5 (2020),
pp. 916–964 (Cited on p. 133).
doi: 10.1007/s00224-019-09924-0

[Bul17] Andrei A. Bulatov. “A Dichotomy Theo-
rem for Nonuniform CSPs.” In Annual Symposium
on Foundations of Computer Science (FOCS). 2017,
pp. 319–330 (Cited on pp. 28, 234).
doi: 10.1109/FOCS.2017.37

[BW08] Mikołaj Bojańczyk and Igor Walukiewicz.
“Forest algebras.” In Logic and Automata: History
and Perspectives [in Honor of Wolfgang Thomas].
Vol. 2. Texts in Logic and Games. Consulted ver-
sion: https://hal.science/hal-00105796v1.
2008, pp. 107–132 (Cited on p. 288)

[Car95] Lewis Carroll. What the Tortoise Said to
Achilles. 1895 (Cited on p. 191).
url: https : / / www . ditext . com / carroll /
tortoise.html

[CCDF97] Liming Cai, Jianer Chen, Rodney G.
Downey, and Michael R. Fellows. “Advice classes
of parameterized tractability.” In Annals of Pure and
Applied Logic (APAL) 84.1 (1997), pp. 119–138 (Cited
on p. 171).
doi: 10.1016/S0168-0072(95)00020-8

[CCG06] Olivier Carton, Christian Choffrut, and
Serge Grigorieff. “Decision problems among the
main subfamilies of rational relations.” In RAIRO
Theoretical Informatics and Applications 40.2 (2006),
pp. 255–275 (Cited on pp. 202, 204, 206, 209).
doi: 10.1051/ita:2006005

[CCLP17] Lorenzo Clemente, Wojciech Czerwiński,
Sławomir Lasota, and Charles Paperman. “Regular
Separability of Parikh Automata.” In International

Colloquium on Automata, Languages and Program-
ming (ICALP). 2017, 117:1–117:13 (Cited on p. 233).
doi: 10.4230/LIPIcs.ICALP.2017.117

[CCP18] Olivier Carton, Thomas Colcombet, and
Gabriele Puppis. “An algebraic approach to MSO-
definability on countable linear orderings.” en. In
Journal of Symbolic Logic 83.3 (2018). Consulted ver-
sion: https://arxiv.org/abs/1702.05342v2,
pp. 1147–1189 (Cited on p. 288).
doi: 10.1017/jsl.2018.7

[CCP20] Michaël Cadilhac, Olivier Carton, and
Charles Paperman. “Continuity of Functional Trans-
ducers: A Profinite Study of Rational Functions.” In
Logical Methods in Computer Science (LMCS) Vol-
ume 16, Issue 1 (2020) (Cited on p. 288).
doi: 10.23638/LMCS-16(1:24)2020

[CD15] Balder ten Cate and Victor Dalmau. “The
Product Homomorphism Problem and Applica-
tions.” In International Conference on Database The-
ory (ICDT). Vol. 31. 2015, pp. 161–176 (Cited on
p. 67).
doi: 10.4230/LIPIcs.ICDT.2015.161

[CD21] Balder ten Cate and Victor Dalmau. “Con-
junctive Queries: Unique Characterizations and
Exact Learnability.” In International Conference on
Database Theory (ICDT). Vol. 186. 2021, 9:1–9:24
(Cited on p. 68).
doi: 10.4230/LIPIcs.ICDT.2021.9

[CDK13] Balder ten Cate, Vıćtor Dalmau, and
Phokion G. Kolaitis. “Learning schema mappings.”
In ACM Transactions on Database Systems (TODS)
38.4 (2013) (Cited on pp. 67, 68).
doi: 10.1145/2539032.2539035

[CDLV00] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Moshe Y. Vardi. “Contain-
ment of Conjunctive Regular Path Queries with
Inverse.” In Principles of Knowledge Representation
and Reasoning (KR). 2000, pp. 176–185 (Cited on
pp. 84, 85, 111, 141, 179, 181)

[CE12] Bruno Courcelle and Joost Engelfriet. Graph
Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of

324

https://doi.org/10.1137/15M1034714
https://doi.org/10.1007/s00224-019-09924-0
https://doi.org/10.1109/FOCS.2017.37
https://hal.science/hal-00105796v1
https://www.ditext.com/carroll/tortoise.html
https://www.ditext.com/carroll/tortoise.html
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1051/ita:2006005
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://arxiv.org/abs/1702.05342v2
https://doi.org/10.1017/jsl.2018.7
https://doi.org/10.23638/LMCS-16(1:24)2020
https://doi.org/10.4230/LIPIcs.ICDT.2015.161
https://doi.org/10.4230/LIPIcs.ICDT.2021.9
https://doi.org/10.1145/2539032.2539035

bibliography

Mathematics and its Applications. 2012 (Cited on
p. 288).
doi: 10.1017/CBO9780511977619

[CES17] Olivier Carton, Léo Exibard, and Olivier
Serre. “Two-Way Two-Tape Automata.” In Interna-
tional Conference on Developments in Language The-
ory. 2017, pp. 147–159 (Cited on p. 211).
doi: 10.1007/978-3-319-62809-7_10

[CG06] Christian Choffrut and Serge Grigorieff.
“Separability of rational relations in A∗×Nm by
recognizable relations is decidable.” In Informa-
tion Processing Letters (IPL) 99.1 (2006). Consulted
version: https : / / www . irif . fr / ~seg /

_2006IPLsepar/Choffrut_Grigorieff_2006_

RecognizableSeparability . pdf, pp. 27–32
(Cited on p. 205).
doi: 10.1016/j.ipl.2005.09.018

[CG14] Christian Choffrut and Bruno Guillon. “An
Algebraic Characterization of Unary Two-Way
Transducers.” In International Symposium on Math-
ematical Foundations of Computer Science (MFCS).
2014, pp. 196–207 (Cited on p. 215)

[CGLP20] Hubie Chen, Georg Gottlob, Matthias
Lanzinger, and Reinhard Pichler. “Semantic Width
and the Fixed-Parameter Tractability of Constraint
Satisfaction Problems.” In International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2020, pp. 1726–
1733 (Cited on pp. 71, 132).
doi: 10.24963/ijcai.2020/239

[CGM22] Thomas Colcombet, Sam van Gool, and
Rémi Morvan. “First-order separation over count-
able ordinals.” In International Conference on Foun-
dations of Software Science and Computational Struc-
tures (FOSSACS). Consulted version: https : / /
arxiv.org/abs/2201.03089v1. 2022, pp. 264–
284 (Cited on pp. 233, 318).
doi: 10.1007/978-3-030-99253-8_14

[CH90] Kevin J. Compton and C. Ward Henson. “A
uniform method for proving lower bounds on the
computational complexity of logical theories.” In
Annals of Pure and Applied Logic 48.1 (1990), pp. 1–
79 (Cited on p. 224).
doi: 10.1016/0168-0072(90)90080-L

[Cha80] Tat-hung Chan. “Reversal-Bounded Compu-
tations.” Consulted version: https://scispace.
com/pdf/reversal-bounded-computations-

25s73w61fj.pdf. PhD thesis. Cornell University,
USA, 1980 (Cited on p. 211)

[Cho06] Christian Choffrut. “Relations over words
and logic: A chronology.” In Bulletin of the EATCS
89 (2006), pp. 159–163 (Cited on pp. 197, 210, 218,
220)

[CL07] Thomas Colcombet and Christof Löding.
“Transforming structures by set interpretations.”
In Logical Methods in Computer Science (LMCS) Vol-
ume 3, Issue 2, 4 (2007) (Cited on p. 227).
doi: 10.2168/LMCS-3(2:4)2007

[CL11] Arnaud Carayol and Christof Löding. “Uni-
formization in automata theory.” In Proceedings of
the 14th Congress of Logic, Methodology and Philos-
ophy of Science Nancy. Vol. 2. Consulted version:
https://igm.univ-mlv.fr/~carayol/Papers/

x23ada2cef7606c52.pdf. 2011 (Cited on p. 206)

[CM13] Hubie Chen and Moritz Müller. “The fine
classification of conjunctive queries and parameter-
ized logarithmic space complexity.” In ACM Sympo-
sium on Principles of Database Systems (PODS). 2013,
pp. 309–320 (Cited on p. 176).
doi: 10.1145/2463664.2463669

[CM77] Ashok K. Chandra and PhilipM.Merlin. “Op-
timal Implementation of Conjunctive Queries in
Relational Data Bases.” In Symposium on Theory of
Computing (STOC). 1977, pp. 77–90 (Cited on pp. 57,
58, 132).
doi: 10.1145/800105.803397

[CMNP18] Wojciech Czerwiński, Wim Martens,
Matthias Niewerth, and Paweł Parys. “Minimiza-
tion of Tree Patterns.” In Journal of the ACM 65.4
(2018) (Cited on pp. 92, 93, 122, 123, 184)

[CMRZZ17] Wojciech Czerwiński, Wim Martens,
Lorijn van Rooijen, Marc Zeitoun, and Georg Zet-
zsche. “A Characterization for Decidable Separabil-
ity by Piecewise Testable Languages.” In Discrete

325

https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-319-62809-7_10
https://www.irif.fr/~seg/_2006IPLsepar/Choffrut_Grigorieff_2006_RecognizableSeparability.pdf
https://www.irif.fr/~seg/_2006IPLsepar/Choffrut_Grigorieff_2006_RecognizableSeparability.pdf
https://www.irif.fr/~seg/_2006IPLsepar/Choffrut_Grigorieff_2006_RecognizableSeparability.pdf
https://doi.org/10.1016/j.ipl.2005.09.018
https://doi.org/10.24963/ijcai.2020/239
https://arxiv.org/abs/2201.03089v1
https://arxiv.org/abs/2201.03089v1
https://doi.org/10.1007/978-3-030-99253-8_14
https://doi.org/10.1016/0168-0072(90)90080-L
https://scispace.com/pdf/reversal-bounded-computations-25s73w61fj.pdf
https://scispace.com/pdf/reversal-bounded-computations-25s73w61fj.pdf
https://scispace.com/pdf/reversal-bounded-computations-25s73w61fj.pdf
https://doi.org/10.2168/LMCS-3(2:4)2007
https://igm.univ-mlv.fr/~carayol/Papers/x23ada2cef7606c52.pdf
https://igm.univ-mlv.fr/~carayol/Papers/x23ada2cef7606c52.pdf
https://doi.org/10.1145/2463664.2463669
https://doi.org/10.1145/800105.803397

bibliography

Mathematics & Theoretical Computer Science 19.4
(2017) (Cited on p. 233).
doi: 10.23638/DMTCS-19-4-1

[Cod72] E. F. Codd. “Relational Completeness of
Data Base Sublanguages.” In Research Report / RJ /
IBM / San Jose, California (1972) (Cited on p. 54)

[CR00] Chandra Chekuri and Anand Rajaraman.
“Conjunctive query containment revisited.” In The-
oretical Computer Science 239.2 (2000), pp. 211–229
(Cited on pp. 19, 69, 179).
doi: 10.1016/S0304-3975(99)00220-0

[CRRT01] Colin M. Campbell, Edmund F. Robertson,
Nikola Ruškuc, and RichardM. Thomas. “Automatic
semigroups.” In Theoretical Computer Science 250.1
(2001), pp. 365–391 (Cited on p. 228).
doi: 10.1016/S0304-3975(99)00151-6

[CRV23] Tamara Cucumides, Juan Reutter, and Do-
magoj Vrgoč. “Size Bounds and Algorithms for Con-
junctive Regular Path Queries.” In International Con-
ference on Database Theory (ICDT). 2023, 13:1–13:17
(Cited on pp. 93, 121).
doi: 10.4230/LIPIcs.ICDT.2023.13

[CS15] Thomas Colcombet and A. V. Sreejith. “Lim-
ited Set Quantifiers over Countable Linear Order-
ings.” In International Colloquium on Automata, Lan-
guages and Programming (ICALP). 2015, pp. 146–158
(Cited on p. 312).
doi: 10.1007/978-3-662-47666-6_12

[CS25] Thomas Colcombet and A V Sreejith. Regu-
lar expressions over countable words. 2025 (Cited on
p. 312).
doi: 10.48550/arXiv.2505.01039

[Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
“Fixed-parameter intractability.” In Parameterized
Algorithms. 2015, pp. 421–465 (Cited on p. 47).
doi: 10.1007/978-3-319-21275-3_13

[Del04] Christian Delhommé. “Automaticité des or-
dinaux et des graphes homogènes.” In Comptes Ren-

dus Mathematique 339.1 (2004), pp. 5–10 (Cited on
p. 227).
doi: 10.1016/j.crma.2004.03.035

[DFF19] Marıá Emilia Descotte, Diego Figueira, and
Santiago Figueira. “Closure Properties of Synchro-
nized Relations.” In International Symposium on
Theoretical Aspects of Computer Science (STACS).
Vol. 126. 2019, 22:1–22:17 (Cited on p. 210).
doi: 10.4230/LIPIcs.STACS.2019.22

[DFP18] Marıá Emilia Descotte, Diego Figueira, and
Gabriele Puppis. “Resynchronizing Classes of Word
Relations.” In International Colloquium on Automata,
Languages and Programming (ICALP). Vol. 107. Con-
sulted version: https : / / hal . science / hal -
01721046v2. 2018, 123:1–123:13 (Cited on p. 210).
doi: 10.4230/LIPIcs.ICALP.2018.123

[Die70] Jean A. Dieudonné. “The Work of Nicholas
Bourbaki.” In The American Mathematical Monthly
77.2 (1970), pp. 134–145 (Cited on p. 30).
url: http://www.jstor.org/stable/2317325

[DKV02] Victor Dalmau, Phokion G. Kolaitis, and
Moshe Y. Vardi. “Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics.” In Princi-
ples and Practice of Constraint Programming (CP).
Vol. 2470. Lecture Notes in Computer Science. 2002,
pp. 310–326 (Cited on p. 71).
doi: 10.1007/3-540-46135-3_21

[Dou23] Gaëtan Douéneau. “Optimization of string
transducers.” PhD thesis. Université Paris Cité, 2023
(Cited on p. 215).
url: http://www.theses.fr/2023UNIP7217/
document

[DPPDP09] Apostolos K. Doxiadēs, Christos H. Pa-
padimitriou, Alekos Papadatos, Annie Di Donna,
and Alekos Papadatos, eds. Logicomix: an epic search
for truth. 2009. isbn: 978-0-7475-9720-9 (Cited on
p. 29)

[EES69] S. Eilenberg, C.C. Elgot, and J.C Shepherd-
son. “Sets recognized by 𝑛-tape automata.” In Jour-
nal of Algebra 13.4 (1969), pp. 447–464 (Cited on
p. 218).
doi: 10.1016/0021-8693(69)90107-0

326

https://doi.org/10.23638/DMTCS-19-4-1
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1016/S0304-3975(99)00151-6
https://doi.org/10.4230/LIPIcs.ICDT.2023.13
https://doi.org/10.1007/978-3-662-47666-6_12
https://doi.org/10.48550/arXiv.2505.01039
https://doi.org/10.1007/978-3-319-21275-3_13
https://doi.org/10.1016/j.crma.2004.03.035
https://doi.org/10.4230/LIPIcs.STACS.2019.22
https://hal.science/hal-01721046v2
https://hal.science/hal-01721046v2
https://doi.org/10.4230/LIPIcs.ICALP.2018.123
http://www.jstor.org/stable/2317325
https://doi.org/10.1007/3-540-46135-3_21
http://www.theses.fr/2023UNIP7217/document
http://www.theses.fr/2023UNIP7217/document
https://doi.org/10.1016/0021-8693(69)90107-0

bibliography

[EGNRM98a] Yu. L. Ershov, S. S. Goncharov, A.
Nerode, J. B. Remmel, and V. W. Marek. Handbook
of recursive mathematics. Volume 1: Recursive Model
Theory. Studies in logic and the foundations of math-
ematics v. 138. 1998 (Cited on p. 229).
url: https : / / www . sciencedirect . com /

bookseries / studies - in - logic - and - the -

foundations-of-mathematics/vol/138/

[EGNRM98b] Yu. L. Ershov, S. S. Goncharov, A.
Nerode, J. B. Remmel, and V.W. Marek.Handbook of
recursive mathematics. Volume 2: Recursive Algebra,
Analysis and Combinatorics. Studies in logic and the
foundations of mathematics v. 139. 1998 (Cited on
p. 229).
url: https : / / www . sciencedirect . com /

bookseries / studies - in - logic - and - the -

foundations-of-mathematics/vol/139/

[EH01] Joost Engelfriet and Hendrik Jan Hooge-
boom. “MSO definable string transductions and
two-way finite-state transducers.” In ACM Transac-
tions on Computational Logic 2.2 (2001), pp. 216–254
(Cited on p. 213).
doi: 10.1145/371316.371512

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till
Tantau. “Logspace Versions of the Theorems of Bod-
laender and Courcelle.” In Annual Symposium on
Foundations of Computer Science (FOCS). Available
on Scihub. 2010, pp. 143–152 (Cited on pp. 73, 179).
doi: 10.1109/FOCS.2010.21

[EM65] Calvin C. Elgot and Jorge E. Mezei. “On Re-
lations Defined by Generalized Finite Automata.” In
IBM Journal of Research and Development 9.1 (1965),
pp. 47–68 (Cited on p. 197).
doi: 10.1147/rd.91.0047

[Eps92] David B.A. Epstein. Word Processing in
Groups. 1992 (Cited on pp. 220, 228).
doi: 10.1201/9781439865699

[Ete97] Kousha Etessami. “Counting Quantifiers,
Successor Relations, and Logarithmic Space.” In
Journal of Computer and System Sciences (JCSS) 54.3
(1997), pp. 400–411 (Cited on p. 46).
doi: 10.1006/jcss.1997.1485

[FFM08] S. Flesca, F. Furfaro, and E. Masciari. “On
the minimization of XPath queries.” In Journal of
the ACM 55.1 (2008) (Cited on p. 93).
doi: 10.1145/1326554.1326556

[FG03] Jörg Flum and Martin Grohe. “Describing
parameterized complexity classes.” In 187.2 (2003),
pp. 291–319 (Cited on p. 171).
doi: 10.1016/S0890-5401(03)00161-5

[FGL19] Emmanuel Filiot, Olivier Gauwin, and
Nathan Lhote. “Logical and Algebraic Character-
izations of Rational Transductions.” In Logical Meth-
ods in Computer Science (LMCS) Volume 15, Issue 4
(2019) (Cited on p. 288).
doi: 10.23638/LMCS-15(4:16)2019

[FGM24] Cristina Feier, Tomasz Gogacz, and Filip
Murlak. “Evaluating Graph Queries Using Semantic
Treewidth.” In International Conference on Database
Theory (ICDT). 2024 (Cited on pp. 134, 176, 179).
doi: 10.4230/LIPIcs.ICDT.2024.22

[Fig+20] Diego Figueira, Adwait Godbole, S. Krishna,
Wim Martens, Matthias Niewerth, and Tina Traut-
ner. “Containment of Simple Conjunctive Regular
Path Queries.” In Principles of Knowledge Represen-
tation and Reasoning (KR). 2020 (Cited on pp. 86, 87,
110, 120, 133, 175).
doi: 10.24963/kr.2020/38

[Fig20] Diego Figueira. “Containment of UC2RPQ:
the hard and easy cases.” In International Conference
on Database Theory (ICDT). 2020 (Cited on pp. 85,
87, 111, 120, 141, 174, 179).
doi: 10.4230/LIPIcs.ICDT.2020.9

[Fig21a] Diego Figueira. “Foundations of Graph Path
Query Languages.” In Reasoning Web. Declarative
Artificial Intelligence - 17th International Summer
School 2021. Vol. 13100. Lecture Notes in Computer
Science. 2021, pp. 1–21 (Cited on p. 75).
doi: 10.1007/978-3-030-95481-9_1

[Fig21b] Diego Figueira. “Foundations of Graph Path
Query Languages (Course Notes).” In Reasoning
Web Summer School 2021. Vol. 13100. Reasoning
Web. Declarative Artificial Intelligence - 17th In-
ternational Summer School 2021, Leuven, Belgium,

327

https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/138/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/138/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/138/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/139/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/139/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/139/
https://doi.org/10.1145/371316.371512
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1201/9781439865699
https://doi.org/10.1006/jcss.1997.1485
https://doi.org/10.1145/1326554.1326556
https://doi.org/10.1016/S0890-5401(03)00161-5
https://doi.org/10.23638/LMCS-15(4:16)2019
https://doi.org/10.4230/LIPIcs.ICDT.2024.22
https://doi.org/10.24963/kr.2020/38
https://doi.org/10.4230/LIPIcs.ICDT.2020.9
https://doi.org/10.1007/978-3-030-95481-9_1

bibliography

September 8-15, 2021, Tutorial Lectures. Consulted
version: https://hal.science/hal-03349901.
2021, pp. 1–21 (Cited on p. 197).
doi: 10.1007/978-3-030-95481-9_1

[FKMP24] Diego Figueira, S. Krishna, Om Swostik
Mishra, and Anantha Padmanabha. “Boundedness
for Unions of Conjunctive Regular Path Queries
over Simple Regular Expressions.” In Principles of
Knowledge Representation and Reasoning (KR). 2024
(Cited on p. 87).
doi: doi.org/10.24963/kr.2024/34

[FL15] Diego Figueira and Leonid Libkin. “Synchro-
nizing Relations onWords.” en. In Theory of Comput-
ing Systems 57.2 (2015). Consulted version: https:
//hal.science/hal-01793633v1/, pp. 287–318
(Cited on pp. 209, 210).
doi: 10.1007/s00224-014-9584-2

[FLS98] Daniela Florescu, Alon Levy, and Dan Suciu.
“Query Containment for Conjunctive Queries with
Regular Expressions.” In ACM Symposium on Princi-
ples of Database Systems (PODS). 1998, pp. 139–148
(Cited on pp. 81, 84, 85, 111, 141).
doi: 10.1145/275487.275503

[FM23] Diego Figueira and Rémi Morvan. “Approx-
imation and Semantic Tree-Width of Conjunctive
Regular Path Queries.” In International Conference
on Database Theory (ICDT). Vol. 255. 2023, 15:1–
15:19 (Cited on p. 129).
doi: 10.4230/LIPIcs.ICDT.2023.15

[FM25] Diego Figueira and Rémi Morvan. “Semantic
Tree-Width and Path-Width of Conjunctive Regu-
lar Path Queries.” In Logical Methods in Computer
Science (LMCS) Volume 21, Issue 1, 21 (2025) (Cited
on pp. 51, 72, 93, 97, 104, 109, 129, 172).
doi: 10.46298/lmcs-21(1:21)2025

[FMR25] Diego Figueira, Rémi Morvan, and Miguel
Romero. Minimizing Conjunctive Regular Path
Queries. 2025 (Cited on pp. 51, 89).
arXiv: 2504.00612 [cs.DB]

[Fon07] Jan Foniok. “Homomorphisms and Struc-

tural Properties of Relational Systems.” PhD thesis.
Charles University in Prague, 2007 (Cited on p. 245).
url: https://arxiv.org/pdf/0710.4477

[FR23] Diego Figueira and Miguel Romero. “Con-
junctive Regular Path Queries under Injective
Semantics.” In ACM Symposium on Principles of
Database Systems (PODS). 2023, pp. 231–240 (Cited
on p. 87).
doi: 10.1145/3584372.3588664

[FR68] Patrick C. Fischer and Arnold L. Rosenberg.
“Multitape one-way nonwriting automata.” In Jour-
nal of Computer and System Sciences (JCSS) 2.1
(1968), pp. 88–101 (Cited on pp. 206, 209).
doi: 10.1016/S0022-0000(68)80006-6

[Fra+23a] Nadime Francis, Amélie Gheerbrant,
Paolo Guagliardo, Leonid Libkin, Victor Marsault,
Wim Martens, Filip Murlak, Liat Peterfreund,
Alexandra Rogova, and Domagoj Vrgoč. “A Re-
searcher’s Digest of GQL (Invited Talk).” In In-
ternational Conference on Database Theory (ICDT).
Vol. 255. 2023, 1:1–1:22 (Cited on p. 80).
doi: 10.4230/LIPICS.ICDT.2023.1

[Fra+23b] Nadime Francis, Amélie Gheerbrant,
Paolo Guagliardo, Leonid Libkin, Victor Marsault,
Wim Martens, Liat Peterfreund, Alexandra Rogova,
and Domagoj Vrgoc. “GPC: A Pattern Calculus for
Property Graphs.” In ACM Symposium on Princi-
ples of Database Systems (PODS). 2023, pp. 241–250
(Cited on p. 80).
doi: 10.1145/3584372.3588662

[Fre90] Eugene C. Freuder. “Complexity of K-tree
structured constraint satisfaction problems.” In
AAAI Conference on Artificial Intelligence. 1990,
pp. 4–9 (Cited on p. 69)

[FRW19] Diego Figueira, Varun Ramanathan, and
Pascal Weil. “The Quantifier Alternation Hierarchy
of Automatic Relations.” In International Symposium
on Mathematical Foundations of Computer Science
(MFCS). Vol. 138. 2019, 29:1–29:14 (Cited on p. 219).
doi: 10.4230/LIPIcs.MFCS.2019.29

[FS93] Christiane Frougny and Jacques Sakarovitch.
“Synchronized Rational Relations of Finite and Infi-

328

https://hal.science/hal-03349901
https://doi.org/10.1007/978-3-030-95481-9_1
https://doi.org/doi.org/10.24963/kr.2024/34
https://hal.science/hal-01793633v1/
https://hal.science/hal-01793633v1/
https://doi.org/10.1007/s00224-014-9584-2
https://doi.org/10.1145/275487.275503
https://doi.org/10.4230/LIPIcs.ICDT.2023.15
https://doi.org/10.46298/lmcs-21(1:21)2025
https://arxiv.org/abs/2504.00612
https://arxiv.org/pdf/0710.4477
https://doi.org/10.1145/3584372.3588664
https://doi.org/10.1016/S0022-0000(68)80006-6
https://doi.org/10.4230/LIPICS.ICDT.2023.1
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.4230/LIPIcs.MFCS.2019.29

bibliography

nite Words.” In Theoretical Computer Science 108.1
(1993), pp. 45–82 (Cited on pp. 197, 202).
doi: 10.1016/0304-3975(93)90230-Q

[FT10] Olivier Finkel and Stevo Todorčević. “The iso-
morphism relation between tree-automatic Struc-
tures.” In Open Mathematics 8.2 (2010), pp. 299–313
(Cited on p. 228).
doi: 10.2478/s11533-010-0014-7

[FT13] Olivier Finkel and Stevo Todorčević. “Auto-
matic Ordinals.” In International Journal of Uncon-
ventional Computing 9.1-2 (2013), pp. 61–70 (Cited
on p. 227).
url: http : / / www . oldcitypublishing . com /
journals/ijuc-home/ijuc-issue-contents/

ijuc-volume-9-number-1-2-2013/ijuc-9-1-

2-p-61-70/

[FV98] Tomás Feder and Moshe Y. Vardi. “The Com-
putational Structure of MonotoneMonadic SNP and
Constraint Satisfaction: A Study through Datalog
and Group Theory.” In SIAM Journal on computing
28.1 (1998), pp. 57–104 (Cited on pp. 28, 234, 245,
274).
doi: 10.1137/S0097539794266766

[Gau20] Olivier Gauwin. “Transductions: resources
and characterizations.” PhD thesis. Université de
Bordeaux, 2020 (Cited on p. 215).
url: https : / / theses . hal . science / tel -
03118919

[GG24] Mai Gehrke and Sam van Gool. Topological
Duality for Distributive Lattices: Theory and Appli-
cations. 2024 (Cited on p. 186).
doi: 10.1017/9781009349680

[GGIM22] Víctor Gutiérrez-Basulto, Albert
Gutowski, Yazmín Ibáñez-García, and Filip Murlak.
“Finite Entailment of UCRPQs over ALC Ontolo-
gies.” In Principles of Knowledge Representation and
Reasoning (KR). 2022, pp. 184–194 (Cited on p. 87).
doi: 10.24963/kr.2022/19

[GGIM24] Víctor Gutiérrez-Basulto, Albert
Gutowski, Yazmín Ibáñez-García, and Filip Murlak.
“Containment of Graph QueriesModulo Schema.” In

ACM Symposium on Principles of Database Systems
(PODS). 2024, pp. 1–26 (Cited on p. 87).
doi: 10.1145/3651140

[Grä07] Erich Grädel. “Finite Model Theory and De-
scriptive Complexity.” In Finite Model Theory and
Its Applications. 2007, pp. 125–230 (Cited on p. 226).
doi: 10.1007/3-540-68804-8_3

[Grä20] Erich Grädel. “Automatic Structures:
Twenty Years Later.” In Annual Symposium on Logic
in Computer Science (LICS). LICS ’20. 2020, pp. 21–34
(Cited on p. 229).
doi: 10.1145/3373718.3394734

[Gro07] Martin Grohe. “The complexity of homo-
morphism and constraint satisfaction problems
seen from the other side.” In Journal of the ACM
54.1 (2007), 1:1–1:24 (Cited on pp. 19, 71, 132, 176–
178).
doi: 10.1145/1206035.1206036

[GS19] S. J. v. Gool and B. Steinberg. “Pointlike sets
for varieties determined by groups.” In Advances in
Mathematics 348 (2019). Consulted version: https:
//arxiv.org/abs/1801.04638v1, pp. 18–50
(Cited on p. 290).
doi: 10.1016/j.aim.2019.03.020

[GSS01] Martin Grohe, Thomas Schwentick, and Luc
Segoufin. “When is the evaluation of conjunctive
queries tractable?” In Symposium on Theory of Com-
puting (STOC). 2001, pp. 657–666 (Cited on pp. 70,
71).
doi: 10.1145/380752.380867

[Gur82] Eitan M. Gurari. “The Equivalence Problem
for Deterministic Two-Way Sequential Transducers
is Decidable.” In SIAM Journal on computing 11.3
(1982), pp. 448–452 (Cited on p. 213).
doi: 10.1137/0211035

[HK91] T. Harju and J. Karhumäki. “The equivalence
problem of multitape finite automata.” In Theoreti-
cal Computer Science 78.2 (1991), pp. 347–355 (Cited
on p. 209).
doi: 10.1016/0304-3975(91)90356-7

329

https://doi.org/10.1016/0304-3975(93)90230-Q
https://doi.org/10.2478/s11533-010-0014-7
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
https://doi.org/10.1137/S0097539794266766
https://theses.hal.science/tel-03118919
https://theses.hal.science/tel-03118919
https://doi.org/10.1017/9781009349680
https://doi.org/10.24963/kr.2022/19
https://doi.org/10.1145/3651140
https://doi.org/10.1007/3-540-68804-8_3
https://doi.org/10.1145/3373718.3394734
https://doi.org/10.1145/1206035.1206036
https://arxiv.org/abs/1801.04638v1
https://arxiv.org/abs/1801.04638v1
https://doi.org/10.1016/j.aim.2019.03.020
https://doi.org/10.1145/380752.380867
https://doi.org/10.1137/0211035
https://doi.org/10.1016/0304-3975(91)90356-7

bibliography

[HKMN08] Greg Hjorth, Bakh Khoussainov, Anto-
nio Montalbán, and André Nies. “From Automatic
Structures to Borel Structures.” In Annual Sympo-
sium on Logic in Computer Science (LICS). 2008,
pp. 431–441 (Cited on p. 221).
doi: 10.1109/LICS.2008.28

[HMPR91] Karsten Henckell, Stuart W. Margolis,
Jean-Éric Pin, and John Rhodes. “Ash’s type II theo-
rem, profinite topology and Malcev products: part
I.” In International Journal of Algebra and Compu-
tation 01.04 (1991). Consulted version: https://
www.irif.fr/~jep/PDF/HMPR.pdf (saved on
http://web.archive.org/), pp. 411–436 (Cited
on p. 290).
doi: 10.1142/S0218196791000298

[HN90] Pavol Hell and Jaroslav Nešetřil. “On the
complexity of H-coloring.” In Journal of Combinato-
rial Theory, Series B 48.1 (1990), pp. 92–110 (Cited
on p. 28).
doi: 10.1016/0095-8956(90)90132-J

[HN92] Pavol Hell and Jaroslav Nešetřil. “The core
of a graph.” In Discrete Mathematics 109.1 (1992),
pp. 117–126 (Cited on p. 66).
doi: 10.1016/0012-365X(92)90282-K

[Hod76] Bernard R. Hodgson. “Théories décidables
par automate fini.” Not available online. PhD thesis.
Université de Montréal, 1976 (Cited on p. 220)

[Hod83] Bernard R. Hodgson. “Décidabilité par Au-
tomate Fini.” In Annales des Sciences Mathématiques
du Québec 7.1 (1983). Consulted version: https:
//www.labmath.uqam.ca/~annales/volumes/

07-1/PDF/039-057.pdf (saved on http://web.

archive.org/), pp. 39–57 (Cited on pp. 202, 220,
224)

[Hod93] Wilfrid Hodges. Model Theory. Encyclope-
dia of Mathematics and its Applications. 1993 (Cited
on pp. 226, 228)

[Hog94] Mark Hogarth. “Non-Turing Computers
and Non-Turing Computability.” In PSA: Proceedings

of the Biennial Meeting of the Philosophy of Science
Association 1 (1994), pp. 126–138 (Cited on p. 6).
doi: 10 . 1086 / psaprocbienmeetp . 1994 . 1 .
193018

[Imm98] Neil Immerman. Descriptive complexity.
1998 (Cited on pp. 217, 218, 225).
doi: 10.1007/978-1-4612-0539-5

[ISO23] ISO: International Organization for Stan-
dardization. ISO/IEC 9075-16:2023 Part 16: Property
Graph Queries (SQL/PGQ). https : / / www . iso .
org/standard/79473.html. 2023 (Cited on p. 80)

[ISO24] ISO: International Organization for Stan-
dardization. ISO/IEC 39075:2024 GQL. https://www.
iso.org/standard/76120.html. 2024 (Cited on
p. 80)

[JKSS19] Sanjay Jain, Bakhadyr Khoussainov,
Philipp Schlicht, and Frank Stephan. “The isomor-
phism problem for tree-automatic ordinals with
addition.” In Information Processing Letters (IPL) 149
(2019), pp. 19–24 (Cited on pp. 227, 228).
doi: 10.1016/j.ipl.2019.05.004

[KBHSN24] Nikolaos Karalis, Alexander Bigerl, Liss
Heidrich,MohamedAhmed Sherif, andAxel-Cyrille
Ngonga Ngomo. “Efficient Evaluation of Conjunc-
tive Regular Path Queries Using Multi-way Joins.”
In 2024, pp. 218–235 (Cited on p. 93).
doi: 10.1007/978-3-031-60626-7_12

[KKOT15] Bartek Klin, Eryk Kopczynski, Joanna
Ochremiak, and Szymon Torunczyk. “Locally Finite
Constraint Satisfaction Problems.” In Annual Sym-
posium on Logic in Computer Science (LICS). 2015,
pp. 475–486 (Cited on p. 235).
doi: 10.1109/LICS.2015.51

[KL10] Dietrich Kuske and Markus Lohrey. “Some
natural decision problems in rational graphs.” In
Journal of Symbolic Logic 75.2 (2010), pp. 678–710
(Cited on p. 229).
doi: 10.2178/jsl/1268917499

[Klo94] Ton Kloks. Treewidth: computations and ap-
proximations. Lecture Notes in Computer Science.
1994 (Cited on p. 137).
doi: 10.1007/BFb0045375

330

https://doi.org/10.1109/LICS.2008.28
https://www.irif.fr/~jep/PDF/HMPR.pdf
https://www.irif.fr/~jep/PDF/HMPR.pdf
http://web.archive.org/
https://doi.org/10.1142/S0218196791000298
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1016/0012-365X(92)90282-K
https://www.labmath.uqam.ca/~annales/volumes/07-1/PDF/039-057.pdf
https://www.labmath.uqam.ca/~annales/volumes/07-1/PDF/039-057.pdf
https://www.labmath.uqam.ca/~annales/volumes/07-1/PDF/039-057.pdf
http://web.archive.org/
http://web.archive.org/
https://doi.org/10.1086/psaprocbienmeetp.1994.1.193018
https://doi.org/10.1086/psaprocbienmeetp.1994.1.193018
https://doi.org/10.1007/978-1-4612-0539-5
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/76120.html
https://www.iso.org/standard/76120.html
https://doi.org/10.1016/j.ipl.2019.05.004
https://doi.org/10.1007/978-3-031-60626-7_12
https://doi.org/10.1109/LICS.2015.51
https://doi.org/10.2178/jsl/1268917499
https://doi.org/10.1007/BFb0045375

bibliography

[KLOT16] Bartek Klin, Slawomir Lasota, Joanna
Ochremiak, and Szymon Torunczyk. “Homomor-
phism Problems for First-Order Definable Struc-
tures.” In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer
Science (FST&TCS). Vol. 65. 2016, 14:1–14:15 (Cited
on pp. 235, 237).
doi: 10.4230/LIPIcs.FSTTCS.2016.14

[KM10] Shiva Kintali and Sinziana Munteanu. “Com-
puting Bounded Path Decompositions in Logspace.”
In vol. 19. 126. 2010 (Cited on pp. 73, 179).
url: https://eccc.weizmann.ac.il/report/
2012/126/

[KN95] Bakhadyr Khoussainov and Anil Nerode.
“Automatic presentations of structures.” In Logic
and Computational Complexity. 1995, pp. 367–392
(Cited on pp. 202, 220, 237).
doi: 10.1007/3-540-60178-3_93

[KNRS07] Bakhadyr Khoussainov, Andre Nies,
Sasha Rubin, and Frank Stephan. “Automatic Struc-
tures: Richness and Limitations.” In Logical Methods
in Computer Science (LMCS) Volume 3, Issue 2, 2
(2007) (Cited on pp. 204, 227–229, 248).
doi: 10.2168/LMCS-3(2:2)2007

[Köc14] Chris Köcher. “Analyse der Entschei-
dbarkeit diverser Probleme in automatischen
Graphen.” de. Bachelor’s Thesis. Ilmenau: Tech-
nische Universität Ilmenau, 2014 (Cited on pp. 30,
229, 257).
url: https : / / people . mpi - sws . org /

~ckoecher/files/theses/bsc-thesis.pdf

[Kol07] Phokion G. Kolaitis. “On the Expressive
Power of Logics on Finite Models.” In Finite Model
Theory and Its Applications. 2007, pp. 27–123 (Cited
on pp. 76, 244).
doi: 10.1007/3-540-68804-8_2

[Kop16] Eryk Kopczyński. “Invisible Pushdown Lan-
guages.” In Annual Symposium on Logic in Computer
Science (LICS). 2016, pp. 867–872 (Cited on p. 233).
doi: 10.1145/2933575.2933579

[KRS05] Bakhadyr Khoussainov, Sasha Rubin, and
Frank Stephan. “Automatic linear orders and trees.”

In ACM Transactions on Computational Logic 6.4
(2005), pp. 675–700 (Cited on p. 227).
doi: 10.1145/1094622.1094625

[KS08] Benny Kimelfeld and Yehoshua Sagiv. “Re-
visiting redundancy and minimization in an XPath
fragment.” In International Conference on Extending
Database Technology (EDBT). 2008, pp. 61–72 (Cited
on p. 93).
doi: 10.1145/1353343.1353355

[Lar17] Benoit Larose. “Algebra and the Complexity
of Digraph CSPs: a Survey.” In The Constraint Sat-
isfaction Problem: Complexity and Approximability.
Ed. by Andrei Krokhin and Stanislav Zivny. Vol. 7.
Dagstuhl Follow-Ups. 2017, pp. 267–285 (Cited on
p. 234).
doi: 10.4230/DFU.Vol7.15301.267

[LB16] Anthony W. Lin and Pablo Barceló. “String
Solving with Word Equations and Transducers: To-
wards a Logic for Analysing Mutation XSS.” In An-
nual Symposium on Principles of Programming Lan-
guages (POPL). 2016, pp. 123–136 (Cited on p. 197).
doi: 10.1145/2837614.2837641

[Lec63] Yves Lecerf. “Machines de Turing réversibles.
Récursive insolubilité en 𝑛 ∈ N de l’équation
𝑢 = 𝜃𝑛𝑢, ou 𝜃 est un « isomorphisme de codes
».” In Comptes rendus hebdomadaires des séances de
l’Académie des sciences 257 (1963), pp. 2597–2600
(Cited on p. 249)

[LLT07] Benoit Larose, Cynthia Loten, and Claude
Tardif. “A Characterisation of First-Order Con-
straint Satisfaction Problems.” In Logical Methods in
Computer Science (LMCS) Volume 3, Issue 4, 6 (2007)
(Cited on pp. 243, 244, 259, 261, 269, 274).
doi: 10.2168/LMCS-3(4:6)2007

[LS19] Christof Löding and Christopher Spinrath.
“Decision Problems for Subclasses of Rational Re-
lations over Finite and Infinite Words.” In Discrete
Mathematics & Theoretical Computer Science 21.3
(2019) (Cited on pp. 202, 204, 233).
doi: 10.23638/DMTCS-21-3-4

331

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.14
https://eccc.weizmann.ac.il/report/2012/126/
https://eccc.weizmann.ac.il/report/2012/126/
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.2168/LMCS-3(2:2)2007
https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf
https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf
https://doi.org/10.1007/3-540-68804-8_2
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1145/1094622.1094625
https://doi.org/10.1145/1353343.1353355
https://doi.org/10.4230/DFU.Vol7.15301.267
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.23638/DMTCS-21-3-4

bibliography

[LT09] Benoît Larose and Pascal Tesson. “Universal
algebra and hardness results for constraint satis-
faction problems.” In Theoretical Computer Science
410.18 (2009), pp. 1629–1647 (Cited on pp. 28, 31,
240, 258, 262).
doi: 10.1016/j.tcs.2008.12.048

[Man11] Paolo Mancosu. “Book review: Logicomix
by Apostolos Doxiadis, Christos H. Papadimitriou,
Alecos Papadatos, and Annie di Donna.” In Journal
of Humanistic Mathematics 1.1 (2011), pp. 137–152
(Cited on p. 29)

[Mar13] Dániel Marx. “Tractable Hypergraph Prop-
erties for Constraint Satisfaction and Conjunctive
Queries.” In Journal of the ACM 60.6 (2013), 42:1–
42:51 (Cited on pp. 71, 132).
doi: 10.1145/2535926

[Mor17] Kenichi Morita. “Reversible Turing Ma-
chines.” In Theory of Reversible Computing. 2017,
pp. 103–156 (Cited on p. 248).
doi: 10.1007/978-4-431-56606-9_5

[Mor25] Rémi Morvan. “The Algebras for Automatic
Relations.” In EACSL Annual Conference on Com-
puter Science Logic (CSL). Vol. 326. 2025, 21:1–21:21
(Cited on pp. 195, 199, 283).
doi: 10.4230/LIPIcs.CSL.2025.21

[MP71] Robert McNaughton and Seymour A. Papert.
Counter-Free Automata. 1971. isbn: 9780262130769
(Cited on p. 312)

[Myc55] Jan Mycielski. “Sur le coloriage des graphs.”
fre. In Colloquium Mathematicae 3.2 (1955), pp. 161–
162 (Cited on p. 278).
url: http://eudml.org/doc/210000

[Nas07] Reza Naserasr. “Homomorphisms and edge-
colourings of planar graphs.” In Journal of Combi-
natorial Theory, Series B 97.3 (2007), pp. 394–400
(Cited on p. 280).
doi: 10.1016/j.jctb.2006.07.001

[Neo] Neo4j. ICIJ Empowers Investigative Journalists
with Neo4j Graph Technology (Cited on pp. 15, 77,
79).
url: https://neo4j.com/customer-stories/
icij/

[Niv68] Maurice Nivat. “Transduction des langages
de Chomsky.” In Annales de l’Institut Fourier 18
(1968), pp. 339–455 (Cited on p. 197)

[NM12] Jaroslav Nešetřil and Patrice Ossona de
Mendez. “Prolegomena.” In Sparsity: Graphs, Struc-
tures, and Algorithms. 2012, pp. 21–60 (Cited on
p. 68).
doi: 10.1007/978-3-642-27875-4_3

[NO12a] Jaroslav Nešetřil and Patrice Ossona de
Mendez. “First-Order Constraint Satisfaction Prob-
lems, Limits and Homomorphism Dualities.” In
Sparsity: Graphs, Structures, and Algorithms. 2012,
pp. 195–226 (Cited on p. 245).
doi: 10.1007/978-3-642-27875-4_9

[NO12b] Jaroslav Nešetřil and Patrice Ossona de
Mendez. “Restricted Homomorphism Dualities.” In
Sparsity: Graphs, Structures, and Algorithms. 2012,
pp. 253–275 (Cited on p. 281).
doi: 10.1007/978-3-642-27875-4_11

[NP78] Jaroslav Nešetřil and Aleš Pultr. “On classes
of relations and graphs determined by subobjects
and factorobjects.” In Discrete Mathematics 22.3
(1978), pp. 287–300 (Cited on p. 243).
doi: 10.1016/0012-365X(78)90062-6

[NT00] Jaroslav Nešetřil and Claude Tardif. “Dual-
ity Theorems for Finite Structures (Characterising
Gaps and Good Characterisations).” In Journal of
Combinatorial Theory, Series B 80.1 (2000), pp. 80–97
(Cited on p. 245).
doi: 10.1006/jctb.2000.1970

[Pel97] Laurent Pelecq. “Isomorphismes et automor-
phismes des graphes context-free, équationnels et
automatiques.” Available at Bibliothèque universi-
taire des sciences et techniques, Univ. Bordeaux.
PhD thesis. Université Bordeaux 1, 1997 (Cited on
pp. 206, 220, 224)

[Per84] Dominique Perrin. “Recent results on au-
tomata and infinite words.” In International Sympo-
sium on Mathematical Foundations of Computer Sci-
ence. Springer. 1984, pp. 134–148 (Cited on p. 312).
doi: 10.1007/BFb0030294

332

https://doi.org/10.1016/j.tcs.2008.12.048
https://doi.org/10.1145/2535926
https://doi.org/10.1007/978-4-431-56606-9_5
https://doi.org/10.4230/LIPIcs.CSL.2025.21
http://eudml.org/doc/210000
https://doi.org/10.1016/j.jctb.2006.07.001
https://neo4j.com/customer-stories/icij/
https://neo4j.com/customer-stories/icij/
https://doi.org/10.1007/978-3-642-27875-4_3
https://doi.org/10.1007/978-3-642-27875-4_9
https://doi.org/10.1007/978-3-642-27875-4_11
https://doi.org/10.1016/0012-365X(78)90062-6
https://doi.org/10.1006/jctb.2000.1970
https://doi.org/10.1007/BFb0030294

bibliography

[Pin21a] Jean-Éric Pin. “Finite automata.” In Hand-
book of Automata Theory. Volume I. Theoretical Foun-
dations. 2021, pp. 3–38 (Cited on p. 197).
doi: 10.4171/automata-1/1

[Pin21b] Jean-Éric Pin. Regular expression vs ratio-
nal expression. Computer Science Stack Exchange.
Version: 2021-08-20. 2021 (Cited on p. 197).
url: https : / / cs . stackexchange . com / q /
143318

[Pin22] Jean-Éric Pin. Mathematical Foundations of
Automata Theory. Version of February 18, 2022
(saved on http://web.archive.org/); MPRI
lecture notes. 2022 (Cited on pp. 43, 44, 287–289,
305, 307, 308).
url: https://www.irif.fr/~jep/PDF/MPRI/
MPRI.pdf

[Pin98] Jean-Éric Pin. “Positive varieties and infinite
words.” In Latin American Theoretical Informatics
Symposium (LATIN). Lecture Notes in Computer Sci-
ence. Consulted version: https://hal.science/
hal-00113768v1. 1998, pp. 76–87 (Cited on p. 286).
doi: 10.1007/BFb0054312

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite
Words, Automata, Semigroups, Logic and Games.
Vol. 141. 2004 (Cited on pp. 286, 287)

[PZ16] Thomas Place and Marc Zeitoun. “Separating
Regular Languages with First-Order Logic.” In Logi-
cal Methods in Computer Science (LMCS) 12.1 (2016)
(Cited on pp. 233, 318).
doi: 10.2168/LMCS-12(1:5)2016

[PZ23] Thomas Place and Marc Zeitoun. “Group Sep-
aration Strikes Back.” In Annual Symposium on
Logic in Computer Science (LICS). Consulted ver-
sion: https://arxiv.org/abs/2205.01632v2.
2023, pp. 1–13 (Cited on p. 291).
doi: 10.1109/LICS56636.2023.10175683

[RBV17] Miguel Romero, Pablo Barceló, and Moshe
Y. Vardi. “The homomorphism problem for regular
graph patterns.” In Annual Symposium on Logic in
Computer Science (LICS). 2017, pp. 1–12 (Cited on
pp. 25, 131, 143, 175, 176, 179, 187).
doi: 10.1109/LICS.2017.8005106

[Ree22] Sarah Rees. The development of the theory of
automatic groups. 2022 (Cited on p. 228).
arXiv: 2205.14911 [math.GR]

[Reu80] Christophe Reutenauer. “Séries formelles et
algèbres syntactiques.” In Journal of Algebra 66.2
(1980), pp. 448–483 (Cited on pp. 287, 311).
doi: 10.1016/0021-8693(80)90097-6

[Rez12] Charles Rezk. “Functors between monads”:
what are these really called? MathOverflow. Version:
2012-03-24. 2012 (Cited on p. 313).
url: https://mathoverflow.net/q/92093

[Ris04] Chloé Rispal. “Automates sur les ordres
linéaires : Complémentation.” PhD thesis. Univer-
sité de Marne la Vallée, 2004 (Cited on p. 287).
url: https : / / theses . hal . science / tel -
00720658

[Ros08] Benjamin Rossman. “Homomorphism
preservation theorems.” In Journal of the ACM
55.3 (2008) (Cited on p. 75).
doi: 10.1145/1379759.1379763

[Ros25] Benjamin Rossman. “Equi-Rank Homomor-
phism Preservation Theorem on Finite Structures.”
In EACSL Annual Conference on Computer Science
Logic (CSL). Vol. 326. 2025, 6:1–6:17 (Cited on p. 75).
doi: 10.4230/LIPIcs.CSL.2025.6

[RRV17] Juan L. Reutter, Miguel Romero, andMoshe
Y. Vardi. “Regular Queries on Graph Databases.” In
Theory of Computing Systems 61.1 (2017), pp. 31–83
(Cited on p. 179).
doi: 10.1007/s00224-016-9676-2

[RS11] John Rhodes and Benjamin Steinberg. “Point-
like sets, hyperdecidability and the identity problem
for finite semigroups.” In International Journal of
Algebra and Computation (2011) (Cited on pp. 290,
310).
doi: 10.1142/S021819679900028X

[RS59] M. O. Rabin and D. Scott. “Finite Automata
and Their Decision Problems.” In IBM Journal of
Research and Development 3.2 (1959), pp. 114–125
(Cited on pp. 197, 209–211).
doi: 10.1147/rd.32.0114

333

https://doi.org/10.4171/automata-1/1
https://cs.stackexchange.com/q/143318
https://cs.stackexchange.com/q/143318
http://web.archive.org/
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://hal.science/hal-00113768v1
https://hal.science/hal-00113768v1
https://doi.org/10.1007/BFb0054312
https://doi.org/10.2168/LMCS-12(1:5)2016
https://arxiv.org/abs/2205.01632v2
https://doi.org/10.1109/LICS56636.2023.10175683
https://doi.org/10.1109/LICS.2017.8005106
https://arxiv.org/abs/2205.14911
https://doi.org/10.1016/0021-8693(80)90097-6
https://mathoverflow.net/q/92093
https://theses.hal.science/tel-00720658
https://theses.hal.science/tel-00720658
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.4230/LIPIcs.CSL.2025.6
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1142/S021819679900028X
https://doi.org/10.1147/rd.32.0114

bibliography

[RS86] Neil Robertson and Paul D. Seymour. “Graph
minors. V. Excluding a planar graph.” In 41.1 (1986),
pp. 92–114 (Cited on pp. 71, 178).
doi: 10.1016/0095-8956(86)90030-4

[Rub08] Sasha Rubin. “Automata Presenting Struc-
tures: A Survey of the Finite String Case.” In Bulletin
of Symbolic Logic 14.2 (2008), pp. 169–209 (Cited on
pp. 226, 229).
doi: 10.2178/bsl/1208442827

[Sak09] Jacques Sakarovitch. Elements of Automata
Theory. Ed. by Reuben Thomas. 2009 (Cited on
pp. 199, 200, 208, 213).
doi: 10.1017/CBO9781139195218

[Sch16] Sylvain Schmitz. “Complexity Hierarchies
beyond Elementary.” In ACM Transactions on Com-
putation Theory 8.1 (2016) (Cited on p. 45).
doi: 10.1145/2858784

[Sch65] M.P. Schützenberger. “On finite monoids
having only trivial subgroups.” In Information and
Control 8.2 (1965), pp. 190–194 (Cited on p. 312).
doi: 10.1016/S0019-9958(65)90108-7

[Sch78] Thomas J. Schaefer. “The complexity of satis-
fiability problems.” In Symposium on Theory of Com-
puting (STOC). 1978, pp. 216–226 (Cited on pp. 28,
234).
doi: 10.1145/800133.804350

[Sha92] Michael Shapiro. “Deterministic and non-
deterministic asynchronous automatic structures.”
In International Journal of Algebra and Computation
02.03 (1992), pp. 297–305 (Cited on p. 220).
doi: 10.1142/S0218196792000189

[She59] J. C. Shepherdson. “The Reduction of Two-
Way Automata to One-Way Automata.” In IBM Jour-
nal of Research and Development 3.2 (1959), pp. 198–
200 (Cited on p. 197).
doi: 10.1147/rd.32.0198

[Sip80] Michael Sipser. “Halting space-bounded com-
putations.” In Theoretical Computer Science 10.3
(1980), pp. 335–338 (Cited on p. 211).
doi: 10.1016/0304-3975(80)90053-5

[Sta84] Ryan Stansifer. Presburger’s article on inte-
ger arithmetic: Remarks and translation. Tech. rep.
Consulted version: https://ecommons.cornell.
edu/server/api/core/bitstreams/a1a7a505-

bb98-4d5b-abd5-e2ee527db229/content. Cor-
nell University, 1984 (Cited on p. 225)

[Ste67] Richard Edwin Stearns. “A Regularity Test
for Pushdown Machines.” In Information and Con-
trol 11.3 (1967), pp. 323–340 (Cited on p. 209).
doi: 10.1016/S0019-9958(67)90591-8

[Str72] Ross Street. “The formal theory of monads.”
In Journal of Pure and Applied Algebra 2.2 (1972),
pp. 149–168 (Cited on p. 313).
doi: 10.1016/0022-4049(72)90019-9

[SW21] Howard Straubing and Pascal Weil. “Vari-
eties.” In Handbook of Automata Theory, volume I:
Theoretical Foundations. Ed. by Jean-Éric Pin. 2021,
Chapter 16, pp. 569–614 (Cited on p. 288).
doi: 10.4171/Automata.
url: https://hal.science/hal-03434221

[TG99] Alfred Tarski and Steven Givant. “Tarski’s
System of Geometry.” In Bulletin of Symbolic Logic
5.2 (1999), pp. 175–214 (Cited on p. 30).
doi: 10.2307/421089

[Til87] Bret Tilson. “Categories as algebra: An essen-
tial ingredient in the theory of monoids.” In Journal
of Pure and Applied Algebra 48.1 (1987), pp. 83–198
(Cited on p. 295).
doi: 10.1016/0022-4049(87)90108-3

[UACM17] Henning Urbat, Jiří Adámek, Liang-Ting
Chen, and Stefan Milius. “Eilenberg Theorems for
Free.” In International Symposium on Mathematical
Foundations of Computer Science (MFCS). Vol. 83.
Consulted version: https://arxiv.org/abs/
1602.05831v3. 2017, 43:1–43:15 (Cited on p. 316).
doi: 10.4230/LIPIcs.MFCS.2017.43

[UD54] Peter Ungar and Blanche Descartes. “𝑘-
Chromatic graphs without triangles.” In The Ameri-
can Mathematical Monthly 61.5 (1954), pp. 352–353
(Cited on p. 278).
doi: 10.2307/2307489

334

https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.2178/bsl/1208442827
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.1145/2858784
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1145/800133.804350
https://doi.org/10.1142/S0218196792000189
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0304-3975(80)90053-5
https://ecommons.cornell.edu/server/api/core/bitstreams/a1a7a505-bb98-4d5b-abd5-e2ee527db229/content
https://ecommons.cornell.edu/server/api/core/bitstreams/a1a7a505-bb98-4d5b-abd5-e2ee527db229/content
https://ecommons.cornell.edu/server/api/core/bitstreams/a1a7a505-bb98-4d5b-abd5-e2ee527db229/content
https://doi.org/10.1016/S0019-9958(67)90591-8
https://doi.org/10.1016/0022-4049(72)90019-9
https://doi.org/10.4171/Automata
https://hal.science/hal-03434221
https://doi.org/10.2307/421089
https://doi.org/10.1016/0022-4049(87)90108-3
https://arxiv.org/abs/1602.05831v3
https://arxiv.org/abs/1602.05831v3
https://doi.org/10.4230/LIPIcs.MFCS.2017.43
https://doi.org/10.2307/2307489

bibliography

[Val75] Leslie G. Valiant. “Regularity and Related
Problems for Deterministic Pushdown Automata.”
In Journal of the ACM 22.1 (1975), pp. 1–10 (Cited
on p. 209).
doi: 10.1145/321864.321865

[Vrg+24] Domagoj Vrgoč, Carlos Rojas, Renzo An-
gles, Marcelo Arenas, Vicente Calisto, Benjamıń
Farıás, Sebastián Ferrada, Tristan Heuer, Aidan
Hogan, Gonzalo Navarro, Alexander Pinto, Juan
Reutter, Henry Rosales, and Etienne Toussiant. “Mil-
lenniumDB: A Multi-modal, Multi-model Graph
Database.” In ACM Symposium on Principles of
Database Systems (PODS). 2024, pp. 496–499 (Cited
on pp. 93, 121).
doi: 10.1145/3626246.3654757

[Wik24] Wikipedia contributors. De Bruijn–Erdős
theorem (graph theory). Date of last revision: 6 May
2024; date retrieved: 29 January 2025. 2024 (Cited
on p. 242).
url: https://en.wikipedia.org/wiki/De_
Bruijn % E2 % 80 % 93Erd % C5 % 91s _ theorem _

(graph_theory)

[Wil10] Ross Willard. “Testing Expressibility Is
Hard.” In Principles and Practice of Constraint Pro-
gramming. 2010, pp. 9–23 (Cited on p. 67)

[WR10] Alfred North Whitehead and Bertrand Rus-
sell. Principia mathematica. Volume I. 1910 (Cited
on p. 6)

[WR12] Alfred North Whitehead and Bertrand Rus-
sell. Principia mathematica. Volume II. 1912 (Cited
on p. 6)

[Zhu20] Dmitriy Zhuk. “A Proof of the CSP Di-
chotomy Conjecture.” In Journal of the ACM 67.5
(2020) (Cited on pp. 28, 234).
doi: 10.1145/3402029

[Zie87] Wieslaw Zielonka. “Notes on finite asyn-
chronous automata.” en. In RAIRO Theoretical In-
formatics and Applications 21.2 (1987), pp. 99–135
(Cited on p. 206).
url: http://www.numdam.org/item/ITA%5C_
1987%5C_%5C_21%5C_2%5C_99%5C_0/

335

https://doi.org/10.1145/321864.321865
https://doi.org/10.1145/3626246.3654757
https://en.wikipedia.org/wiki/De_Bruijn%E2%80%93Erd%C5%91s_theorem_(graph_theory)
https://en.wikipedia.org/wiki/De_Bruijn%E2%80%93Erd%C5%91s_theorem_(graph_theory)
https://en.wikipedia.org/wiki/De_Bruijn%E2%80%93Erd%C5%91s_theorem_(graph_theory)
https://doi.org/10.1145/3402029
http://www.numdam.org/item/ITA%5C_1987%5C_%5C_21%5C_2%5C_99%5C_0/
http://www.numdam.org/item/ITA%5C_1987%5C_%5C_21%5C_2%5C_99%5C_0/

Index

Symbols
𝒟-membership problem (for auto-

matic relations), 199, 233, 234,
255, 256

𝒟-membership problem for 𝒞-

relations, 199, 200, 204, 206,

209, 318

𝒟-separability problem (for auto-

matic relations), 200, 235, 246,
252–254

𝒟-separability problem for 𝒞-

relations, 200, 200, 204, 233,

318

𝒱-membership problem, 44, 201
𝒱-separable, 32, 34, 200, 205, 233, 247,

248, 253, 254, 318

Aut/Rec-separability problem,

32–34, 204, 234, 234, 235, 246,
247, 276, 318

𝜎-structure, see structure

𝜎-tree, see tree 𝜎-tree
𝑘-colourability problem, 26, 26, 27, 66,

234

𝑘-colourable, 15, 26, 26, 30, 39, 66, 251,
252, 278, 319

𝑘-colouring, 26, 26, 236, 238, 246, 248,
251–253, 276, 278, 279

A
adjacency, 38, 38, 41, 241, 242, 279
Atserias’ theorem, 235, 244, 265, 267,

273

automaton, $k−𝑐𝑜𝑙𝑜𝑢𝑟𝑒𝑑251, $𝑘-
coloured258

𝑇-multitape, 209, 210
deterministic multitape, 207,

207–209, 212

deterministic two-way multitape,

211
multitape, 195, 199, 205, 206–213
synchronous, 32, 33, 202, 202–205,

207–210, 213, 218, 219, 221,

224, 229, 247, 251, 285,

288–290

automorphism, 40, 40, 41, 241, 244,
259

B
blank symbol, see padding symbol

block product, 38, 38, 240

C
Cartesian product, 38, 38, 61–64, 78,

200, 231, 252

chromatic number, 39, 39, 278–280
clique, 18, 26, 26, 30, 31, 65, 69, 229,

234, 236, 263, 268, 276

colourability problem, see 𝑘-
colourability problem

colourable, see 𝑘-colourable
finitely, 39, 276, 278
regularly, 235, 236, 246–248,

251–254, 276

colouring, see 𝑘-colouring
regular, 31, 32, 231, 235, 238, 238,

247, 248, 251, 252, 254, 277

compatible

(for words), 246, 247, 248
configuration, 45, 45, 228, 250, 259

germinal, see germinal element

initial, 45, 45, 249–251, 259, 263
reachable, 45, 249–251

configuration graph, 30, 32, 229, 229,
249, 251, 259, 263

congruence

induced by a homomorphism, 40,
275

of a relational structure, 40, 40
connectivity, 39, 39, 46, 64, 172,

172–175, 236, 244, 250, 251,

259–264, 275–277

regularly unconnectivity, 262, 262,
263

connectivity in automatic graphs, 258,

259, 259, 261
connectivity in finite graphs, 46, 46,

262

constraint satisfaction problem, 12,

25, 28, 67, 69, 231, 234, 235, 240
convolution

of words, 202
core, 17, 18, 22, 23, 40, 41, 41, 59, 65,

66, 70, 71, 75, 91, 97, 100, 118, 168,

169, 178, 188–190, 240–244, 264,

265, 277

idempotent, 240, 240
CSP, see constraint satisfaction prob-

lem

D
DAG, see directed acyclic graph

de Bruijn–Erdős theorem, 242, 242,
244, 258, 278, 319

diameter, 39, 76, 274
dichotomy theorem for automatic

structures, 236, 256, 281, 319
directed acyclic graph, 39, 245, 246
directed cycle, 39, 39, 177, 185, 186,

337

index

245

disjoint union, 38, 38, 62–64, 66, 69,
117, 172, 184, 276

distance, 19, 39, 39, 76, 245, 273
dual, 185, 186, 242, 243, 243–245, 257,

262, 280

finite duality, see finite duality

tree duality, see tree duality

E
embedding, 39, 40, 97, 99, 279
equivalence problem, 200, 209,

211–214

F
finite colourability of automatic

graphs, 277, 278, 278, 319
finite duality, 31, 231, 235–237, 243,

243–246, 256–265, 267, 269,

272–274, 277, 319

finite regular colourability of auto-

matic graphs, 36, 231, 235, 235,
236, 246, 276, 277, 318, 319

first-order

definable, 28, 31, 32, 43, 45, 46, 76,
217–221, 225, 229, 233, 235,

244, 259, 265, 273, 275, 312

equivalent, 217, 217, 218, 225, 227,
240, 265

formula, 31, 42, 42, 43, 46, 54–57,
74–76, 215, 216, 218, 219, 222,

224–226, 237, 239, 264–267,

271, 273

injective interpretation, 217, 217
interpretable, 217, 217
interpretation, 215, 215–217, 222,

223, 226, 227

logic, 16, 22, 43, 43, 46, 53–56, 58,
75, 76, 215, 219, 220, 226, 237,

249, 261, 312

reduction, 45, 46, 217, 217, 218, 225,
235, 241, 242, 259, 261, 262, 264

sentence, 29, 30, 42, 43, 53, 75, 215,
219, 223, 226, 257, 265

first-order model checking of auto-

matic structures, 223, 224, 226,
257

formula

𝜔-order-invariant, 226, 226, 229
existential, 42, 42, 43, 225
existential-positive, 42, 43, 43, 74
first-order, see first-order formula

order-invariant, 226, 226, 278
positive quantifier-free, 43, 224

G
germinal element, 250, 251, 263
graph, 16, 17, 19, 26, 37, 37–40, 46,

60, 68, 69, 72, 184, 185, 231, 234,

236, 243, 245, 246, 259, 262, 267,

276–280

directed, see graph

incidence graph, 39, 39, 244
triangle-free, 278, 278, 280
triangle-free (undirected notion),

278, 278–280
undirected, 18, 28, 39, 39, 68, 69,

243, 278, 279

H
height, 245, 274
homomorphically equivalent, 40, 41,

59, 61–64, 66, 97, 190, 242, 245,

276, 277

homomorphism, 12–17, 19, 22, 26, 27,

30, 31, 39, 39–41, 57–62, 64, 66,
69, 70, 72, 76, 78, 81, 82, 84, 98,

105, 108, 115, 116, 118, 119, 127,

128, 136, 137, 139, 140, 143, 144,

146, 147, 151, 154, 155, 161, 162,

165, 173, 174, 176, 178, 185, 188,

190, 231, 234–239, 241–245, 256,

258–269, 271, 272, 274–276, 280

strong onto, 39, 39–41, 82, 114, 116,
119, 139, 143, 144, 148, 149,

151, 155, 160, 243

uniformly first-order definable, see
uniformly first-order defin-

able homomorphisms

homomorphism problem, 12, 13,
13–18, 25–28, 30–32, 34, 58,

234–237, 257

regular, see regular homomor-

phism problem

hyperedge consistency

for automatic structures, 237, 264,

275
for finite structures, 32, 264,

267–269, 270, 270–272, 274

I
inclusion problem, 200, 209, 211, 212,

214

incompatibility graph, 247, 247
interpretation (of a structure), 216,

216, 217

interpretation of a predicate, see pred-

icate (interpretation of a)

intersection non-emptiness problem,

206, 209, 211
isomorphic, 40, 40, 41, 59, 186, 217,

227, 249, 277

isomorphism, 40, 40, 41, 185, 277, 296,
298, 319

isomorphism problem for automatic

structures, 195, 227, 227–229

L
language

regular, see regular language

Larose-Tesson theorem, 235
link, 259, 259, 262
linked, 259, 259–263
logic

first-order, see first-order logic

monadic second-order, see monadic

second-order logic

second-order, see second-order

logic

loopless, 176, 176, 177
Löwenheim–Skolem theorem, 226

M
membership problem, see 𝒟-

membership problem for 𝒞-

relations

Mezei theorem, 200, 200, 201
monadic second-order logic, 43, 43,

219, 220, 227, 312

monoid, 32, 33, 43, 43, 44, 200, 201,
311

338

index

morphism, 43, 43, 44, 200–202, 205,
206

syntactic, 32, 44, 201
morphism

monoid, see monoid morphism

syntactic, 44, 201
morphisms

length-multiplying, 205, 205
Mycielski

construction, 231, 278, 278, 279
infinite graph, 280

O
obstruction

critical, 243, 243, 244, 274, 275
for a structure, 235, 242, 243, 244
for a unary type, 261, 261, 262

order

length-lexicographic, 221, 221, 222,
226

lexicographic, 219, 219, 222

P
padding symbol, 202, 202, 203, 206,

211, 221

path

directed, 46, 60, 79, 234, 234,

244–246, 269, 274

simple, 39
undirected, 39, 39

polyregular function (transduction),

213, 213, 214
predicate, 14, 37, 37, 38, 40, 42, 43,

53, 57, 61, 76–78, 218, 239, 241,

259–266, 273

interpretation of a, 37, 37, 38, 40,
42, 43, 78, 217, 218, 220, 221,

226, 240, 241, 260

Presburger arithmetic, 225, 225, 226

Q
quantifier alternation, 42, 271
query, 14–17, 23, 25, 41, 55, 58, 66, 67,

80, 86, 187, 215
quotient structure, 40, 40, 44, 243, 275

R
reachability 𝑘-colourability problem,

46, 46, 72, 79, 225
regular 𝑘-colourability problem, 235,

235, 236, 246–248, 250–254, 256

regular function (automatic), 213, 237,
237, 270, 271

regular function (transductions),

197–199, 213, 213–215
regular homomorphism, 31, 32, 231,

236, 237, 237, 238, 240, 256, 258,
262–264, 266, 267, 270, 271

regular homomorphism problem, 236,

238
regular language, 22, 23, 25, 32, 33, 43,

43, 44, 77–79, 186, 197, 200, 201,

203, 206, 209, 210, 219, 220, 231,

233, 236–238, 240, 246–249, 251,

252, 256, 262–264, 266, 271, 280,

310, 314, 318, 319

regular reachability problem, 236,

249, 249–251, 258, 263, 264
regular unconnectivity in automatic

graphs, 236, 258, 262, 262–264,
277

relation

𝑇-controlled, 210, 210, 311, 319
𝒱-recognizable, 201, 201
automatic, 32–34, 195, 197–200,

202, 203, 203–205, 207, 208,
210, 212–214, 218–223, 226,

231, 233, 234, 236, 237, 247,

253–256, 280, 285–289, 295,

296, 303–305, 318

deterministic rational, 198, 207,
207–212, 214, 233, 318

deterministic two-way rational,

198, 199, 211, 211, 212, 214,
215

equal-length, 202, 203
functional, 36, 197–200, 212–215,

288

identity, 198, 203
locally finite, 204, 204
prefix, 198, 202, 202, 203, 208, 210
rational, 198, 199, 205, 206, 206, 207,

210–213, 233, 318

recognizable, 32, 34, 197–199, 200,
200–203, 205, 210, 212, 214,

220, 223, 231, 233, 234, 247,

248, 252, 288, 318

recognized by a multitape automa-

ton, 206, 208
recognized by synchronous au-

tomaton, 202, 202, 203, 208
reflexive, 36, 201
right-automatic, 210, 210, 212, 214,

223

same parity length, 198, 200
subword, 198, 204, 206, 208, 212
suffix, 198, 199, 202, 204, 206, 210
symmetric, 36, 253, 280
two-way rational, 198, 211, 211,

212, 214, 215

relational structure, see structure

rigid, see structure rigid

S
second-order logic, 43, 46
separability problem, see 𝒟-

separability problem for 𝒞-

relations

separable, see 𝒱-separable

separator, 32, 200, 233, 246–248,

252–255, 318

signature, 13, 18, 27, 37, 37–40, 42, 56,
57, 60, 61, 64, 65, 67–69, 71, 77,

78, 215, 217, 218, 220, 234, 238,

261

graph signature, 37, 37, 216, 234,
245, 259, 268

of binary strings, 43, 217
purely relational signature, 37, 37,

38, 41, 53, 56–58, 76, 240

strong onto, see homomorphism

strong onto

strongly acyclic, 244, 244
structure, 13, 14, 16–19, 22, 26–31, 33,

36, 37, 37–44, 53–55, 58, 61–63,
65, 66, 69, 70, 72, 76–79, 81, 195,

215–218, 220–222, 226, 227, 231,

234–245, 256–272, 275–277, 280

finite, 17, 28, 31, 33, 37, 39–41, 55,
58, 69, 75, 77–79, 187, 215, 217,

339

220, 226, 231, 235–238, 240,

242–245, 257–259, 270–272,

275, 277, 319

input, 13, 15, 18, 30, 235, 237, 264,
267, 268, 270, 277, 278, 319

locally finite, 39, 273
marked, 15, 240, 240, 241, 260, 265
pointed, 38, 38, 42, 53, 77, 216
rigid, 244, 244, 274
substructure, see substructure

target, 13, 15, 26–28, 31, 231, 234,
237, 256, 267–269, 272, 277

substructure, 16–18, 37, 37, 39–41, 44,
65, 70, 107, 242–244, 258, 272,

273, 275, 278, 319

induced, 37, 40, 242, 275
proper, 37, 243, 244

T
transducer, 199, 211, 212, 215

deterministic, 212, 212, 213, 288
transduction, 212, 214, 288

deterministic, 212, 213, 214, 288
deterministic two-way, see regular

function (transduction)

two-way, 213, 213, 214
transitive tournament, 31, 79, 229,

234, 234, 240, 243, 244, 268, 274,
278

to contain (un)bounded, 278, 278,
319

tree

𝜎-tree, 244, 245, 274, 275
directed, 18, 39, 39, 184, 229, 245,

251

tree duality, 237, 244, 245, 245, 246,
264, 265, 269–272

Turing machine, 30, 32, 45, 45, 46, 171,
224, 248–250, 259, 263

linear, 236, 249, 249–251, 263
reversible, 236, 248, 248–250
well-founded, 249, 249

U
unary type, 261, 261
uniformly first-order definable ho-

momorphisms, 236, 256, 264,
264–266

W
well-formed words, 203, 203, 285, 286,

289, 291, 293, 295, 300, 311, 319

Z
zigzag graph, 243, 243, 244, 265

Abstract

This thesis investigates the central role of homomorphism problems—structure-preserving

maps—in two complementary domains: database querying over finite, graph-shaped data,

and constraint solving over (potentially infinite) structures.

Building on the well-known equivalence between conjunctive query evaluation and homo-

morphism existence, the first part focuses on conjunctive regular path queries, a standard

extension of conjunctive queries that incorporates regular-path predicates. We study the

fundamental problem of query minimization under two measures: the number of atoms

(constraints) and the tree-width of the query graph. In both cases, we prove the problem to

be decidable, and provide efficient algorithms for a large fragment of queries used in practice.

The second part of the thesis lifts homomorphism problems to automatic structures, which

are infinite structures describable by finite automata. We highlight a dichotomy, between

homomorphism problems over automatic structures that are decidable in non-deterministic

logarithmic space, and those that are undecidable—proving to be the more common case.

In contrast to this prevalence of undecidability, we then focus on the language-theoretic

properties of these structures, and show, relying on a novel algebraic language theory, that for

any well-behaved logic (a pseudovariety), whether an automatic structure can be described

in this logic is decidable.

Résumé

Cette thèse étudie le rôle central joué par les problèmes d’homomorphismes—c’est-à-dire des

fonctions préservant les structures relationnelles—dans deux domaines complémentaires : le

requêtage de données sous forme de graphes, et la résolution de contraintes sur des structures

potentiellement infinies.

En se fondant sur l’équivalence entre l’évaluation des requêtes conjonctives et l’existence

d’homomorphismes, la première partie étudie les requêtes conjonctives à chemins réguliers,

une extension du langage précédent incorporant des prédicats exprimant l’existence de

chemins réguliers. Nous étudions le problème fondamental de la minimisation de ces requêtes

selon deux métriques : le nombre d’atomes (contraintes) et la largeur arborescente du graphe

sous-jacent. Dans les deux cas, nous montrons que le problème est décidable et proposons

des algorithmes efficaces pour un fragment substantiel des requêtes utilisées en pratique.

La seconde partie de la thèse généralise les problèmes d’homomorphismes aux structures

automatiques, structures infinies décrites par des automates finis. Nous dessinons une

dichotomie entre les problèmes résolubles en espace logarithmique non-déterministe et ceux

qui sont indécidables—ces derniers étant malheureusement majoritaires. A contrario, nous
mettons en avant une large classe de problèmes plus syntaxiques : à l’aide d’une nouvelle

théorie algébrique des langages, nous montrons que, pour toute logique raisonnable (une

pseudovariété), il est décidable de savoir si une structure automatique peut être spécifiée

dans cette logique.

	Preface
	I Introduction
	I.1 The Two Sides of the Homomorphism Problem
	I.2 Existentialism is a Database Theory
	I.2.1 Conjunctive Queries
	I.2.2 Adding Regular Path Predicates
	I.2.3 Minimization and Structure of CRPQs

	I.3 Everyone Who Wants to Do Constraint Satisfaction Always Ends Up in Universal Problems
	I.3.1 Constraint Satisfaction Problems
	I.3.2 Automatic Structures: The Dream Is Not Over Yet
	I.3.3 Language-Theoretic Properties of Automatic Structures

	II Prolegomena
	II.1 Set and Functions
	II.2 Relational Structures
	II.2.1 Basic Notions on Structures
	II.2.2 Constructions on Structures
	II.2.3 Adjacencies
	II.2.4 Undirected Paths
	II.2.5 Graphs
	II.2.6 Homomorphisms
	II.2.7 Cores

	II.3 Logic Related Notions
	II.3.1 First-Order Logic and Beyond
	II.3.2 Automata Theory
	II.3.3 Monoids

	II.4 Computability and Complexity
	II.4.1 Turing Machines
	II.4.2 Elements of Complexity Theory
	II.4.3 Parametrized Complexity

	1 Querying Graph Databases
	III Query Languages for Relational and Graph Databases
	III.1 Relational Databases
	III.1.1 SQL and First-Order Logic
	III.1.2 Conjunctive Queries to the Rescue
	III.1.3 The Preordered Set of Conjunctive Queries
	III.1.4 Static Analysis of Conjunctive Queries
	III.1.5 Conjunctive Queries of Small Tree-Width
	III.1.6 Unions of Conjunctive Queries

	III.2 Graph Databases
	III.2.1 Conjunctive Regular Path Queries
	III.2.2 Deciding Equivalence of Conjunctive Regular Path Queries
	III.2.3 Queries Over Simple Languages
	III.2.4 Static Analysis

	IV Minimization of Conjunctive Regular Path Queries
	IV.1 Introduction
	IV.2 Necessary & Sufficient Conditions for Minimality
	IV.2.1 Necessary Conditions: Contractions and Redundancy
	IV.2.2 A Sufficient Condition: Strong Minimality

	IV.3 An Upper Bound for Minimization of CRPQs
	IV.4 Minimization of UCRPQs via Approximations
	IV.4.1 Unions Allow Further Minimization
	IV.4.2 Maximal Under-Approximations
	IV.4.3 CRPQs over Simple Regular Expressions

	IV.5 Lower Bounds
	IV.5.1 Equivalence with a Single Atom
	IV.5.2 Minimization is Harder than Containment

	IV.6 Discussion
	IV.6.1 Variable minimization
	IV.6.2 Tree patterns

	IV.A Lower Bounds for Variable Minimization
	IV.A.1 Equivalence with a Single Variable
	IV.A.2 Variable Minimization is Harder than Containment

	V Semantic Tree-Width and Path-Width of Conjunctive Regular Path Queries
	V.1 Introduction
	V.1.1 Conjunctive Regular Path Queries of Small Tree Width
	V.1.2 Related Work
	V.1.3 Contributions

	V.2 Preliminaries
	V.3 Maximal Under-Approximations
	V.4 Intermezzo: Tagged Tree Decompositions
	V.5 Key Lemma: Maximal Under Approximations are Semantically Finite
	V.5.1 Local Acyclicity
	V.5.2 Short Paths
	V.5.3 Proof of Lemma V.3.8

	V.6 Semantic Tree-Width for Simple Queries
	V.6.1 Summary Queries
	V.6.2 Semantic Tree-Width Problem

	V.7 Acyclic Queries: the Case k=1
	V.7.1 Contracted Tree-Width
	V.7.2 The Key Lemma for Contracted Tree-Width One

	V.8 Semantic Path-Width
	V.8.1 Path-Width of Queries
	V.8.2 Deciding Bounded Semantic Path-Width
	V.8.3 Evaluation of Queries of Bounded Semantic Path-Width

	V.9 Lower Bounds for Deciding Semantic Tree-Width and Path-Width
	V.10 Discussion
	V.10.1 Complexity
	V.10.2 Characterization of Tractability
	V.10.3 Larger Classes
	V.10.4 Different Notions

	V.A Alternative Upper Bound for Containment of UC2RPQs
	V.B Path-Width is not Closed under Refinements

	VI Conclusion & Open Problems
	VI.1 Minimization Problems
	VI.2 Profinite Databases
	VI.A Tree-Like Queries
	VI.A.1 Forest-Shaped and DAG-Shaped Queries
	VI.A.2 Semantically DAG-Shaped Queries
	VI.A.3 Semantically Forest-Shaped

	Entracte: What the Hare Said to Patroclus

	2 The Frontier of Decidability in Automatic Structures
	VII Finite-Word Relations and Automatic Structures
	VII.1 The Landscape of Rationality for Relations over Finite Words
	VII.1.1 Regularity is Key
	VII.1.2 Recognizable Relations
	VII.1.3 Automatic Relations
	VII.1.4 Rational Relations
	VII.1.5 Deterministic Rational Relations
	VII.1.6 Restricted Head Movements
	VII.1.7 And All Other Multitape Automata
	VII.1.8 The Surprisingly Strange World of Transducers

	VII.2 A Logical Excursion
	VII.2.1 First-Order Interpretation
	VII.2.2 First-Order Reduction and First-Order Model Checking
	VII.2.3 A Model-Theoretic Perspective on Automatic Relations
	VII.2.4 Logical Characterization of Other Classes of Relations

	VII.3 Automatic Structures
	VII.3.1 Definitions
	VII.3.2 Model-Checking
	VII.3.3 Problems on Automatic Structures
	VII.3.4 Automatic Graphs

	VIII A Dichotomy Theorem for Automatic Structures
	VIII.1 Introduction
	VIII.1.1 Classes of Relations
	VIII.1.2 Constraint Satisfaction Problems
	VIII.1.3 Contributions & Organization

	VIII.2 Preliminaries
	VIII.2.1 Regular Homomorphisms
	VIII.2.2 Constructions on Structures
	VIII.2.3 Constructions on Automatic Presentations
	VIII.2.4 Idempotent Core
	VIII.2.5 De Bruijn–Erdős Theorem
	VIII.2.6 Obstructions and Finite Duality
	VIII.2.7 Trees and Tree Duality

	VIII.3 From Separation to Colouring of Automatic Graphs
	VIII.3.1 Separability is Equivalent to Regular Colourability
	VIII.3.2 Regular k-Colourability Problem
	VIII.3.3 Bounded Recognizable Relations

	VIII.4 Undecidability of the Homomorphism Problems
	VIII.4.1 Overview & Easy Implications of the Dichotomy Theorem
	VIII.4.2 Undecidability of B
	VIII.4.3 Undecidability of B

	VIII.5 Decidability of the Regular Homomorphism Problem
	VIII.5.1 Uniformly First-Order Definable Homomorphisms
	VIII.5.2 Hyperedge Consistency for Finite Structures
	VIII.5.3 Hyperedge Consistency for Automatic Structures

	VIII.6 Discussion
	VIII.6.1 Undecidability of Finite Regular Colourability
	VIII.6.2 Invariance under Graph Isomorphisms
	VIII.6.3 Obstacles to Finite Colourability
	VIII.6.4 Beyond Finite Duality

	IX The Algebras for Automatic Relations
	IX.1 Introduction
	IX.1.1 Motivation
	IX.1.2 Contributions
	IX.1.3 Related Work

	IX.2 Preliminaries
	IX.2.1 Automata & Relations
	IX.2.2 Induced Relations

	IX.3 Synchronous Algebras
	IX.3.1 Types & Dependent Sets
	IX.3.2 Synchronous Algebras
	IX.3.3 Recognizability
	IX.3.4 Syntactic Morphisms & Algebras

	IX.4 The Lifting Theorem & Pseudovarieties
	IX.4.1 Elementary Formulation
	IX.4.2 Synchronous Algebras Require a Dependency Relation
	IX.4.3 Pseudovarieties of Automatic Relations

	IX.5 Discussion
	IX.5.1 Path Algebras and the Lifting Theorem
	IX.5.2 Path Algebras and Restricted Head Movements
	IX.5.3 Theorem Projection via Monad Adjunction

	IX.A Monads Everywhere!

	X Conclusion & Open Problems
	X.1 Separating Automatic Relations by Recognizable Ones
	X.2 Colouring Problems on Automatic Graphs
	X.3 An Algebraic Approach Beyond Automatic Relations

	Bibliography
	Index

